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Preface

This book is intended to serve the needs of the deck officer in a merchant
ship, as well as first year degree students and others at a similar level. The
work-covered is sufficient to deal with the ship stability and stress syllabus
from cadet entry to master. Whenever possible the practical application
oftheory to ship operatlons is presented in a form which is currently bemg
apphed in practice.

It is assumed that readers will have a basic knowledge of physics
sufficient to deal with ideas of moments and elementary hydrostatics.
Wherever possible, alternatives to the methods of calculus have been
used ; however, an elementary knowledge of integration and differen-
tiation will enable the reader to gain a full understanding of basic
principles

Chapter 1 contains basic work on the form and measurement of ships.
The methods of Simpson’s Rules have been used to present a mieans of
measuring ship form. While there are much more efficient methods
available, especially for computer application, Simpson’s Rules are much
easier to present and to manipulate using calculators. Chapter 1 should
be used for reference as necessary rather than read straight through.

Chapters 2 to 10 are progressive as all information needed to deal with
current work is contzined in previous chapters. As far as possible the work
presented within each chapter is also progressive, so that it is possible for
the elementary student to have a course of study based upon the early
parts of each chapter. The more advanced student can make use of more
information while having revision material at hand.

Chapter 11 ‘Stress’ and Chapter 12 ‘Ship behaviour’ both have links
with the previous work but are largely independent of the early chapters.

Specific examples of computer applications are not given. However,
where a particular process is generally applied as a computer program,
this is indicated in the text.

The author and publishers would like to thank Denholm Ship
Management Limited for permission to use the hydrostatic, stability and
stress data for one of their bulk carriers as a basis for the AV Nonesuch data

which is used throughout the book.
A R Lester



Author’s Note

Symbols are defined as they arise in the text, the following general

““conventions have been used:

o L

Upper case letters represent total values; i.e. W for displacement, B for
buoy ancy, KG for distance of centre ofgrav1ty of the ship abovg the keel.
Lower case letters represent elements of the total, iie. w for a

‘component weight, Kg for the distance of a component weight from the

keel.

Where there is movement of centres of gravity, buoyancy, etc. then the
suffix o is used to indicate the original position and subsequent positions
by suffixes 1, 2, etc. In diagrams dashed lines are used to represent initial
conditions and solid lines final conditions.

i m———
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Ship form and
measurement

This chapter deals with the techniques of measurement which need to be
used in order to compute the various quantities which enable hydrostatic
and stability data for ships to be determined. It is not intended to be read
before the following chapters but is intended as reference material. As
such it should be consulted when particular topics are reached in the
subsequent work, where the techniques contained in this chapter are

required.

OBJECTIVES

1. To define the dimensions and form of ships.

2. To compute areas using the trapezoidal rule; Simpson’s first, second
and 5, 8, — 1 Rules.

3. Toapply thetec hniquesin (2) to finding the first moment of areas and

volumes.

To apply the techniques in (2) to finding the second moments of areas.

To find the positions of the centroids of areas and volumes.

To find the second moments of areas about an axis through the

centroid. ’

7. To apply thevalues calculated to the determination of the hydrostatic
and stability data of ships and other floating platforms.

SO

DEFINITIONS

See Figures 1.1 and 1.2.

Length between perpendiculars (L,,)
The distance in metres on the summer load waterline from the fore side of
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4 SHIP FORM AND MEASUREMENT

the stem to the after side of the rudder post; or to the centre of the rudder
stock if there is no rudder post. These forward and aft positions are termed
the ‘Forward Perpendicular’ (FP) and ‘After Perpendicular’ (AP)
respectively.

Length overall (L,,)
The maximum length of the vessel from bow to stern.

Breadth (B)
The greatest breadth of the vessel.

Depth (D)
The depth of the vessel from the deck to the keel amidships.

Draft (d) (In some references, denoted ‘77)
The distance from the waterline to the keel amidships.

Breadth, depth and draft may be either extreme, when the measurements
are taken to the outside of the shell plating, or moulded, when they are
taken to the inside of the shell plating. References to a dimension in this
book are to its extreme value, outside the shell plating, unless othérwise

stated.

Sheer
The rise in the deck line from amidships to the forward and after ends of

the vessel.

Camber
The rise of the deck from the side of the vessel to the centreline.

Rise of floor
The rise of the ship’s bottom from the keel to the bilge.

RELATIONSHIPS BETWEEN DIMENSIONS

In order to ensure that conventional ship shapes have reasonable stability
and stress characteristics, constraints are imposed on the relationships
between the principle dimensions of ships. These relationships are
expressed as the ratio one dimension bears to another.
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For tvpical ship shapes, the range of values which will normally be
found are as follows:

L
= - 10-6
D

L
5=358
B
7=23

MEASUREMENT OF AREA

Any quantity which can be represented by the area under a curve can be
determined by measuring the area under the curve between limits. If the
equation of the curve is known, then the techniques of integral calculus
can be used. If, as is generally the case with ship data, there is no equation
which describes the bounding curve, one of the techniques of numerical
integration must be used. -
All of these techniques rely upon dividing the area to be measured into
segments and then applying various formulae to the ordinates bounding

the segments (Figure 1.3).

In general:
Area=C(Koyo+ Ky + - K¢ 6)
where C, Ky, K, etc. are constant multipliers by which the ordinate

values y,, y, etc. are multiplied.
If the bounding curve is now assumed to be a polynomial of some

Figure 1.3 Measurement of Area
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order. (Note thata polynomial is any equation which measures the value
of y by saying that:

Yl b e prg)

there are three alternative approaches to determining the area under the
curve using numerical integration:

(a) To assume that the intervals between the ordinates, g, 4, ... k5 are
all equal and to find the multipliers C, K, K, ... K¢ by which the
ordinate values yy, y; ... ¢ are to be multiplied in order to give the area.
This approach is used to produce Simpson’s Rules, which will be used in
this book to determine areas.

(b) To allow the intervals Ag, £, ... s to vary and then to find the

intervals required to make the multipliers Ko=K,=...K¢=1. This
approach produces Tchybecheff’s rules, which will not be examined
further in this book. : ’

(c) To allow both the intervals Ag, 4, ...hs and the multipliers
Ko, K; ... Kg to vary. This approach produces Gauss rules, which will
not be examined further in this book.

There isan improvement in efficiency from Method (a) to Method (c);
1.e. fewer computations have to be performed in order to achieve a given
degree of accuracy. Simpson’s Rules have the advantage that the
formulae produced by them are easily manipulated using a hand
calculator. Methods (b) and (c) are more suited to computer calculations
and may be studied further in Reference 1.

Simpson’s Rules

(1) The Trapezoid Rule (Figure 1.4)
This rule assumes that the bounding curve between two ordinates yo and

y, is a straight line, i.e.

y=ax+c

h
Hence: Area=§ (yo+21)

YO Y1
— >

h Figure 1.4 Trapezoidal Rule
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Figure 1.5 Compound Trapeoidal Rule

The rule may be extended to any number of ordinates and is then known
as the Compound Trapezoid Rule, in which (Figure 1.5):

h
Area =3 Do+ 21 +2,+ 23+ 94)

This rule gives area values which are less than those existing under a
curve, but may usefully be applied as a check on areas found using more
complex rules.

(11) Simpson’s First Rule (Figure 1.6) A
This rule assumes that the bounding curve, defined by three ordinates y,,
1 and y,, 1s a second order polynomial, i.e.

y=ax’ +bx+c

From which the area is found to be:

h
Area =§ (Yo+ 4y +2)
Yo Y, Y,
— ”"
h

Figure 1.6 Simpson’s First Rule
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Yo Y Y, Y3 Y3
S —_—,— € H H5d
h 4%
Area i Area 2

Figure 1.7 Simpson’s compound First Rule

This rule may be extended to any area wjich isdivided by an edd number

of ordinates, as follows:
The Compound First Rule obtains the total area under the curve by

adding together the areas defined by groups of three ordinates, as follows
(Figure 1.7):

Total Area=area |1 +area 2
) h h
1.e. Total Area=§ (yo+ 4 +}2)+-3- (y2+4y3+94)

h
=3 (ot +22+43+04)

In a similar way, any area with an odd number of ordinates can be found
using the first rule. The multipliers inside the bracketsare 1,4, 2,4, 2,4, 2,
4,..., L.

A derivation of the first rule is now presented to illustrate the general
principles governing the derivation of Simpson’s Rules (Figure 1.8).

Yo Y4 Y2
— > |
h
| P al
| 0 —N
2h

Figure 1.8 Derivation of Simpson’s First Rule
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If y=ax’+bx+c

Pl
Area = J (ax®+ bx+¢)

0
ax®  bx? ;
=| 3ty et
0
8h  4h?
=T (1+—2— b+ 2hc
Now when:
x=0
Jo=¢
When
x=h
y=h2a+hb+c
When

Yo=4h*+2hb+¢
Y1 —po=ha+hb
Y2 —yo="4ha+ 2hb

(¥2—20) = 2(»s — yo) = 2h%a

Jo— 21+,
2h?

(V2—Jo) —4(y1 —yo) = —2hb

b= _3.},0'*'4.}’1 —J2
2h

t=Jo

(i)

(iii)
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Substituting in the formula for the area:

8h* (yo— 2y, +.72) +4/12 (=3o+¥Y, —,)

Area= 3 T 5 % +2h. y4
4h
=3 (Fo=2y1 +.v2) + (= 3yo + 4r, —y,) + 2y,

+ 8 4
=h 3)o 731 +§)’2 o+ =02+ 2y
] 4 1
=h\zr0t3 14302
, h
i.e. Area=§ o+ +,)

The First Rule can be further extended o reduce computation when
some segments of an area are bounded by a curve which is changing
rapidly, while other parts of the curve are changing very slowly or not at
all. For example, the bow and stern portions of a ship’s shape are parts of
the ship where shape changes rapidly, while over the parallel middle
body the shape remains constant.

The First Rule is modified by the insertion of intermediate ordinates
which are measured at points half way between two of the main
ordinates, as follows (Figure 1.9):

1 A 1 [y y
Area l=§§ (Jo+ 4, +)2)=§/z< 20+2} + 22)

1
Area 2 =3 h(pa+ 43 +04)

1 A 1
Area 3=-3—§ (Pa+4ys +}6)=§/z('};+2} +J6>
l |
Total Area =- 4 &4-2_):, +_);_£ +zh(y2+Y3+4)
3 \2 2 3
I (s ., Je
+§h(?”ﬂs+?)

h{y 3 3 y
Total Area=2 (7°+ Ditgrtdstgratdst 26)
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Area 1 Area 2 Area 3~

Figure 1.9 Use of intermediate ordinates

Yo Y, . Ya Ys

le N
[ ]

h
Figure 1.10 Simpson’s Second Rule

(111) Simpson’s Second Rule (Figure 1.10)
This rule assumes that the bounding curve, defined by four ordinates y,,

Y15 ¥, and y; is a third order polynomial, i.e.
y=ax> + bt +es+d

From which the area 1s found to be:

3
Area=§ h(yo+ 3y, +3y2+3)

This rule may be extended to any area which is defined by a number of
ordinates such that the number of spaces between the ordinates can be
- divided by three;i.e.itisapplied to 4, 7,10, 13. .. ordinates, the number

of spaces being 3,6, 9, 12. .. .
‘The Compound Second Rule obtains the total area under the curve by
adding together the areas defined by groups of four ordinates, as follows

(Figure 1.11):
Total Area=Area 1 + Area 2

. 8 3
1.e. Total Area =§ }l()o + 3)"1 + 3_}’2 +_}’3) +§}ZU3 + 3)4 + 3_}’5 +)’6)

3
Total Area = 3 h(yo+3ri+ 32+ 293+ 3y, + 3ys + v6)
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Area 1 Area 2

Figure 1.11 Simpson’s compound Second Rule

The multipliers inside the brackets for the Second Ruleare 1, 3,3, 2, 3, 3,
2,3,3,2,...,1. This rule is theretore used to obtain areas when the First
Rule will not fit. Where both the First and the Second Rules will fit, it is -
conventional to use the First Rule in preference to the Second.
VWhere neither of these rules fit, then the area must be divided into
subsections, each area found separately and the sum of the areas found.
A Simpson’s Rule can be found for any number of ordinates. For
example, the rule for six ordinates may sometimes be required and 1s now

stated for reference purposes:

25 2
Area =9 h )’o T 23Vt Is o)

“

The 3, 8, —1 Rule:
A derivative of the First Rule may be used to find the area between any

two successive ordinates when three ordinates defining a curve are given.
This rule is called the 3, 8, — 1 Rule because of the multipliers used inside
the brackets. Ifan area defined by three ordinates is defined, then it may

be shown that (Figure 1.12):

= (o + 8 —2)

h
Area 2= —)(3)2+8)1 '0)

[ >

Area [ +Area 2=— (499 + 16y, +453)

I

N

: h
l.e. Area | +Area 2=—3— (yo+41+2)
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Yo Ys Y2
- R
Area 1 Area 2 Figure 1.12 Simpson’s 5 8-1 rule
A ppendages

It is often the case that there are small areas which it is inconvenient to
include within the main area to be measured using the rules. These
appendages must be measured separately and added to the mainarea. In
“many cases these appendages will be approximately triangular in shape.

EXAMPLES

The worked examples which follow illustrate the method of obtaining
areas under curves using Simpson’s Rules. The ordinates are measured at
a number of stations along the length of the area. For most problems
relating to ship shapes, the waterplane is involved and stations: are
measured along the centreline of the vessel. The ordinates are then
measured to the shell plating of the ship on oneside only, it being assumed
that port and starboard sides are identical. Ordinates measured on one
side only of the centreline are termed half ordinates.

When solving problems involving the use of Simpson’s Rules the
following points should be carefully remembered:

1. Establish how many ordinates (stations) define the area and draw a
sketch to illustrate the area to be found. :

2. Determine which rule or combination of rules should be used to
obtain the area.

3. Check if ordinates are equally spaced or not. Particular care in
determining the multipliers must be used in problems involving the
use of intermediate ordinates and the First Rule.

4. Lay the work out neatly to minimize the risk of mistakes and to enable
checking to be carried out easily.

5. Ensure that the answer obtained is a reasonable one by making a
check using the Trapezoid Rule or mentally obtaining the ‘mean’
ordinate and multiplying this by the length of the area to obtain an
approximation to the area.
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If the problem to be solved is not one set in a book or examination, i.e.
“where the reader has to go out and measure, say, the curved area of a tank
top in a ship, then the selection of station spacing to make the calculation
of the area using either the First or Second Rules as convenient as possible
is clearly advisable.

Example 1.1

A vessel of length 90m has equally spaced half ordinates of the
waterplane as follows, commencing from the after perpendicular:

Station 0 1 2 37 4 5 6
} Ordinate (m) 0.1 2.4 2.7 2.8 2.8 22 0.2

Find the area of the waterplane.

Station 3 Ord Simpson’s Function
{(m) multiplier Jor erea
0 0.1 1 0.1
1 24 4 9.6
2 2.7 2 54
3 2.8 4 11.2
4 2.8 2 5.6
5 2.2 4 8.8
6 0.2 1 0.2
 40.9

]
Area=2x 3 x i 2 Function for Area

=2x3lx 15%x40.9

=409 m?

The value of ‘4’ is found by dividing the length of the waterplane by the
number of spaces, i.e.

90 m divided by 6 spaces= 15 m.
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Example 1.2

A vessel of length 300 m has half ordinates of waterplane as follows,
commencing from the after perpendicular:

Station 0 3 ] 2 "3 4
4 Ordinate (m) 0.1 7.5 10 12 123 114 8 5.2 1.0

L
J
[=2)

Find the area of the waterplane if there are appendages forward and aft
with a total area of 2.8 m? to be added to the main area.

Station } Ord Simpson’s Function ¢ 25v<"!
(m) multiplier ’ Jor area 4 1€ 3
0 0.1 3 0 |
3 7.5 2 150 ~°
I 10.0 13 150 _— -
2 12.0 4 48.0
3 12.3 2 2062625956 L
4 1.4 4 456 °
5 8.0 13 12.0 5 L.
54 5.2 2 104 7% e
6 1.0 3 05
T 17315
17V S

b
Area = ‘»2 X3 X 2 Function of Area] + Appendage Area

é(Q x%g x 173.1 +2.8> m?

= 5772.8 m? 57078

In the example above, there are 7 stations (0, 1, 2, 3,4, 5and 6) and two
intermediate stations, 4 and 5. The station spacing is therefore

length of vessel 300 _
= =50 m.
number of spaces 6
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> Example 1.3

A vessel has the following waterplane areas at the drafts given:

Draft {m) 0 2 4 6 8 10

Area {m?) 350 2500 3450 3960 4000 4030

Find displacement of vessel in salt water at drafts of 2 m, 6 m, and 10 m.

At 2m draft

Station drea Simpson’s Function
(draft) (m?) multiplier for volume
0 350 5 1750
2 2500 . 8 20000
4 3450 ~1 - 3450
X 18300

. h :

Volume =19 x 2 Function of volume
2 20 o3
=—x 18300=3050 m
12
Displacement = Volume x density
=3050x 1.025=3126.25 tonnes
At 6 m draft

Station . Area Simpson’s Function
(draft) (m?) multiplier for volume
0 350 I 350
2 2500 3 7500
4 3450 3 10350
6 3960 1 3960
I 22160

Volume=§ x h x 2 Function of volume

=gx2x22160= 16 620 m*>

Displacement =16 620 x 1.025=17035.5 tonnes

v e v e m— -
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At 10 m draft
Station Area : Simp.rbn’.r Function Smmpson’s Function
(drafl) (m?) multiplier JSor volume multiplier Jfor volume
04 0-4 4-10 4-10

0 350 | 350

2 2500 4 " 10000
4 3430 1 : 3450 | 3450
6 3960 3 11880
8 4000 3 12000
10 4030 1 4030
2 13800 2 31360

h .
Volume, , =3 x Z Function of Volume

=§x 13 800 = 9200 m3

3
Volume,, =3 x h x X Function of Volume

x 2 x 31 360 = 23520 m?

1l
| w

Total Volume,_; o = 8200 + 23520 = 31 720 m?

Displacement = 31 720 x 1.025 = 32 513 tonnes

By using the six ordinate rule, the volume, ,,=32629.2 m>.

MOMENTS OF AREAS AND VOLUMES AND CENTROIDS

First moments of areas and volumes

The value of the first moment of an area is required in order to calculate
the position of the centroid of the area. The position of the centroid
represents the position of the centre of floatation of a waterplane and the
position of the centre of buoyancy of the underwater volume of a vessel.
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Figure 1.13 First moment of Area

Consider an area 4 with an element of area §4 at distance r from an axis
passing through 0 (Figure 1.13)

First moment of the element 64 =704

First moment of full area =2 r0A .
First moment of full area = RA
RA=X7r04
— 27104
R=
A
) — First moment of area
l.e. R=
‘ area
In a similar way
Ao First moment of volume

volume

Second moments of areas (Figure 1.13)

The second moment of area is a mathematical form which arises from the
moment of inertia of a rotating mass. In general, the energy of a body can
be written as:

Totgl Energy = Potential Energy + Kinetic Energy
+ Rotational Energy
= mgh+Imv? + w?

“where ®=angular velocity; _

I =the moment of inertia about the axis of rotation;
= Cma? (where C = a constant; m = the mass of the
body; a = some dimension of the body).
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Similar mathematics to the above can be used to find the second moment
of volume.or the second moment of area. The term second moment is used
because of the a? term in the expression. Cma is the first moment, used to
find the centre of gravity of a body, Cma? is the second moment.

It is not surprising that inertia should play some part in assessing the
stability of ships and other floating bodies, because ships are rotating
about some axis as they roll and pitch. The mathematical form of second
moments appear when analysing transverse and longitudinal stability.

Figure 1.14 Second moment of Area

Consider an area A rotating about some axis " with an angular velocity

w, (Figure 1.14).
A 1s an element of;the area at a distance r from the axis 7",

The Kinetic Energy of the Element =} § Av?
V=rw
Kinetic Energy (KE) =3} 6Ar’w?
and for the full area 4:
KE=X}dA4r’w?
=}w? X 3Ar?

The value of £ dAr* will be a constant when considering the rotation of
the area about any given axis.

Ar? is the second moment of the area about the axis 1.
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We require two values of second moments for our work on ship stability
and will shortly investigate one of the several theorems which connect the
second moments of an area about different axes.

Routine work on rectangles makes use of the values of second moment
about the centroid of the rectangle and also about its edge, as follows:

Second moment of a rectangle about an axis through its centroid (Figure 1.13):
g c B .

— 2,

T

—>f —
L Figure 1.15 Second moment of reclangle about
b db centreline

Second moment of a strip=Lafbb2
Lb*db

B2

Second moment of full area =J Lb*db

- B2

B/2
=2 J Lb* db

0

3 B2
:2[9_}"
3 o

o B | LB
e 3T
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Second moment of a rectangle about one side (Figure 1.16)

B
Y le— >

» |¢

Y b Figure 1.16 Second moment of rectangle about
db edge

B

Second moment of a strip =J Lb? db
0

| P LB
13 3
The parallel axes theorem

The parallel axes theorem is used in cases where we wish to determine the
second moment of an area about one axis (YY) and we already know or
can find the value of the second moment of the area about another axis
which is parallel to YY (Figure 1.17).

Consider the second moment of the area about axis YY, given that NA
is an axis parallel to YY and that NA passes through the centroid of the

area, located at C.

xSS - 2



2 SHIP FORM AND MEASUREMENT

Y N

frer——————

BN

t— —Pre -

Y

Figure 1.17 Parallel axis theorem

™M
I = (/z+x)2jdx
J-N

e

M
= (h% + 2hx + x*)y dx
N

o -

-N =2

"M M M
= /zﬁ»dx+J 2/uydx+J K2y dx
\ N N
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M M
Now J /zz)ld.\f:/zzj jdx=/12A
N

-N

and

M M
J 2hxydx=2-/z'[ xydx=0
-N N

M

(since xy dx is the first moment about the neutral axis)
J-N
("M
Also xzj dx= I,
J-N
Iyy = IN.\ + /ZZA
or
L= In - /ZZA

i.e. the parallel axes theorem states that the second moment of an area
about an axis (YY) which is parallel to an axis passing through the
centroid of thearea (NA) is the sum of the second moment about the axis
through the centroid and the product of the area and the square of the

distance between the axes.
Note that, when the parallel axes theorem is applied to a rectangle to

“determine the second moment about an edge, knowing that the second

moment of the rectangle about the centreline is LB>/12:

Irdgc =1l + Ah?

LB3 B 2
ie. I“,gc=—+LB(—)

12 9
LB® ILB® LB
" T2t T3

which confirms the derivation of the second moments about the
centreline and edge for a rectangle.

APPLICATION OF SIMPSON’S RULES

In working with waterplanes and underwater volumes of ships and other
structures, we need to apply Simpson’s Rules to finding:



24 SHIP FORM AND MEASUREMENT

Areas and volumes of curved shapes
First moments of these areas and volumes
Second moments of curved areas

The first moments of the areas or volumes are used to find the distance of
the centroid of the area or volume from a given axis, while the second
moments of areas are used in the calculation of initial transverse and

longitudinal stability.
Y
H%k\‘W
——
l

L B
¥y

A 4

-

Y L

Figure 1.18 Area, second moment and second moment about Y'Y

In Figure 1.18.

L
m@=JJﬂ

0
L

First moment of the area =-[ yldl
0

relative to the transverse axis YY

L
Second moment of the area=J Y2 dl
0

relative to the transverse axis YY

The effect of translating these quantities into areas is shown in Figure 1.19
where (a) is area, (b) is the first moment of the area and (c) is the second
moment of the area. Tables 1.1 to 1.4 give the standard proforma for
calculating these values using Simpson’s Rules.

Table 1.4 gives the standard proforma for calculating values relative to

axis YY using Simpson’s Rules. This work has been reduced by noting
that for, say, y, in Table 1.2

F (first moments) = F (area) x 2k = 4y,
and in Table 1.3

F (second moments) = F (first moments) x 2k = 8hZy,

also that & and 42 are common factors in the tables for first moments and
second moments respectively.
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Y
Yo ¥ Y2 Ya Ya Ys Yo
d —
(a)
Y
1Yy | 2nYs 3hY; | 4hYs | 5hYs | 6hYg
Yl "T'l
(b)
Y
102Y; | an2Yy | on?Yy [16tYe |25KYs |3enZYe
vl —
(c) h

Figure 1.19 (a) Area (Figure 1.18). (b) First moment of Area of (a). (c} Second moment of Area of ia)
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Table 1.1 Area
Station Ord Stmpson’s F (Area)
multiplier
0 Jo I Jo
l b 1 4y,
2 J2 2 2]2
3 J3 4 4y,
4 e 2 2,
5 s 4 45
6 Js 1 Js
X F (Area)
Table 1.2 First moments
Station Ord Stmpson’s -F (First moments)
multiplier
0 Oy, | 0
! b, 4 4hy,
2 2hy, 2 dhy, .
3 3hy, 4 124y,
4 4/11‘ 2 8’94
5 Shys 4 20hy¢
6 6hys | 6hye
Z F (first moments)
h
and first moments=§ X F (first moments)
Table 1.3 Second moments
Station Ord Stmpson’s F (Second moments)
multiplier
0 Do | 0
1 3y, 4 4/.?,
2 44%y, 2 8h 72
3 9h%y, 4 36h%y,
4 [64%y, 2 324 J
5 25h%ys 4 1004 Js

X F (second moments)

h
and second moments=5 Z F (second moments)
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Table 1.4
Station Ord Smmpson’s  F (Area) Lever F (Fust Lever F
multiplier First moment) (Second (Second
momen! moment) moment)
0 Yo 1 Jo 0 0 0 0
1 ) 4 ¥, I 3 ! 3
2 2 2 2 2 Y 2 8y
3 ) 4 4y, 3 12y 3 36y
4 Ja 2 s 4 8y 4 32y
5 s 4 4y, 5 20y 5 100y
6 Js 1 Iye 6 & 6 35
IF ZF ZF
(area) (First (Second
moment) moment)

Area =§ 2 F (area)

First moment (about Station 0) =§ h Z F (first moment)

h
8econd moment (about Station 0) =§lz2 2 F (second moment)

In general, we need to use the area and first momentof the area tofind the
position of the centroid of the area (or of the volume when volume is being
considered). Thus, to find the position of the centroid of the area bout axis
YY, we use:

¥ _¢ First moment of area

area

h

3 h Z F (First moment) ;
= p and cancelling 3 gives
3 2 F (area)

__ hZ F (First moment)
2 F (Area)

For work on longitudinal stability, we require the second moment about
the transverse axis which passes through the centroid of the area. By
making use of the theorem of parallel axes, we can say that:

INA = IYY - sz
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x Yo |% Y, Ya Ys Y X
h
(@) — ] \
o |¥ Y2 Y3 v: |2 v2
« [ 2 2 2 2 2 2 2
(b) h
(c) V3 3 3 V3 Yg g
x I R S S b A £
h

Figure 1.20 (a) Area. (b) First moment of Area (a). (¢) Second moment of Area (a)

Area

x 1st Moment

2nd Moment
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To find moments about a longitudinal axis

The first and second moments of the ship’s waterplane area about its
centreline are important values in the calculation of its stability data,
These values are determined at the design stage of the vessel and are not

normally calculated by the mariner.
However, an understanding of the means by which these figures are

obtained is of value and are explained below.
When finding the centroid of the area relative to axis XX, note that the

first moment of the strip area y dl is (y/2) y dl= (¥*/2) d| (Figure 1.21)

L2
Hence, the first moment of the areazJ‘ %dl
0

In finding the second moments of the area about an axis, note that the

x— !j_[]‘b: X
X e
dl

"

le
l"
Figure 1.21 Moment about XX

second moment of the rectangular strip y d/ about axis XX is

ydl
3
L3
Hence, the second moment of the area = Z—a'l
¢ 0

The effect of translating these quantities into areas is shown in Figure 1.20,
where (b) is first moments and (¢) is second moments.

To find the first moment of the waterplane area about its centreline (Figure
1.20(6))

Table 1.5
Station Ord Ord? Stmpson’s F
multiplier (First moment)
0 Jo )’o2 ! J‘o2
n N N 2 4 372 2
2 T on 25 2 25’
3 73 73 4 1y,
4 J4 Ja 2 2 A 2
5 s s’ 4 s’
6 Js 76’ | 76’

Z F (First moment)
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hl
and first moment = 552 F (First moment)

To find the second moment of the waterplane area about its centreline

Table 1.6
Station Ord ord Simpson’s F
multiplier (Second moment)
0 Jo Jo > 1 103
1 4 N 3 4 b, >
2 )2 §7% 2 2,
3 3 JJJ 4 4733
4 s 76 2 V) Ry
5 Js 153 4 49'53
6 J6 J63 1 Jé

2’F (second moment)

hl ~
and second moment=_—-X F (second moment)

33

Note that, for the whole waterplane (i.e. both sides)

33

hl
second moment=2 — - % F (second moment)

DETERMINING VALUES OF FIRST AND SECOND
MOMENTS ABOUT AXES FOR SHIP’'S WATERPLANES

The procedure for determining the values of first and second moments
about transverse and longitudinal axes for ships’ waterplanes can best be
understood by the examination of a worked example in conjunction with

the explanation given above.
The following example serves as an illustration of these methods.

Example 1.4

A vessel of length 200 m has the half ordinates of waterplane values as
shown, commencing at the after perpendicular (AP):

Station 0 1 2 3 4 5 6 7 8 9 10
$ Ord 0 -100 130 140 142 142 141 140 115 62 02




c—— e

- - aesamat

SHIP FORM AND MEASUREMENT 31 P

(a) The area of the waterplane. S
(b) The position of the centroid of the waterplane relative to the after Sz,
perpendicular. P
(c) The second moment of the area about a transverse axis through the
centroid. )
(d) The second moment of the area about a longitudinal axis through
the centreline.

Station $ Ord  Simpson’s F Lever F Lever F

multiplier (area) (First (First (Second (Second

moment) moment) moment) moment)

0 0 I 0 0 0 0° 0
1 10.0 4 40.0 ] 40.0 1 40.0
2 13.0 2 26.0 2" 52.0 2 104.0
3 14.0 4 56.0 3 168.0 3 504.0
4 14.2 2 28.4 4 113.6 4 454.4
5 14.2 4 56.8 5 284.0 5 1420.0
6 14.1 2 28.2 6 169.2 6" 1015.2
7 14.0 4 56.0 7 392.0 7 2744.0
8 11.5 2 23.0 8 184.0 8 1472.0
9 6.2 4 24.8 9 223.2 9 2008.8
10 0.2 1 0.2 10 2.0 10 20.0
339.4 1628.0 9772.4

' l
(a) Area=2x 3% h F (area)

1
=2x 3 20 x 339.4 =4525.3 m?

hZF (ﬁfst moment)
2F (area)

_20x1628.0
© 3394

=95.93 m forward of AP

(b) Centroid about AP =

() Iyp=2x 3 X h*Z F (second moment)
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=2 90° x 9782.4
3
=52172800 m*

This value must now be modified by obtaining the second moment about
the centroid of the waterplane using the parallel axes theorem, as follows:

1.'\'.-\ =1.-\P"A‘i’2
=52172800— (4525.3 x 95.92%)

=10528433 m*

3

(d) To determine the second moment of the waterplane area about the
centreline, cube the ordinate values as follows:

Station 3 Ord } Ord® Simpson’s F (Second
. multiplier moment)

0 0 ) 0 ] 0
1 . 10.0 1000.0 4 4000.0
2 13.0 2197.0 2 4394.0
3 14.0 2744.0 4 10976.0
4 14.2 2863.0 2 5726.0
5 14.2 2863.0 4 11452.0
6 14.1 2803.0 2 5606.0
7 14.0 2744.0 4 10976.0
8 11.5 1520.0 2 3040.0
9 6.2 238.0 4 952.0

10 0.2 0.0 ] 0
X 57122.0

11
T =2x 3%3 h 2 F (second moment)

3

]
=2x§x%x20x57122.0

=253875.6 m*
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QUESTIONS ON SIMPSON’S RULES

1.

A vessel of length 240 m has the } ordinatesof waterplane area shown,
spaced at equal intervals; commencing from the AP

Station 0 1 2 3 4 5 6 7 8
4 Ord (m) 0 120 143 150 150 140 120 80 3.5

The vessel has a draft of 20 m and the block coefficientat this draught
is 0.79 m. Calculate the TPC in salt water and the Fresh Water
Allowance at this draft.

A vessel has the following dimensions: Length 120.0 m; block
coeflicient, 0.78; KB 3.2 m.
1 ordinates of the waterplane at the 6.0 m draft are:

Station 0 1 2 3 4 5 6
4 Ord (m) 0 14.0 15.0 15.0 13.0 9.5 1.0

Ifthevessel isfloating on an even keel at a draft of 6.0 m, calculate the
vessel’'s KM. ’

An undivided double bottom tank with vertical sides of depth 1.5 m
has  ordinates commencing at the after bulkhead as follows:

Station 0 1 2 3 4 5 6
4 Ord (m) 60 6.0 39 5.7 5.4 49 43

The after bulkhead is 65 m forward of the after perpendicular. Find
the volume of the tank, the distance of the centroid of thé tank from
the AP and the free surface momentof the tank when it contains fresh
water.

SIMPSON’S RULES (ANSWERS)

l.

Y Function of area= 282.5

Area = 5650 m?

TPC = 57.9 tonnes/cm

FWA = 491.2 mm

Underwater volume = 16850 m?

2 Function I = 41405 I, = 184.022 m*

BM = 10.95 m
KM = 14.14 m
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2 Function for area = 993
2 Function for First mom = 283.0
2 Function for Second mom=2719.7
Volume = 397.2 m3

Free surface moment =2417.5 tonnes metres




Flotation

This chapter deals with the principle of floatation and withits application
to ship operations.

OBJECTIVES

N

N AW

To enable the pressure and thrust in a liquid to be determined.
To enable the effect on suspended and floating bodies of static thrust
to be determined (Archimedes’ Principle and the Principle of
Floatation). -

To define displacement, deadweight and TPC. »
To define the relationships between displacement, draft and density.
To define the form of ships’ load lines.

To enable FWA and DWA to be determined.

To enable the amount of cargo to be loaded or discharged when
limited by load line considerations to be determined.

PRESSURE

Consider an area 4 located at a depth /4 below the surface of a liquid of
density p (see Figure 2.1). The force exerted by the liquid over thisarea A4
may be determined as follows:

F=Volumexpxg (Fis the force acting on the area;
= Ahpg (¢ 1s the acceleration due to gravity)

The pressure acting on the area is expressed as the force per unit area, 1.e.

force

Pressure =
area

35
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Figure 2.1 Pressure in a liquid ~

i.e. Pressure=depth x density x g

ARCHIMEDES' PRINCIPLE

This states that a body wholly or partially immersed in a liquid is subject
to an upthrust equal to the weight of liquid displaced by the body.

Buoyancy and floatation

Consider a body with straight sides, of depth d and cross-sectional area 4
with the upper surface parallel to the surface of the iquid in which it is
immersed and a distance 4 below that surface (see Figure 2.2). The density
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Figure 2.2 Archimedes’ principle

of the liquid is p. Then:

Thrust on the upper surface = A44pg
Thrust on the lower surface = A(h+ d)pg

The upthrust on the body = A(k+d)pg—Ahpg
= Adpg

Also, the weight of the liquid which is displaced by the body immersed in
it

=Adpg
Hence, upthrust on the 50dy=weight of liquid displaced.

PRINCIPLE OF FLOATATION

Itis evident that, when objects are placed in a liquid, some of them will
sink and others will float. We must determine the condition which will
result in an object or body floating when placed in a liquid. From the
previous section, we established that the weight of the liquid displaced by
the immersed body was equal to Adpg. If the liquid has a density of p,
this may be expressed as:

Weight of liquid displaced = Adp g
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Also, the weight of the body, if it has a density pg, mav be expressed as:
Weight of body = Adpgg

If the weight of the immersed body is equal to the weight of the liquid
displaced by the.body, then the body will not move up or down. Then

occurs when p, = pg.

i.e. Adpg=Adpsg

When p, <pg, then
Adp,g<Adpgg

and the body will sink.
When p, > pg, then

. Adp,g> Adpgg

and the body will be lighter than the weight of liquid which it displaces.
As the upthrust acting on the fully immersed body is greater than the
weight of the body, the body will rise to.the surface of the liquid and will
float with part of its volume out of the liquid, i.e. it will rise until (Figure
2.3):
Weight of the body =weight of the liquid displaced
by the body

A
Figure 2.3 Principle of flotation
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This means that, if the depth of the body is D and the draft at which it
floats with its area parallel to the liquid surface is d, the body will rise

until:
Adﬂ1g=Adﬂsg

(Note. The quantities considered above are strictly forces and are
measured in Newtons. However, in most of the operational work
concerning the buoyancy and stability of floating bodies, mass units are

.most convenient. For the majority of the work of this book, therefore,

tonnes will be used, where 1 tonne is 1000 kg.)

DISPLACEMENT

Since a floating body displaces its own weight of water, the most
convenient method of finding the mass of an irregular shaped body
floating in a liquid is to take the product of the underwater volume and
the density of the liquid in which it floats. The mass of the floating bodyv is
generally termed its displacement, 1.e.

Displacement = underwater volume x p;

(where p, is again the density of the liquid in which the body 1s floating).
For a box shape of length L and breadth B, floating atdraft 4in a liquid
of density p,, then:

Displacement=L x B xdx p, .

For shapes of ships, the underwater volume can be found using
Simpson’s Rules (see chapter 1). When this volume hasbeen found, it can
be compared to the volume of a rectangular shape having the same
length, breadth and draft as the vessel. The ratio of the underwater
volume of the ship to the volume of the block having the same length,
breadth and draft 1s termed the block coefficient of the vessel, (,, i.e.
(Figure 2.4)

underwater volume

G = LxBxd

(,, 1sa measure of the ‘fineness’ of the vessel's underwater form and is often
used in the application of regulations of vessels, such as those governing its
freeboard or strength. :
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It should be noted that, when the C, of a ship is known, the underwater
volume of the ship can be found using:

Volume=L x B xdx (,

and hence the ship’s displacement can be obtained for this draft and C,
value.

Changes in displacement

The effects ofchanges in displacement, draft and density of the liquid in
which the vessel is floating can be examined. For box shapes, we know
that:

Displacement; = L x Bx d, x p,
With constant density, but at a new draft (d,):

Displacement, =L x Bxd; x p,

Displacement; 4y

Displacement, d,

i.e. the draft is directly proportional to displacement.

When no changes are made to the mass of the ship, its displacement
remains constant. However, draft changes may result at constant
displacement due to changes in the density of the liquid in which the

vessel floats; 1.e.
Displacement=L x Bx d, x p,
Displacement =L x B x d, x p,

LxBxd xp,=LxBxd,xp,

dy P,

] — ==

dy py

which is true for box shapes only.
As the range of densities in which a vessel (ship shape) w1ll float is

small; by convention the density of [resh wateris l 000 tonnes/m> and the
density ofsalt water is taken to be 1.025 tonnes; m?; then as the changes ol
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block coefficient over the range of drafts due to the changesin density will
be negligible. For ship shapes, therefore, we can say that:

TONNE PER CENTIMETRE IMMERSION

Changes in draft cause changes in displacement and in calculating
displacement changes due to draft changes it is useful to have a value for
the number of tonnes which will cause the draft of a ship to change by
l cm.

This figure is termed the Tonnes per Centimetre (TPC) and may be
applied to the calculation of draft changes due to added weights
(immersion) or discharged weights (emergence) (Figure 2.3).

Consider a vessel of waterplane area 4 at a certain draft, floating in
water of density p,. Ifa weight w tonnes is loaded onto the vessel, causing
it to sink by 1 cm, then the mass of the added weight must cause the
displacement of an equal mass of the liquid, resulting in the vessel sinking
by the I cm, i.e. the mass of the displaced liquid may be found using:

| tonnes | X
Mass=A4 x — —_— =——m
ass xlOOxpl - (1 cm=155 ) .

Since w is the weight which will sink the vessel by 1 cm:

. w=TPC
L J
. Ap, tonnes
e. TPC=——
he 100 cm

and if the vessel is floating in salt water of density 1.025 tonnes/m?, then:

A 1.025 tonnes
100 cm

TPC=

Example 2.1

A baulk of timber 4 m long, 1.5 m wide and | m deep has a relative
density (RD) of 0.75. A steel cube of side 0.5 m and RD 8.0 is suspended
beneath the timber and the two float in salt water of RD 1.025. Calculate
the draft of the timber baulk.
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Mass of floating body = mass of liquid displaced

Mass of timber + mass of steel
=mass of liquid displaced by timber
+ mass of liquid displaced by steel

e, 1Ix1Ix4x0.754+0533x8.0=1.5x4xd+0.5x1.025

4.5 tonne+ 1.0 tonne = 6. 584 tonne + 0.128 tonne
5.50~-0.128=6.150d

5.372

d= 6.150
= O.8721n

Example 2.2

A buoy is to be used to float a mooring chain. The buoy is cvlindrical, of
length 4 m, radius 0.75 m and is to float half submerged.
The mooring chain is made of steel of RD 7.95 and has a mass of 0.13
tonnes/m. The chain will be suspended in 10 m of salt water.
Calculate:

(a) The mass of the buov; _
(b) The thickness of the plate which should be used to construct the buoy
if the buoy is to be made of metal of RD 7.5.

(a) Mass ofbuoy + mass of chain=mass displaced by buoy
+ mass displaced by chain

ie. M, +10x 0.15¢=4 x 0.752 x 4 x 1.025

10x 0.2
7.95

M, +1.5t=3.623t+ 0.258¢
M, = 2.380 tonnes

x 1.025

+

(b) Let the thickness of the buov metal be ¢ metres:
M =vxp
where v is the volume of the metal and p is the density of the metal
2.380= (2rrtl + 2nr’t)7.95
=7.95 x 2nrt(L+7)
7.95 21 0.75 4.75¢
177.952¢
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2.380
~177.052

i.e. thickness of metal = 13.4 mm

=0.0134m

DEFINITIONS

When examining the displacements which a ship may have at various
drafts, two displacements in particular are of particular significance,

namely:

Light Displacement, which is the weightof liquid displaced by a vessel when
floating with no cargo, fuel, stores or any other weights not forming part
of the hull or machinery or fixed equipment of the vessel, but including
water in the boilers and condensers to working level.

Load Displacement, which is the weight of liquid displaced by a vessel when
floating on an even keel at her summer load draft in salt water.

These two displacements are the lower and upper limits of displacement
between which the vessel would normally be expected to work. The
difference between the two is the useful carrying capacity of the vessel, i.e.
the amount of cargo, fuel, stores, ballast etc. which, when added to her
light dlsplacement will bring the vessel to her load displacement. Th]S
difference is termed the ship’s ‘deadweight’.

LOAD LINES

Load lines are marked on a vessel’s side at mid-length to define the
maximum drafts to which the vessel may load in all sea areas and alsosin
rivers and harbours where the density of the water in which the vessel
floats is not equal to the density of salt water.

This book is not concerned with the details of the method by which the
freeboard of*a vessel is determined. It is sufficient to sav here that the
vessel must first be deemed to be fit to be assigned a freeboard and then
the summer freeboard in salt water is determined. The summer freeboard
depends upon:

The length of the vessel;

The proportions of the vessel’s principal dimensions;

The block coefficient of the vessel;

The amount of superstructure on the vessel;

The degree of watertight as distinct from weathertight integrity of the
vessel ;

The height of the bow.
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After the summer freeboard has been determined, all other freeboards are
_~"based upon this value.
" It should be noted that a small proportion of ships in the world fleet are
assigned lumber (or timber) load lines. These permit the vessel to have a
freeboard which is less than her ‘normal’ summer freeboard when she is
carrying a certain quantity of properly stowed timber deck cargo.

The difference between the summer freeboard and the lumber summer
freeboard is essentially an improved allowance for the ship’s super-
structures based on the assumption that the timber effectively adds to the
ship’s superstructure volume. The reasons for this additional allowance
are discussed in Chapter 6.

Having established the summer freeboard, the relationships between
this and the other load line marks are laid down in load line regulatlons
as given below (Figure 2.6).

] 300-n|
— T

LTF 240mm 25mm
'y ————— :
TF ‘
FwA ———— -x
| LF Summer
+* ILT: FJ treebourd FWA
FWA F T
ﬂ — ¥
+ B " -
8 L Q R LS 4
4
-JL :Lw l 300mm I
‘ w P =
] —  wm
540mm 540mm

k=
£

x

. S¢

Figure 2.6 Load lines
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Summer freeboard
The distance in millimetres from the top of the deck line to the top of the

line passing through the centre of the load line disc (and to the top of the
line forward of the disc).

Tropical load line
A line 1/48th of the summer draft of the vessel above the summer load

line.

Winter load line
A line 1/48th of the summer draft below the summer load line.

Winter North Atlantic load line
(This only applies to vessels less than 100 m long.) A line 50 mm below the
winter load line. Note that this line is not marked on larger vessels.

Summer fresh water load line
A line drawn a distance equal to the fresh water allowance above the

summer load line.

S

Tropical fresh water load line
A line drawn a distance equal to the fresh water allowance above the

tropical load line.

For those vessels marked with lumber load lines, the following
relationships between the various load lines have been established.

Lumber summer load line
A line drawn a distance equal to the lumber summer freeboard below the

deck line.

Lumber tropical load line
A line 1/48th of the lumber summer draft above the lumber summer load

line.

Lumber winter load line
A hine 1/36th of the lumber summer draft below the lumber summer load

line.
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Lumber fresh water load line
A line drawn a distance equal to the lumber fresh water allowance above

the summer load line.

Lumber tropical fresh water load line
A line drawn a distance equal to the lumber fresh water allowance above

the lumber tropical load line.

Lumber Winter North Atlantic load line

In vessels of less than 100 m in length, this load lins’s drawn at the same
level as the normal winter north Atlantic load line, i.e. no allowance is
given to vessels of less than 100 m in length for the deck cargo when
operating in the north Atlantic in winter.

Note that all dimensions are measured to thé fop of the relevant load
line.

The letters marked on either side of the load line disc indicate the
identity of the Assigning Authority which is responsible for implementing
the load line rules. These letters will identify the Classification Society or
other authority, as in the illustration of a typical load line marking in the
diagram below, where Lloyd’s Register is the Assigning Authority.

Fresh Water Allowance (FWA)

The Fresh Water Allowance (Figure 2.7) is the amount by which the vessel
‘will change her draft when moving from salt water of density

' I

F 1.000

Ll

FWA

DWA

__L I S 1.02-2 .

Figure 2.7 Dock water allowance
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1.025 tonnes/m? to fresh water of density 1.000 tonnes/m?>,and vice versa.

If the salt water density is denoted p, and the fresh water density gy,
then a vessel floating at draft 4 in salt water moving into fresh water will
float at a new draft d + FWA. Now we have that:

4+FWA p,

dg Py

ie. d+FWA=4>

f

FWA=242 4
f
_(p (1025
FWA’¢<E“‘>“¢(1.000_1>
FWA =0.0254 m
or FWA =25d mm

A fresh water allowance can be calculated for a shipatany draft at which
she is floating. However, it is normally only of interest when the ship is at,
or close to, her summer load line and it is desired to determine how much
deeper than the summer draft in salt water she may go when she is
operating in fresh water.

The fresh water allowance stated in the vessel’s load line calculation is
only applicable when the vessel is operating at or near her summer load
draft, i.e. when 4 is the summer load draft in salt water. In which case:

Ax1.025%x 1072

WA =
FWA 254Axl.025x10'2

where A is the waterplane area at the summer draft. As 4 x 1.025 x
1002=TPC and d xA4x1.025 approximates to the summer
displacement:

25 x displacement

then FWA= 100 xTPC mm

displacement
4+ TPC

1.e. FWA=
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Dock Water Allowance (DWA)

The Dock Water Allowance (Figure 2.8) is the amount by which the vessel
will change her draft when moving from salt water of density
1.025 tonnes/m? to water of a different density in between the density of
salt water and that of fresh water, or vice versa. With the salt water
density of 1.025 tonnes/m> and the dock water density denoted p;, the
dock water allowance is calculated as follows:

DWA  1.025-pp
FWA ~ 1.025—1.000

(1.025 - pp)
DWA =FWA
1.025 - 1.000
. (1.025 - pp)
7 —_ . A
i.,e. DWAsFWA 0.055

For ease of manipulation of the numbers, the top and bottom lines are
multiplied by 1000. This means that the density of the dock water will lie

TF

[ T

240mm

11.6m

Figure 2.8 Example 2.4 1
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between the values of 1000 and 1025, giving the formula:

1025 — py,

=FWA
DWA=F %5

The dock water allowance, like the fresh water allowance, is normally
only of importance where the vessel is operating at or near her
summer load draft. In cases where the vessel is at some lesser d "t it s
possible to calculate the dock water allowance, making usc > the
approximation:

d_P
) d, p;
‘?, /
7 ple 2.3

A vessel of summer displacement 30 000 tonnes has a summer load draft of
11.5 m, TPC 30.6 tonnes/cm. If the vessel is floatingata draftof 1 1.6 min
water of density 1.020 tonnes/m® in a tropical zone, how much more
cargo may she load to bring her to her summer load line when floating in
salt water?

Solution. See Figure 2.8
Allowance between summer and tropical load lines

draft
_ summer draft o0 (x 1000 to convert to mm)

48 .
11.5
=" % 1000=2
18 x 1000= 240 mm
I 30000

WA= h FWA = _ 945
As FW 1 TPC then Tx306 45 mm
As D\VA:F\’VAQ@

(1025 — 1020)
25

DWA =245

-

=245 x — = 49 mm
22
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Knowing the summer to tropical allowance and the DWA | the maximum
permitted draft may now be calculated as follows:

Summer draft =11.500 m

S-T allowance ~ = 0.240m

DWA = 0.049m

Max. draft =11.789 m (in dock water in the
Present draft =11.600 m tropical zone)

Permitted sinkage = 0.189m
1.e. Permitted sinkage =19 cm

Knowing the sinkage, the amount of cargo to load can now be
determined by multiplying by the TPC of the vessel. However, unless
otherwise stated, the TPC value quoted is given for salt water. As the
vessel is floating in dock water of a different density to that of salt water,
the TPC value should be corrected, as follows:

TPC, = TPC, 2

Ps
where D and § denote dock and salt values respectively.

1020
TPC,,=30.6 ——==30.45
C,=30.6 1025 30.45 tonnes/cm

Cargo to be loaded =sinkage x corrected TPC
=19 x 30.45 = 578.6 tonnes

The permitted sinkage of 18.9 cm has been rounded to 19 cm, giving a
small difference in the final answer. It wiil be appreciated that the draft of
the vessel originally stated (11.6 m) could not be read to an accuracy of
I mm and therefore rounding of the permitted sinkage to the nearest cm

1s reasonable.

Example 2.4

A vessel about to complete loading in a summer zone is expected to enter
a winter zone after steaming from the loading port for 10 days. On

i
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passage, fuel consumption is expected to be 30 tonnes per day and water
consumption 15 tonnes per day.

The ship is at present floating in water of density 1.013 tonnes/m* at a
draft of 9.0 m.

Summer load draft 9.475 m
FWA 203 mm
TPC 30 tonnes/cm

Find

(a) The maximum permissable draft on completion of loading.

(b) The amount of cargo which the vessel can load.

(Note. A vessel passing from a summer zone to a winter zone, or from a
tropical zone to a summer zone, must arrive at the zone boundary at the
draft appropriate to that zone.)

Solution
(a) Allowance between summer and winter load lines

summer draft 1000
= X
48

9475
T 48

x 1000=197 mm_

As DWA=FWA %5_"”) ‘

1025 —
DWA = 9203 (1025 —1013)

=97 mm

To calculate the change of draft while on passage to the boundary of the

winter zone, the total consumption of fuel and water must be calculated
and divided by TPC, as follows:

15x 1
Change of draft on passage = 30x 103-:) e O= 15 ¢m

Knowing the DWA and the allowance to make for fuel and water
consumed on passage to the zone boundary, the maximum permitted

- draft may now be calculated, as follows:

MSS - 3
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Summer draft =9.475m
S-WV allowance =0.197 m
Winter draft =9.278 m
DWA draft =0.097 m
‘In dock’ draft =9.375m
Passage allowance =0.150m
Max. draft =9.525 m |
Present draft =9.000 m

Permitted sinkage =0.525m

The calculation so far has established that the vessel may load to a draft of
9.525 min dock in order to be at the appropriate winter draft on arrival
at the winter zone boundary. There is another limitation which must be
considered, i.e. will the vessel be deeper than the summer draft plus the
DWA when at this draft in the dock? If so, then the figure of 9.525 m will
have to be reduced accordingly and the permitted sinkage will similarly
decrease.

Summer draft=9.475m
DWA =0.097 m

Max. draft 9.572 m

As this figure 1s greater than 9.525 m, then 9.525 is clearly the himiting
‘draft to which the vessel can be loaded in the dock. The amount of cargo
to load must now be determined using the permitted sinkage of 0.525 m
or 52.5 cm, again correcting the TPC for the density of the dock water, as

follows:

(b) TPC,=TPCs 2

S

1013

= 307553

=29.63 tonnes/cm

Cargo to load =sinkage x TPC,
=52.5%x29.65
= 13556.6 tonnes at maximum draft
of 9.525m
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* Example 2.5

A vessel has a summer freeboard of 4.2 m, which corresponds to a draft of
8.9 m. Her FWA is 178 mm and TPC 22 5 tonnes/cm.

The vessel is floating in river water of RD 1.0101n a tropical zone, with
present freeboards (measured at midlength) of 4.4 m to starboard and
4.3 m to port. Itisestimated that the vessel will use 70 tonnes of fuel and 5
tonnes of fresh water on her passage down river to the sea.

What is the maximum amount of cargo which she may load in the
river?

Solution
Allowance between summer and tropical load lines

summer draft

- S T 1000
_89 1000 = 185 mm
48 |
As DWA:FWAﬂz—;’SLpL)
5_101

~178 (10232510 0 107 mm

The present draft of the vessel must now be determined by addmg
together the summer draft and summer freeboard to obtain the freeboard
depth of the vessel, then subtracting the present freeboard of the vessel
from this depth, as follows:

Present draft=freeboard depth —mean freeboard

~ (4.2+8.9) —w

=8.750 mm

Knowing the summer to tropical allowance and the DWA, the maximum
permitted draft may now be calculated, as follows:

Summer draft =8.900 m
S-T allowance =0.185m
DWA =0.107 m
Max. draft =9.192 m
Present draft =8.750 m

Permitted sinkage =6292-m
0442 n
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Again, the TPC value stated is assumed to be for salt water and must be
corrected to obtain the correct value for river water of a different density,
as follows:

-TPC,=TPC, 2
Ps

1010
1025

22.2 tonnes/cm

22.

(@3}

X

to be loaded in the river
= permitted sinkage x TPC + consumption
of fuel and water on passage to the sea

=(29.2x 22.2) + (70 x 3)
=731 tonnes ,05,_},[;‘

QUESTIONS ON HYDROSTATICS

1. - For the purposes of current measurement, buoys are to be used which
consist of a long pole and a ballast weight. In order to minimise wind
effect, the buoys are to float with only a short length above the water.

The buoy consists of a pole 2 m long and 20 mm in diameter, of RD
0.7, and a ballast weight of steel of RD 8.0.
~ If the buoy is to float with exactly 30 mm of the pole above the
water, how much ballast is needed in fresh water (RD 1.000)?

2. A sphere of brass of RD 3.4 and radius 0.1 m rests on the bottom of a
tank containing oil of RD 0.8. A wooden sphere of RD 0.5 isattached
by a string to the immersed sphere. -

Find the minimum diameter of the wooden sphere to just cause the
brass ball to float clear of the bottom of the tank.

3. A boxshaped vessel has a length of 100 m, breadth of 10 m and draft

of 4 m in water of density 1.010 tonnes/m>. Find:

(a) Her present displacement;

(b) Her new draft if she loads™736-tonnes of cargo in this density of
water; Té o

(c) Her new draft if she then proceeds to sea (density 1.025
tonnes/m?>);

(d) Her new draft on arrival at a port where the water density is
1.005 tonnes/m> (cargo still on board);

() How much cargo has been discharged at that port if after
discharging the draft is found to be 3.5 m.
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HYDROSTATICS (ANSWERS)

0.205 kg.
0.205 m.

(a) 4040 tonnes; (b) 4.753 m; (c) 4.673 m; (d) 4.767 m; (e) 1272.5
tonnes. ]

LOAD LINE QUESTIONS

l.

A vessel of summer displacement 17 000 tonnes is floating at a draft of
9.8 m in water of density 1.008 tonnes/m? in a winter zone, TPC 20.4
tonnes/cm, summer load draft 10.4 m.

How much more cargo may she load in order to complete loading
at the appropriate load line?

A vessel is floating in dock water of density 1.009 tonnes/m? ata mean
draft of 8.6 m with TPC 2,06 tonnes/cm. The maximum draft over a
bar, where it is anticipated that the vessel will be floating in salt
water, is 9.5 m. At a draft of 9.5 m in salt water, the vessel has a
displacement of 12000 tonnes.

If the vessel has yet to load 1500 tonnes of cargo, how many more
tonnes of fresh water can she take on board in the dock in order to
ensure that the maximum draft crossing the bar 1s nbt exceeded?

A vessel displacing 16 000 tonnes has a TPC 20 tonnes/cm and is
floating at a draft of 9.4 m in water of density 1.010 tonnes/m? in a

“summer zone. If the vessel’s summer load draftis 9.5 m, calculate the

amount of cargo she may load.

A vessel about to complete loading has the following particulars:

Summer load draft 12.75 m
Summer displacement 79000 tonnes
TPC 75 tonnes/cm

The vessel is at present floating in water of density 1.008 tonnes m?

with the bottom of her winter marks 3 cm above the waterline to pért
and 15 cm above the waterline to starboard.

If the vessel is in a tropical zone, how much more cargo mav she
load to bring her to the appropriate maximum draft?
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LOAD LINE (ANSWERS)

1. FWA, 208 mm DWA, 14] mm
Allowance Summer to Winter, 217 mm
Cargo to load, 1051 tonnes.

2. FWA, 145.6 mm DWA, 93 mm
Fresh water to take on board, 513 tonnes.

3. FWA, 200 mm DWA, 120 mm
Sinkage, 22 cm  Cargo to load, 433.6 tonnes.
4. FWA, 263 mm DWA, 179 mm

Sinkage, 83 cm Cargo to load, 6092.0 tonnes.
P-5W4T0/1= 1219w

max deofh = 13:016
5/}1L é = 82‘5'
B _73.76

TPC




Determination of
position of centre of
gravity

This chapter deals with finding the position of the centre of gravity when
the positions of all the components weights which compose a vessel are
known.

OBJECTIVES

1.

w

Give the positions of weights relative to the keel, find the position of
the centre of gravity relative to the keel (KG).

Given the positions of we1ghts relative to the centreline, find the
position of the centre of gravity relative to the centre line.

Find the effect of loading, discharging or shifting a single weight.
Find the distribution of weight to produce a given position of the
centre of gravity.

POSITION OF CENTRE OF GRAVITY RELATIVE TO
KEEL AND CENTRE LINE

In Figure 3.1, W is the resultant of forces wq, w,, w, acting at distances x,,
xy, x5 from axis YY. Then if the resultant I#/is a distance x from YY and:

I"t',= wo + wl + w2
14’I= woxo + wy X, + WsHXs

woxo + wixy + wz.\'z
1

A=

moment of forces about YY

x= ,
weight

59
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Y Fh X2 o
X4 -
Xo
I
) wO w-| Wo
v |
v
% w
— #

Fz:gur} 3.1 Pasition of centre of gravity

In Figure 3.2 we consider a ship and take moments about the keel K.
In this case

W =displacement acting at the centre of
gravity G
w,y,w; ,wo = weights making up the light ship cargo etc.
acting at go, g1, &2
WxKG=wox Kgo+w, x Kg, +w,Kg,

_wo X Kgo+wy x Kgy+w,Kg,
B W

KG

moments about keel

KG=

displacement
Similarly, in Figure 3.3, taking moments about the centre line

Wx €6 +wox Cgo=w, x gy +wp x (g,
WxCG=(w, x Cgy +w, x Cg,) —wqy x Cgy

(wy x Cgy +w, x Cgy) —woCygo

ct= W

moments of weight about centre line

CG=

displacement
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~

1

Figure 3.2 KG

1

Figure 3.3 G _from centreline

6l
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SHIFT OF WEIGHT

The vessel in Figure 3.4 has centre of gravity at Gy and displacement W. A
small weight w is already onboard with its centre of gravity at go. The

weight w is moved a distance D metre to g,. The centre of gravity of the

vessel moves to G, .
If the moments of all weights about the keel apart from w is C then

W x KGy=C+w x Kg,

and W xKG,=C+w x Kg,
WxKG,—WxKGy=wKg, —wx Kg,

W(KG, — KG,) =w(Kg, — Kgo)

WxGoyGy=wxd
wx d
GOGI=_”_/

ADDING OR REMOVING A SINGLE WEIGHT

If we now consider the situation in Figure 3.5 where a single weight is
loaded at Kgg a distance d metres above G, Firstly we assume that the
weight is loaded at height KG, above the keel

KGo(W+w)=C+wx KG,

¥ Tgl
v 6,
g !
Gogy!
-="
K 3 | oa
L_"J

Figure 3.4 Shift of weight
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+'g' X
WY
d
Gy
:
I CHE
I

Figure 3.5 Addition of weight

and then moved vertically a distance d metres

KG(W+w)=C+w x Kg,
KGi(W+w)— KGo(W +w) =w x KGy —w x Kg,

(W+ w)Gocl =w(KGo—Kg1) .

These relationships apply equally to transverse and longitudinal shifts of
weight. They can also be used to calculate diagonal shifts when the
weight shifts vertically and horizontally. The relationship can also be
applied to shifts of buoyancy, i.e. when a wedge of buoyancy moves across
a vessel, as she is heeled by an external force, when a layer of buoyancy is
added as draft increases or when buoyancy is lost as a result of flooding.

These relationships are very useful in deriving formula and describing
changesin stability. However, students are warned that they need careful
handling and should not be used when more than one operation is
involved.
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Example 3.1

A vessel of displacement 16450 tonnes AG 9.3 m loads and discharges
cargo as follows:

Weight KRG

(tonnes)
Loads 1427 8.6
2964 4.6
1930 12.0
Discharges 2000 11.8
483 6.4

Find the KG on completion

IWeight KG Moment
(tonnes)
16450 9.3 " 152985.0 >
1427 8.6 12272.2
2964 4.6 13634.4
1930 12.0 23160.0
—2000 11.8 —23600.0
— 483 6.4 —3091.2
20288 175.358.4
moment of weight  175358.4
= = =8.643
kG displacement 20288 m
Example 3.2

A vessel has displacement 6200 tonnes KG, 8.0 m. Distribute 9108 tonnes
of cargo between spaces Kg, 0.59 m and 11.45m, so that the vessel
completes loading with a KG of 7.57 m

Load w tonnes at Kg 11.45 m.

Weight KG Moment
(tonnes)
6200.0 8.00 49600.0
9108.0 —w 0.59 5373.7— 0.5%v
w 11.45 + [1.45w

15308.0 - 54973.7—10.86w
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moment of weight

KG=

displacement

54973.7 - 10.86w
15308.0

115881.6 =54973.7 — 10.86w

w = 5612 tonnes

1.57=

Load 5612 tonnes at Kg 11.45 m.
Load 3496 tonnes at Kg 0.59 m.

Example 3.3

A vessel displacement 12500 tonnes has KG 9.6 m. On completion of
loading she is required to have KG of 9.5 m.

1000 tonnes is loaded at Kg 5.5 m.
850 tonnes is loaded at Kg 13.6 m.

Find the Kg at which to load a further 1600 tonnes of cargo to produce the
required final KG.
Let x be the required Kg of 1600 tonnes.

Weight KG Moment
(tonnes)
12500 9.6 120000
1000 55 5500
850 13.6 11560
1600 x 1600x
15950 137060 + 1600x

moment of weight

KG=

displacement

_ 137060+ 1600x
- 15950

151 525 =137 060+ 1600x
1600x =14 465
x=9.041 m

9.5
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Load 1600 tonnes at Ag 9.041 m.
(Note. A more practical view is to regard 9.041 m as the mean Kg of the
1600 tonnes after it has been distributed between available spaces.)

QUESTIONS ON £G

1. Avessel hasdisplacement 16 000 tonnes and KG, 8.5 m. She loads the
following cargo:

eight Kg
(tonnes) (m)
1360 4.7
2957 10.5
1638 5.9
500 14.§

Find the AG of the vessel on completion.

2. A vessel has displacement 14600 tonnes and KG 9.6 m. She loads
cargo as follows:

Weight KG
(tonnes) (m)
2500 4.5
1600 12.5

How much cargo may she load at Kg 16.0 m if the load KG is to be
10.0 m.

3. A vessel has displacement 16 000 tonnes XG 9 m. She loads the
following cargo:

Wieght kg
(tonnes) (m)
1000 8
2000 6
1500 10

How should a further 2000 tonnes of cargo be distributed between
spaces with Kg 5 m and Kg 11 m in order that the vessel should sail
with a KG of 8.75 m.

4. Avessel summer load draft 10 mis floating ata draftof 9.8 min water
density 1.010 tonne/m? in a summer zone. The vessel hasa TPC of 20
tonnefcm and a FWA 210 mm.
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The vessel displacement at 9.8 m draftis 16 000 tonnes and she has
KG 9.6 m. The vessel is to load cargo so as to sail at the maximum

permissable draft.
Space is available at KG 12 m and KG 8 m. Distribute remaining

cargo so that the KG of the vessel does not exceed 9.65 m.

KG (ANSWERS)

1. 8.483 m.
2. 2598.3 tonnes.

3. 684 tonnes at Kg 5m.
1316 tonnes at Kg 11 m.

4. DWA 126 mm.
Load 469 tonnes at KG 12 m.
183 tonnes at KG 8 m.



Conditions of
equilibrium

This chapter defines the three conditions of equilibrium for a solid body
and applies those conditions to the initial stability of a floating body. The

metacentre 1s introduced as an aid to assessing initial stability.
’ x

OBJECTIVES

1. Definition and comprehension of stable, unstable and neutral
equilibrium.

2. Application of the concept of equilibrium to the initial stability of
vessels.

3. Definition and determination of the position of the transverse
metacentre.

A body is in equilibrium whenever the resultant of the forces acting on
the body is equal and opposite to the force of gravity acting on the body
and the forces are in the same vertical line.

CONDITIONS OF EQUILIBRIUM

There are three possible conditions of equilibrium for a body. These are
defined in the following paragraphs.

Stable equilibrium

In Figure 4.1 when the body mass M is disturbed from an equilibrium

position a couple is formed by the force of gravity, Mg, and the reaction

R. The couple tends to return the body to the equilibrium position.

~ Notethatif the centre of the gravity G was initially at a height 4, above
the datum and in the disturbed condition a distance 4, above the datum.

68
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P

&

Figure 4.1 Stable equilibrium

kil =
v v

Figure 4.2 Unstable equilibrium

Then in stable equilibrium A; > A, i.e. the potential energy of the body
has been increased. '

In general a body is in stable equilibrium if the potential energy of the
body is ata minimum. The work done on the body is equal to the change
in potential energy. In the context of ship stability this quantity is called
the dvnamical stability in the case illustrated.

Dvnamical stability = Mg(h, — A¢)

Itis also useful to see that if the disturbance was caused by a couple P X y
then the body would reach another equilibrium position when

Py=Mgx

Unstable equilibrium

When the body is disturbed from the equilibrium position (see Figure 4.2)
a couple is formed which tends to move the body away from the
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equilibrium position towards another position of equilibrium.
In this case 4, </y and the potential energy of the body has been
reduced by Ag kg — 4}, i.e. in unstable equilibrium potential energy is

at a maximum.

Neutral equilibrium
When the body is disturbed no couple is formed (Figure 4.3).

R R

Figure 4.3 Neutral equ:librium

In this case hy = £y, i.e. there is no change in the potential energy of the
body. '

STABLE EQUILIBRIUM FOR A SHIP

When a vessel which s initially upright is inclined by an external force, a
couple is formed by the force of gravity acting through G with magnitude
I1"and the force of buovancy acting through the centre of buovancy at B,
with magnitude 1" (see Figure 4.4). The couple tends to return the vessel
to the upright. The horizontal separation between the vectors
representing is measured {from G to a point < on the vector through B,.
(£ £ =907%). The couple is called the righting moment.

Righting moment= H"x G
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¢

w

Figure 4.4 Ship in stable equilibrium

NEUTRAL EQUILIBRIUM FOR A SHIP

When a vessel which is initially upright is inclined by an external force,
the force W acting through the centres of gravity G and centre of
buoyancy B remain in the same vertical line (see Figure 4.5).

For a ship shape this condition can only be maintained for a very small
angle of heel after-which, in normal conditions a small righting moment
tending to return the vessel to the upright would develop. Under
unfavourable conditions it is possible that the vessel would become
unstable and could capsize. .

For a floating body to be in neutral equilibrium successive vectors
through B must all intersect at G. This can only be the case for
homogenius spheres, cylinders, or to a good approximation for swamped
vessels. A ship can only be considered as being in neutral equilibrium if
the initial shape of the vessel is regarded as being a cylinder having a
diameter equal to the breadth of the vessel.

UNSTABLE EQUILIBRIUM FOR A SHIP (Figure 4.6)

When a vessel which is initially upright is inclined by an external force,
the couple formed by the force W acting through G and B, will tend to
heel the vessel further (Figure 4.6).
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Figure 4.5 Ship in neutral c:quilibn'um
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Figure 4.7 Transverse upright metacentre heeled

A vessel initially in this condition will not necessarily capsize. She will
often come to rest at angle of heel called the angle of loll. In theory this
angle of loll may be to port or starboard. In practice this will only be the
case if G is exactly on the centreline, which would be most unlikely. The
vessel will be stable relative to the angle of lol, i.e. at the angle of loll the
forces acting through G and B will not form a couple and if disturbed she
will tend to return to the angle of loll.

A more detailed considerdtion of unstable equilibrium is given in
Chapter 6.

ASSESSMENT OF INITIAL STABILITY

The centre of buoyancy, at the centre of volume of the immersed part of
the vessel, can be found easily for the upright condition. It is tedious to
find the position of the centre of buoyancy for each angle of heel for a
particular displacement.

However, we can define a point called the metacentre (M) as the
intersection of successive buoyancy vectors when the vessel is heeled
through a small angle df (Figure 4.7). Then if the vessel is initially upright,
the initial position of the metacentre must be on the centreline (Figure

1.8).
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Figure 4.8 Transverse metacentre upright

Further successive points of intersection as the vessel is heeled through
small angles will continue to intersect approximately at the centreline.
This will continue for as long as it can be assumed that the vertical sides of
the inain body of the vessel are an approximation to the sides of a cylinder

diameter B.
For a vessel which is initially stable M, will be above G. The vessel has

a positive GM.
For a vessel which is initially unstable M, will be below G. The vessel

has a negative GM.
For a vessel which is in neutral equilibrium M, will coincide with G.

The vessel will have zero GM.
The reason for using M, is that it is not difficult to calculate values for

BM, and if KB is known find KM,=(KM,KG+ BM,). Then if KGis

known a quick assessment of initial stability can be made.

TRANSVERSE METACENTRE OF A BOX SHAPED VESSEL

Refer to Figures 4.9(a) and (b). If a vessel has length L breadth B draft 4
and 1s floating at waterline 11'4L,. The vessel is now inclined through a
small angle 6 to waterline I, L,. A wedge of buoyancy will move across
the vessel, the centroid of the wedge will move from g, to g;.
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If the cross section in Figure 4.9(b) is now considered at gqg,.
If the volume of the wedge of buoyancy is v and the underwater
volume is V then

BoB, = v xéogl

and
ByB, = B,.M0.

(as )., in circular measure, is approximately equal to tan 6 and sin 8if 0 is
small).

Now gog,=2x-x—

(Note that LB?[12 is the second moment of area of a rectangle about the
axis through the centroid)

LB? ]

BoBr=T5 1B "
BZ
Bon=mUc
BZ

By MO =2 ¢,
0 T g

BZ
B, M ="
a 1 2d
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KB=

2

+___

12d

d
2
d

=~
KM =3

(Note that this could be written as

1
KM=KB+€

where I is the second moment of area of the waterplane about the

centreline.)
Considering the equation for a box shape

KM=KB+ BM
d B?
KB=5%124

it can be seen that when draft (d) is small BM will be large and that as
draft increases KB will increase, however BM will steadily reduce as draft

increases. If draft could be made very large

I(M=—;—{=1(B

Example 4.1 (Figure 4.10)

A box shaped vessel has length, 100 m and breadth, 12 m and floats at a

range of drafts from | m to 10 m.
Produce curves of KB,, BM and KM (Figure 4.10)

d 1 2 3 4 5 6 7 8 9 10
d
KB§ 0.5 1.0 1.5 2.0 25 3.0 3.5 4.0 4.5 5.0
12
BM7 12.0 6.0 4.0 3.0 24 2.0 1.72 1.5 1.33 1.2
KM 12.5 7.0 5.5 5.0 49 5.0 5.22 5.50 5.83 6.2

Thus it can be seen that KM reaches a minimum value. Differentiating
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Figure 4.10 Curves of KB. BM, KM for a box shape

with respect to draft
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132
2_ 2
d 6
_B
=%
Putting B=d.
d (d/6)?
EM=5+"o4
d 6d°
M:— —_—=
k 2" 12

Thus for a box shape KM is a minimum when

d=—_
/6
and at this draft

KM=d

Example 4.2

79

A box shaped vessel length, 200 m, breadth 20 m and depth 10 m is

loades to that KG of the vessel is always equal to the draft.

Find the maximumdraft at which the vessel will be stable, and the GM

at minimum KM.
If the vessel had draft 4

KG=d g
KM=KB+XM

For a box shape

d B?
KM =5+ 152
d 400
EM =5+,
d 33.33
K1w=§+7
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For
GM=0
KG=KM

d 33.33
d=pt =

24% = d?* + 66.67
d*=66.67 m
d=8.165m

By inspection of typical KM curve, vessel will be stable up to 8.165 m
draft and unstable at greater drafts.

Example 4.3 !

A floating body has square cross section of side | m and KG always equal
to 0.5 m. Find the range of relative densities over which the body will be
(a) stable and (b) unstable, when floating in fresh water. What will be the
minimum GM and at which draft does it occur.

KG=05m

d B?
EM=5+152

d 1
M=4, 1
EM=3+152

For vessel to be stable KM > KG. Putting

KG=KM
o d
0.3=§+]—2—d
6d=6d* + |
0=6d"—6d+ 1

d=0.789 mor 0.2]11 m

By inspection of box-shaped KM curve, vessel will be stable for

RD<0.211 and RD> 0.789
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Vessel will be unstable for
T2 1< RD<0.789

—-———K - minimum occurs at

T =2 _ ' 408m
J6 /6
at this draft
e KM=d
= 0.408
KG= 0.500
GM = —0.092
-

BM FOR A SHIP SHAPE

If we consider a wedge of buoyancy moving across the vessel as in the
work in box shapes we have as before in Figure 4.12

. BOBl _ U Xéogl

If we now consider an elementary segment of the length of the vessel d/
* (Figure 4.11). If the volume of the elementary wedge is S and the centroid
of the element moves from b, to 4,.
For the element
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Figure 4.11 Transverse metacentre of a ship shape
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Figure 4.12 Element of length of ship shape

For the entire wedge

L-y3
4 =6, |
X gag1 =0 . 12(11
€
. L .3
but JLdl
o 12

is I the second moment of area of the water plane (Chapter 1).
Also for the entire vessel

BOMGC=BOB1
£
\%
I/

BoM=€

BOMOC = 0(-

KM and BM can be determined using the numerical methods described
in Chapter 1.
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The relationship

KB=KB+BM= KB+—é—

can be extended to all floating shapes.

Example 4.4

A vessel has the following 4 areas of waterplane at the drafts given:

Draft 0.25 0.75 1.25 2.25 3.25 4.95 5.25m
} area 800 1600 2300 2600 2750 2800 2825 m?

At draft 5.25 m the vessel has the following } ordinates of waterplane
commencing from aft.

Station 0 2 3 4 5 6 7 8
4 Ord. 0 12.0 14.5 15.0 15.0 14.0 12.0 8.0 35m

Below the 0.25 m draft there is an appendage volume 150 m® X4 0.2 m.
Forward of station 8 there is an appendage second moment of area
30 m*,
Length of the vessel 240 m from station 0 to 8

kB

b 0.25d t0 5.25 m

Draft 3 Area Sunpson’s Function Lever Function
(m) (m?) multiptier Vol. First moment
0.25 800 4 400 0 0
0.75 1600 3 3200 0.5 1600
1.25 2300 13 3450 1 3450
2.25 2600 4 10400 2 20800
3.25 2750 2 3500 3 16500
+.25 2800 4 11200 4 22800
5.25 2825 1 2825 5 14125

36975 79275




CONDITIONS OF EQUILIBRIUM

/ :
Volume =2 x é x »_ function volume

=2 X % x 36975 m*

= 24650 m?

h Y functions first moment

0.25—b=

> function volume

1% 79275

36975 =2.144 m

Kb=(2.144+0.25) m=2.394 m -

Volume Kb Moment
24650 2.394 59012.1

150 0.200 30.0
24800 59042.1

moment of volume

KB=

volume

~59042.1

Second moment of waterplane

Station 4 Ord 3 Ord® Stmpson’s F (Second
multiplier moment)
0 0.0 0.0 1 0.0
I 12.0 1728.0 4 6912.0
2 14.5 3048.6 2 6097.2
3 15.0 3375.0 4 13500.0
4 15.0 3375.0 2 6750.0
5 14.0 2744.0 4 10976.0
6 12.0 1728.0 2 3456.0
7 8.0 512.0 4 2048.0
8 3.5 429 1 429
49782.1
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ho 1
1m=<2><§><§>< > F Second moment +30) m*
30 1
=2x-3—x§x-‘r978‘71+30 331910/m
/
BM='§'
_331910.7
24800
=13.38m
KB= 239m
KM =1577m
Example 4.5

A vessel displacement 22 600 tonnes, KG 8.2 m discharges 3000 tonnes of
ballast from a mean Kg of 2.0 m.

She loads 11800 tonnes of cargo at a mean Kg of 7.8 m. A further
parcel of 1200 tonnes of cargo remains to be loaded.

Determine the mean Kg at which to load this cargo so that the final

GM is at least 0.5 m.

KM at displacement 32200 tonnes is 9.0 m.
Let x be the mean Kg at which to load cargo.

IWeight - Kg Moment
22600 8.2 185300
11400 7.8 88900
1200 X 1200x
—3000 — 6000
32200 268200 + 1200x

Max. KG=KM —GM
=(9.0-05m=85m

moment of weight

KG=
displacement

268200 + 1200x
32200

x=4.67m

8.5=
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.Example 4.6 (Figure 4.13)

Making use of the hydrostatic curves for MV Nonesuch. MV Nonesuch is
floating at draft 6.20 m and KG, 10.3 m.
She is to load cargo as follows:
No. 1 3000 tonnes  KG9.0m
No. 3 2500 tonnes KG 8.0m
No. 5 2800 tonnes KG8.6m

Distribute cargo between No. 2 hold at Kg 3 mand on deckat Kg 18 m so
that the final draft 1s 9.0 m and the GM is no less than 1.4 m.
At draft 6.20 m, displacement 21 600 tonnes. -

Weight Kg Moment
21600 10.3 222480
3000 9.0 27000
2500 8.0 20000
2800 8.6 24080
29900 293560

At draft 9.0 m, displacement 31000 tonnes
Present displacement 29900 tonnes

Cargo to load 1100 tonnes

Atdraft 9.0m, KM 11.4m
Min GM [.4m

Max KG 10.0 m

Let w be cargo to load at Kg, 18 m

Weight Kg Moment
29900 293560
: w 18 + 18w
1100 —w 3 3300 - 3w
31000 296860 + 15w
§C - moment of weight

welght
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296860+ 15w

31000
310000 = 296860+ 15w
15w=13140
w= 876 tonnes

Load 876 tonnes at kG 18 m

224 tonnes at KG 3 m

QUESTIONS ON GM

1.

4.

A vessel displacing 8000 tonnes has KG 7.4 m. She is to make a
passage during which she will use 200 tonnes of fuel from kg 0.5 m and
100 tonnes of FW from Kg 1.5 m. She is to load timberon deck ata Kg
of 12 m.

It is anticipated that by the time the vessel arrives at her
destination the deck cargo will have absorbed 209 of its own weight
of water. How much timber may she load if her arrival GM is to be
0.4m. -

KM may be assumed to be 8.2 m over the range of displacements
being considered.

€

A vessel has displacement 10900 tonnes, KG 7.0 m.
Distribute 5742 tonnes of cargo between spaces Ag 8.17m at Kg
7.43 m so that the final GV 1s 1.24 m.
KM at displacement 16 642 tonnes 8.43 m.

A box-shaped vessel length 100 m, breadth 10m, depth >m
displacing 2000 tonnes has KG 4.5 m and is floating in fresh water.

Find the initial GM of the barge and the GM after a weight of 500
tonnesisloaded at G 4.0 m. Find the righting momentat 10° heel in
both cases.

A vessel displacing 10900 tonnes has AG, 6.20m, A, 7.20 m. A
heavy lift weighing 200 tonnes is onboard at Kg 2.6 m.

Calculate how much ballast must be loaded at Kg 1.0 m if the GAM
is to be maintained at GAM 1.0 m, after .the heavy lift has been
discharged. KM may be assumed to remain constant.
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3.

GM (ANSWERS)

1.
2.

CONDITIONS OF EQUILIBRIUM

Avessel has the following half areas of waterplane at the drafts given:

Draft 0.2 0.6 1.0 1.8 2.6 3.4 42m
Arca 200 950 1450 1705 1825 1850 1861 m?

At draft 4.2 m the vessel has the following half ordinates of

" waterplane at equal intervals commencing from aft. !

Station 0 ) 2 3 4 ) 6 7 8 9
Hall Ord. 0.0 1.9 5.2 9.3 12.4 13.1 13.1 12.0 6.2 1.1 m

Forward of station 9 there is an area of 3 m?

Second moment of area, 6 m*

Length of the vessel, 225 m.

Below draft 0.2 m there is an appendage volume 130 m® Kb, 0.16 m.
Find the &M of the vessel. »

MYV Nonesuck is floating at a draft 5.5 m, KG 11.0 m. She is to load
cargo as follows:

Weight KG

(tonnes) (m)
No. | 3800 - 7.6
No. 2 2800 8.3 !
No. 3 2500 5.6 .'
No. ¢4 3100 6.4 o
No. 5 3200 6.8 o

How much cargo can she load into No. 1 TSWT Kg,15 mand No. 4
hold Kg, 8.0 m if the maximum draft is to be 10.0 m and the GM no
less than 2.0 m. '

Load, 220.2 tonnes of umber.

Load, 4805.5 tonnes at Kg 7.43 m.
936.5 tonnes at Kg 8.17 m.

Iniual G/, 0.67 m.

Righting moment, 232.7 tonnes.
Final GV, 0.18 m. :
Righting moment, 78.14 tonnes m.

Load, 138.4 tonnes of ballast.
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5. Volume 0.2 m—4.2 m 12781.8 m*
Kb 0.2m—4.2m 2426 m
% 12912 m°
KB ' 155704.9 m*
BM 12.058 m
KM 14.461 m

6. Load, 1725 tonnes
550.2 tonnes at Kg 15.0m
1174.8 tonnes at Kg 8.0,.



5 List and free surface

This chapter considers the effect of the centre of gravity of the vessel not
being on the centreline, the effect of having liquids within the vessel

which are free to move and the effect of suspending weights.
9 -

OBJECTIVES

1. To calculate the list of a vessel at small angles of list.

2. To assess the effect on the initial stability a vessel of having liquid
within the vessel which is free to move.

3. Toassess the effect on the initial stability of a vessel when weights are
suspended. _

4. To find the position of the centre of gravity of the vessel using the
inclining test.

LIST

If the centre of gravity of the vessel is not on the centreline the vessel will
incline until the centre of gravity and centre of buoyancy are once more
in the same vertical line.

Provided the list is small it can be assumed that the vertical line
through G and B intersects the centreline at the metacentre (M). If the
angle of list is large then the list has to be determined using GX curves
(Chapter 6).

In Figure 5.1(a) a vessel has displacement " with centre of gravity at
Gy, on the centreline, centre of buoyancy at By with transverse
metacentre at M. w is a small weight already onboard. '

The weight w 1s moved a distance dm transversely across the vessel
‘Figure 5.1(b)). The centre of gravity will move from G, to G,. There will
be a heeling moment WX G,G,.
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-5

N "t Y,

Figure 5.1(a) List initial condition

\. d )

Figure 5.1(b) List weight shifted transversely across vessel

In Figure 5.1(c) the vessel inclines until G| and B, are in the same
vertical line. Then provided the angle of list 0 is small, this vertical line
will pass through Af the transverse metacentre.
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1.5 _" o

_ " Y,
Frgure 5.1(c) List final condition ‘

GoG,

CoM

In the particular case of the single weight moving across the vessel

Angle MG,G,=90° . tan 0 =

wxd
0001—7
wxd
tan 0= WG

A more practical approach is to consider weights as being loaded at
various Kg away from the centreline.

Example 5.1
A vessel displacing 11 000 tonnes KG, 8.7 m, KM 9.5 m has an initial list
of 2° to port.

She loads Weight Vg Distance from
(tonne) - (m) centreline (m)

400 10.0 4.5 port
600 4.0 6.0 starboard

and discharges 100 1.0 2.0 port

Find the final list
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GoG,
= GoM=KM-KG
tan GOM 0 )
Gocl =GoM tan 8 =95—87
=0.8 tan 2° =0.8m
=0.0279 m port
Weight KG Moment G from Moment Moment
(tonne) (m) (tonne m) centreline port starboard
(m) (tonne m; (tonne m)
11000 8.7 95700 0.0275 p 306.9 —
400 10.0 4000 4500 p 1800.0 —
600 4.0 2400 6.000 s — 3600
-100 1.0 - 100 2.000 p -200.0 —
11900 102 000 1906.9 3600
— - — 1907
1693 s
102 000 moment about centreline
o- Gocl = s
11900 displacement
1693
=8.57 =
8.571 m 11900
KM=9.500m =0.142 m
G
r+=0929m tan 0= gz/\/}
_ 0.142 B LT
T0929 T T T

0 =8.71° = 8°42’ starboard

EFFECT OF SUSPENDING WEIGHTS (Figure 5.2)

A vessel with displacement W and centre of gravity at G has on board a
weight w. If the weight is now suspended from a point O, a distance 4,
above the weight and the vessel isinclined by an external force to a small
angle 0. The weight will move through a distance d,.
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B U
w /
s G2
Figure 5.2 Suspended weight

In triangles G,GyG,, OPQ

G\Go _ 0P _d,
GoGy PQ dy
wxdo
GG X W _d4
wXdy 4
GoGl=de'

1.e. there is an effective rise of the centre of gravity from G, to Ga_which 1s
the distance the centre of gravity would have moved, had w been moved
to O. The vessel responds as if the suspended weight had its centre of

gravity at the point of suspension.
Thus if'a heavy lift is picked up from a hold and swung overside, the

centre of gravity of the vessel firstly moves vertically upwards, before
moving awayv from the centreline as the lift is moved away from the

centreline.
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A vessel dlsplacement 18000 tonnes is upright and has KM, 9.7 m. A
heavy lift is onboard at Kg, 10.9 m, 7 m to port of the centreline, mass 90

tonnes.

The lift is to be discharged into a lighter, at which time the derrick will
be plumbed 12 m to starboard of the centreline and the head of the

derrick will be 29 m above the keel.

What must the KG of the vessel be if the list is not to exceed 7°?

Le_t the KG of the vessel be x.

Weight kG Moment G from Moment Moment
. centreline P S
18000 x 18000« 0 — —
90 " 29 2610 125 — 1080
-90 10.9 -981 7p ~630 —
18000 1629 + -630 1080
_ 18 000x - (-630)
1710
1629 + 18 000x
KG=
18000
1629 + 18 000x -
GoM=9.7—
oM=9.7 18000
=9.7>< 18000 — 1629 — 18 000x GoGi o Flry
18 000 18000 Z wr
- 172971 — 18 000x
GoM = 18000 =0.095m

GoG, _ 0.095 x 18000
GoM 172971 — 18000x

0.095 x 18000
172971 — 18000x

0.1229(172971 — 18000x) = 1710
21258 —2212.2x= 1710

tan7° =

0.1229 =

—2212.2x= —-19548

x=8.836 m

A vessel will be upright when
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Moments to ports of centre
=moments to starboard of centreline

Example 5.3

A vessel displacing 11 500 tonnes has KG, 7.5 m; KM, 8.4 m and is listed
4° to port. The vessel has yet to load 750 tonnes.

Space is available at Kg 10.5 m, 6 m to port of the centreline and at
Kg 8.0 m, 4 m to starboard of the centreline.

Distribute the cargo so that the vessel completes upright and find the

final KG.

Load w tonnes at Kg 10.5 m

GOGI = GoM tan 0
=0.9 tan 4° port

N~

. =0.0629 m
Weight KG Moment G from Moment P Moment §
centreline
11500 7.5 86250 0.0629p 723.4
w 10.5 105w 6.0000 6.0x0
750 —w 8.0 6000~ 8.0w  4.000 — _ 3000.0— 4w
12250 92250+ 2.5w 723.4+ 6w 3000.0— 4w
_ —_— 723.4+ 6w
2276.6— 10w _ £L17*
92250+ 2.5w : , DS
KG= 19950 For ship to be upright [f7 ,-r S
KG—gQ 250+569.3  2276.6—10w=0 e - ‘
B 12250 v w=227.7 tonnes
KG=757Tm Load 227.7 tonnes at Kg 10.5m

522.3 tonnes at Kg 8.0 m

QUESTIONS ON LIST

1. A Qessel, displacement 10500 tonnes, is floating upright KG, 7.8 m;
KM, 8.5 m. Caro weighin 300 tonnes is loaded at Kg, 10 m; 5 m to
port of the centreline. Find the final list.

N

A vessel displacement 8430 tonnes is listed 6° to starboard, KG,

7.8 m; KM, 8.5 m. She loads 250 tonnes of ballast at Kg, 1.5 m;
3.1 m 1o port of the centreline. Find the final list.
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3. A vessel has displacement 12000 tonnes, Kg, 8.4 m tonnes, and is
listed 5° to starboard. A total of 600 tonnes of cargo is to be loaded ata
Kg of 10 m.
If the cargo is to be loaded in compartments centres of gravity 6 m
to port and 5 m to starboard of the centreline. Distribute the cargo so
that the vessel completes upright. KM of vessel, 9.0 m.

4. A vessel has displacement 15500 tonnes and has KA 10.5m and is
upright. She is to load a heavy lift weighing 100 tonnes and the listis
not to exceed 5° atany time. The lift is to be loaded using a derrick the
head of which is 30 m above the keel and will be plumbed a
maximum of 12 m to starboard of the centreline.

LIST (ANSWERS) .

/iy

1. Final KG, 7.861 m. List, 9.85° port.

2. Final KG, 7.619 m. List, 1.13° port.

3. Final KG load, 270 tonne to starboard. 330 tonne to port.
4

Maximum initial £G, 9.49 m.

FREE SURFACES

So far, the effect of adding removing shifting and suspending weights has
to be examined. There is one other case, that is where liquid is free to
move continuously as a result of the vessel being heeled by an external
force.

In Figure 5.3(¢) a vessel has on board liquid weight w with centre of
- gravity at gy, the liquid does not fill the tank. The vessel had displacement
¥ with centre of gravity at G, centre of buoyancy at By and metacentre
at M. If the vessel is heeled towaterline W, L,, (Figure 5.3(b)) the centre of
gravity of the liquid in the tank will move to g;, causing the centre of
gravity of the vessel to move to G,. Now at this angle of heel the centre of
buoyancy has moved B, the righting lever has been reduced from Gy<,
to G,<, (Figure 5.3(c)).

The movement of the centre of gravity is similar to the movement of the
centre of buoyancy as the vessel heels. Hence it can be assumed for small
angles of heel that verticals through successive positions of G intersect the
centreline at a fixed point G,. This point is called the virtual centre of
gravity or the fluid centre of gravity. )

For small angles of heel the vessel behaves as if the centre of gravity of
the vessel was at G,. From now on it is important to distinguish between
KNG and KGy,g when defining the stability of a vessel. The assumption
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%
Y w

Figure 5.3(a) Free surface initial condition

B I:.‘ Tew

Figure 5.3.b) Free surface liquid moved
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Figure 3.3(c) Free surface final condition
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that G, is a fixed point is reasonable so long as the actual transfer of liquid
can be regarded as vertically sided wedges.
When there is free surface on a vessel G{ 1s always reduced.

Evaluation of GG,

On board a vessel displacement W with centre of gravity at G, there is a
rectangular tank length / and breadth 4 containing liquid density p;. (See
Figure 5.4.) The vessel is inclined by an external force to some angle of

heel 6.
A wedge of liquid moves across the tank, the centre of gravity of the

liquid moves from g, to g,. Then if the wedge of liquid has weight w

GG, = 278081
I
=vX P,
where ¢ 1s the volume of the wedge

1 b b
=§x§x§0cxpix[
_lxb2

8 pi 9(‘

. | J

T

b

[:;gun 1 Virtual 1.0 i G die to [tee ST
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—2xgxé
, go.gl - 3 2
=§xb
[ x b? 2

WX gog1 =g xpixﬂcxé—xb

Ix b3
12

xpixoc

[x b
= the second moment of area of a rectangle about

2, longitudinal axis through the centroid
=1
ix p x0,
GoG, %
But
GOGI = Goc‘ X 0(-
ixp x0.
GOG\'O(‘ - W
10,
GG, =—
obv =75

' -
If the tank is not rectangular and we consider an elementary length of the
tank

113

”x£0g1=9PiJ '1507

0

=1p,0. as above

GoG. =ZT%, for all tank shapes

Note that for a particular tank 7 is a constant, for a particular depth of
liquid, and has units of m*. If we take the product ip; the units are m* x

tonne/m> = tonne m, a moment. Ifp, is taken as being the density of fresh
water then 1pp, is called the Free Surface Moment (FSM) for fresh water.



104 LIST AND FREE SURFACE

Then if some other liquids are carried.
free surface moment = free surface momenty, x RD

The value of free surface moment can be used either as illustrated above,
1e.

N

~ FSM

or the value for FSM can be added to the moment column in the standard
‘Weight KG Moment’ calculation.

EFFECT OF LONGITUDINAL SUBDIVISION (Figure 5.5)

If a rectangular breadth b4 is divided into n equal subdivisions each
subdivision containing liquid density p;.
Then for one tank

10;

G.=—
GoG IV

e _/
k= .,

Figure 3.5 Effect of longitudinal subdivision

- 2
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3

Since there are n tanks

606\. =n lb

3P. x_l_
>,‘ZK"3
‘ 3
4 pf;x_lg

16
NI

Thus the virtual rise in G due to free surface is reduced by a factor of 1/n?
where n is the number of subdivisions.

Note that the formula can only be applied to equal rectangular tanks.
If the tanks are rectangular but unequal, then the free surface of each
tank must be found separately. If the tanks have the same shape and area
but are not rectangular then the formula is a reasonable approximation
but is not strictly accurate and for exact calculations the free surface of
each tank should be considered individually.

EFFECT OF TRANSVERSE SUBDIVISION

Transverse bulkheads have no direct effect on free surface, however, they
do give the operator greater flexibility in filling and emptying tanks.

In situations where large free surfaces could develop as a result of
damage, transverse subdivisions would reduce the extent of the free
surface.

EFFECT OF DEPTH OF LIQUID

(a) On intial stability ,

In most practical cases the formula given covers the worst condition, i.e.
the maximum likely free surface. If the liquid level is low in a tank then it
will flow to one side and form a pocket of liquid with considerably
reduced area. Conversely if the tank is full the liquid would reach the top
of the tank and again the area of the liquid would be reduced.

(b) At large angles of heel

When considering large angles of heel the actual position of the centre of
gravity of liquid must be found. This process is tedious, but developments
in computation make this practical and some stability calculation
packages find the transverse position of the centre of gravity, treating
liquid in tanks as weights moving transversely across the vessel.
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Example 5.4

A vessel displacing 10000 tonnes KG, 8.9 m; KM, 9.4 m. The vessel loads
ballast water RD 1.010 into a rectangular tank length, 30 m; breadth,
20 m; depth, 2 m. The tank has a single centreline division to a depth of
1.0 m. Kg of ballast, 0.5 m. Find the fluid GM of the vessel.

Weight of ballastl xxdx p
’ =30x20x | x 1.010 tonne

. =606 tonne

Weight KG Moment
10000 8.9 89 000
606 0.5 303

10606 89303

_30x20° 1.010 1
12 10606 22

GG.=0.476 m
KG solid=8.420 m

KG fluid= 8.896
KA =9.400

GM fluid =0.504 m
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Example 5.5

An undivided forward double bottom tank has the following half
ordinates of water plane in a tank 18 m long.

Station 0 | 2 3 4 3 6
4 ord 2.0 2.8 39 5.2 6.7 8.0 10.l m -

Find the fluid KG of the vessel after loading fuel 01l RD 0.9 into the tank to
a depth of 0.8 m, Kg, 0.4 m. Assume tank is wall sided.
Displacement of vessel 20000 tonnes KG 10 m.

Station % ord Simpson’s F (4 ord.)® SV F (second
miultiplier (area) moment)

0 2.0 ] 2.0 8.0 ] 8.0

| 2.8 4 11.2 21.95 1 87.8

2 3.9 2 7.8 59.32 2 118.6

3 5.2 4 20.8 140.61 4 562.4

4 6.7 2 13.4 300.76 2 601.5

5 8.0 4 32.0 512.00 4 2048.0

6 10.1 ] 10.1 1030.30 I 1030.3
97.3 4456.7

A &
Area =2 x 3 x ) F (area)

=2x§x97.3m2

=194.6 m

Weight of oil = Area x depth x p oil
=194.6 x 0.8 x 0.9 tonne
= 140.112 tonnes

1

1=2x 5%3 % 2_ F (second moment)

>~

h o1
=2X§X§X4‘4567m4

3
=2x§x%x4456.7m4

=2971.13 m*
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Free Surface Moment=1ip oil
=2971.13 x 0.9 tonne m

=2674.0 tonne m

{tem IWeight KG Moment
Ship 20000 10.0 200000
Oil 140 0.4 56
FSM 2674

20140 202 730
202730
K = 50120
= 10.066 m
KGy =10.000 m

Diff= 0.066 m

G.M is reduced by 0.066 m by loading liquid in the bottom of the vessel.

Example 5.6 (Figure 5.6)

A vessel displacing 14000 tonnes has KG, 11.0 rﬁ; KM, 12.0 m and is
listed 3° to port. A tank of length, 10 mj breadth, 5 m; and 1 m deep with

p I s

Final tluid G

Initial solid G

. Lo e s T
e\ 72777 AP 777777 )4
i f- e ‘

Figure 5. Example 5%
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centre of gravity, 7 m to port of the centre line is full of fresh water at Kg,
0.5 m. What will be the 1#$4f half of this water is transferred to a similar
tank on the starboard side of the vessel. The tanks are rectangular.

,/ Free surface moment for one tank,, .

AN

=ipF“'
163
=——x | tonne m

/

\ 12 |
\ 10 x 53
Q x 1 =104.2 tonne m

For two equal tanks™ X2 )
FSM = 208.4 tonne m

Weight of water transferred = volume x p
—so-tomre 25+
GOGI = GoM tan 0

=] tan 3°
=0.0524 m
Weight kG Moment G from Moment Moment
centreline Port Starboard
14 000 11.0 154 000 0.052p 733.7
-25 0.75 -19 7.000p —-175.0
25 0.25 6 7.000s 175.0
FSM : 208 .
14 000 154195 5?8_7 m
_— e 558.7
383.7
~ moment t
AGFluid =T GoGl =7 Tomen
displacement displacement
_ 154195 383.7 0
14000 ™ =T40pp M= 00274 m
=11.0l14 m
KM =12.000

GM,= 0986 m
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CM
GG
0= oY1
Y= oM
_0.0274
"~ 0.982
0= 1.6° port

QUESTIONS ON FREE SURFACE

1. Avessel displacement 16 700 tonnes has KG, 9.4 m; KM, 10.0 m. She
loads bunkers to a depth of 2.0 m in a rectangular tank of length,
10.0 m; breadth, 18.0 m; depth 3.0 m, subdivided by a single centre
line division.

RD of bunkers 0.90.
Kg of bunkers 1.0 m.
Find the fluid GM assuming KM remains constant.

2. Avessel has a fire in deck above a watertight flat. The area has length
20 m, breadth 18 m. The flat is 10 m above the keel.
Given the following particulars, would it be safe to flood the flat to
a depth of 3 m to extinguish the fire?
Initial displacement, 11500 tonnes.
Initial KG, 9.7 m.
KM at displacement, 12607 tonne 10.8 m.

3. A vessel is displacing 10000 tonnes and has solid KG, 9.0 m. There
are four deep tanks athwartships. Each tank is 14 m long and 8 m

wide.
All the tanks contain palm oil RD 1.2. Find the fluid KG of the
vessel.
4. A box-shaped vessel has length, 140 m; breadth, 20 m; draft, 8 m;
KG, 7.5 m.

What will be the fluid GM of the vessel if a midships well length
10 m extending the full breadth of the vessel is filled to a depthof 1 m

by a breaking wave.
The well deck is 10 m above the keel. Vessel in salt water.

A vessel displacing 20 000 tonnes has KG, 1| mand is floating in fresh
water. She loads 500 tonnes of fresh water at Kg, 1 m into an

wn
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undivided double bottom tank length 30 m which has the following }
breadths at the surface of the liquid commencing from aft

Station 0 1 2 3 4 5 6
$ Ord. 3.3 7.0 8.3 9.4 10.4 11.1 11.6 m

Calculate the fluid GM of the vessel. KM at displacement 20500
tonnes 12 m.

A vessel displacing 11 000 tonnes has KG, 8 m. A rectangular double
bottom tank of length, 12 m; breadth, 6 m centre of gravity 4 m to
starboard of the centreline is partially filled with 72 tonnes of fresh
water Kg, 0.5 m. Find the list of the vessel. KM at displacement 11 072
tonnes 9.0 m.

A vessel displacement 18 500 tonnes has KG,9.2 m; KM, 10.0 mand
is listed 4° to port. She has on board a heavy lift of 100 tonnes Kg, 2 m
stowed 6 m to starboard of the centreline.

When the lift is being discharged it will be suspended from a
derrick head 21 m above the keel 10 m to port of the centreline.

Before commencing discharge a tank of length, 15 m; breadth,
9 m; depth, 4 m is filled to a depth of 2 m with fresh water.

Kg of the water 1 m centre of gravity 4.5 m to starboard of the
centreline. ,'

Find the list when the lift is suspended over side.

FREE SURFACE (ANSWERS)

1.

Free of surface moment, 1093.5 tonne m. KG fluid, 9.304 m. GAM
fluid, 0.696 m.

Fluid GM after flooding 0.16 m.
Very marginal and full residual stability calculation should be
carried out.

Free surface moment, 2687.2 tonne m. KG fluid 9.287 m.

Free surface moment, 6833.3 tonne m. KM with well flooded
8.166 m. GM fluid, 0.344 m.

Free surface moment, 16 838.8 tonne m. Fluid GM, 0.423 m.

Free surface moment 216 tonne m. Fluid GM, 1.029 m. List, 1.43°
port.

Free surface moment, 911.25 tonnes. KG fluid 9.231 m. List 5.66°
port. .
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CALCULATION OF INITIAL XG—THE INCLINING TEST

In order to complete the assessment of initial stability the G of the light
ship must be found. Once light ship KG has been found any other KG can
be determined by taking

light ship moment + >~ added weight moment

KG=
displacement

> added weight moment = deadweight moment

light ship moment = light displacement x light KG

Light displacement can be determined from hydrostatic data. However,
it is impractical to determine light ship £G from first principles. Light
ship KG is usually determined by an inclining test.

Inclining test

In Figure 5.7 OR is a pendulum of known length suspended above a
horizontal graduated scale PQ. A small weight wis moved a distance of m
across the deck of the vessel.

The centre of gravity of the vessel will move from G, to G, and the
vessel will list until B; and G, are in the same vertical line. Provided the
angle of heel i1s small, this vertical line will pass through M.

d
= ¥

1
P t

0

M

-
G| G,
P R S Q

\_ A N Y,

Figure 5.7 Inclining test
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The pendulum will move until it has deflected to OS. Thus in triangles
MGGy, ORS

LO= LM =angle of list

LGy=LR=90°
Triangle MG,G, is similar to triangle ORS
ot _RO
GoG, RS
RO ¥
But if the vessel had displacement 1V
wxd
GoGy=—7
T w
RO wxd
GOIM—EX 0

KM can be determined from ship form. Hence KGo=AM — G, M.

Precautions to be taken during the test -

. Conditions during test

a) The vessel should be as close as possible to the light condition.

b) The vessel should be floating freely with moorings slackened during
actual measurements. ¢

(c) No other vessels moored alongside.

(d) Minimum wind and current.

(e) As few people as possible on board.

(f) All weights secured in seagoing position.

(g) No free surfaces.

2. Conduct of test

(a) Either more than one pendulum is used or they may be replaced by an
accurate inclinometer.

(b) Several weights are moved in order so as to obtain the mean of several
readings.

(c) The vessel must be upright at the commencement of the test.

3. Calculation of results
(a) Inclining weights used to bring the vessel upright to be accounted for.
(b) Weight of people on board to be taken into account.
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(c) Any weights which will be part of the final displacement and not
on board must be estimated and included in the light displacement.
(d) The displacement must be accurately determined.

A more detailed account of the calculation of inclining tests can be found
in Reference 1. )

Under operating conditions an inclining test may occasionally be used
to givea quick check on the fluid GM of a loaded vessel. In this case a unit
of cargo of known weight would be loaded on one side of the deck, the list
noted, and the unit then moved to the other side and the change noted.
An approximation to the fluid GM can then be calculated.

Example 5.7

An inclining experiment is carried out on a vessel completing fitting out.
The following data is noted.

Displacement as inclined 9550 tonnes
Mass of inclining weights 10 tonnes
Distance weights shifted transversely 18 m
Length of plumb lines 9.5 m
Mean deflection of plumb lines 100 mm
Kg of inclining weights 125 m
KM of vessel from hydrostatic scales 8.35 m

Calculate the GM of the vessel as inclined. A tank containing 150 tonnes
of fresh water is full at the time of the experiment. Kg of the water 1.0 m.
Calculate the light ship KG of the vessel.

GM OPF

GG, PQ

cp =4 RO

w " RS

10x18 9.5
T 79550 0.1

GM=1.791 m

KG=KM—GM
~8.350-1.791 m

=6.559 m
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Weight KG Moment Weight KG Moment
9550 6.559 62642.2 10 12.5 125
160 275 150 1 150
9390 62367 160 275
: : 62367
Light ship KG = 3390 ™
=6.642 m
Example 5.8

While loading a cargo of timber on deck it is noted that a sling of timber
weighing 8 tonnes KG, 12 m moved 16 m from one side of the ship to the

other, inclines the vessel 1°.

If the KM at this draft was 10.5 m calculate the approximate KG

displacement 13 000 tonnes.

How much more deck cargo would it be safe to load if the GM was not

to be less than 0.5 m.

180x8x 16

GM = -
M | xTx 13000

KG=10.5—0.564=9.936

Let x be cargo to be loaded at KG, 12 m.

Weight KG Moment
13 000 9.936 129 168

x 12.0 12x
13000+ x 129168 + 12x
10— 129168 + 12x

~ 13000+ x
130000+ 10x=129 168 + 12x
2x =832

x = 416 tonne
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UNRESISTED ROLLING IN STILL WATER

General treatment of ship motions is outside the scope of this book,
however, one of the relationships which arises from the study of unresisted
rolling in still water can be used to determine fluid GA.

If 1t is assumed that a vessel rolling through a small arc is executing
simple harmonic motion with period 7 s (one period being from port to
starboard and back to port) then if the radius of gyration of the vessel is X
(see below) and g is the acceleration due to gravity.

Inx K
"= TCay

From which

dn? x K2
CM=—>5
exT
‘The major difficulty in using this relationship is determining K. The
parameter K arises from a general property of moments of inertia. A
moment of inertia can always be expressed as

I=MK?

where M is the mass of the body and X is the distance.

In the case of the equations above, the value of K is a radius of gyration
which relates the moment of inertia of the vessel about a longitudinal axis
through G, to the mass of the vessel. _

For a light ship K can be determined at the same time as the inclining

test. In theory K for any loaded condition can then be found by taking the

sum of values of wd? where w is an added weight and  the distance from
the centre of gravity G. In practice the process is very tedious. Sufficiently
accurate values of K" can be found by using empirical relationships.

Reference 2 gives

K\? H H?
(‘E) =F(CBQ + llOCvl —CB)(?~QQO>+F2—>

where

Ci = upper deck coeflicient;
H = effective depth of ship=D+ A/L,;
A = projected lateral area of erections;

i et
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L,, =length between perpendxculars
d=mean draft;
F = constant 0. 125 for passenger and cargo ships;
=0.133 for tankers and bulk carriers.

For a typical ship this formula lends to values of K of about

K =038

Example 5.9

A vessel about to complete loading a timber deck cargo is induced to roll
by landing a large sling of timber on the port side of the vessel.
If the period of the rollis 12.2 sec and K'is 8 m find the GM of the vessel.
As rolled the displacement of the vessel si 24 500 tonnes, and KA, 14 m.
How much more deck cargo can be loaded at Kg, 18 m if the KG of the
vessel is to be no more than 12.50 m.

4n?x K?*  47n°x 82

GM; = = =1.
ST xT? 98Ixi22 ™
KM=14.00m
KG=1227m
Let w be deck cargo to load
Weight KG Moment
24 500 12.27 300615
w 18.0 18.0w
24500 + w 300615 + 18.0w
KG=m01‘nent
weight
12.502300615+ 18.0w

24500+ w

12.50(24 500 + w) = 300615+ 18.0w
306250+ 12.5w=300615+ 18.0w
5.5w = 5635
w= 1025 tonnes

Load 1025 tonnes at KG, 18.0 m.

MSS - 5
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QUESTIONS ON INCLINING TESTS

I. A vessel displacing 20000 tonnes has a KM of 6.5 m. A weight of
25 tonnes shifted 20 m transversely across the deck causes a plumb
line length 10 m to be deflected by 0.1 m.

Kg of the inclining weight 10.5 m.
If there remains to be installed a generator weighting 100 tonnes
KG 3 m, determine the light ship KG.

2. A box-shaped barge of length, 100 m; breadth, 10 m; depth 6 m is
floating at a draft of 2 m in fresh water.
A weight of 1 tonne is moved 8 m transversely across the deck,
deflecting a pendulum 5 m long by 0.05 m.
What will be the GM of the vessel of loading a 200 tonne weight at
a KGof 7m? '

3. When a weight of 20 tonnes is moved 12 m across the deck of the
vessel to which the following data applies the vessel heels 0° 24"
Find the KG as inclined.
Vessel floating at an even keel draft of 8 m in salt water.
Underwater volume 15000m?®, KB, 4.7m. Length of 8m
waterplane 120 m. Half ordinates of the 8 m waterplane are

Station 0 1 2 3 4 5 6
4 Ord. 0 -7 8 9 9 6 Om

4. A vessel about to complete loading has yet to load 1500 tonnes of
cargo at Kg, 8.0 mand Kg, 14.0 m. The displacement of the vessel is
14000 tonnes and a partly filled double bottom tank containing fresh
water has free surface moment 800 tonne m.

A sling.of cargo weighing 5 tonne already on the port side of the
vessel is picked up and landed 16 m directly to starboard causing a
change of list of 1.0°. A further 200 tonnes of fresh water is still to be
loaded into the tank at Kg, 8.0 m in order to fill the tank.

Distribute the cargo so that vessel has a departure GM of 6 m.

KM at all relevant drafts 12.5 m.

The vessel is floating in fresh water.

5. A vessel with a value of Kg of 11.4m is observed to have a rolling
period of 13.8sec, when about to complete loading. KM as rolled
14.2 m, displacement 31 400 tonnes. A tank containing 1000 tonnes of
ballast Kg, 0.5m FSM 1250 tonnes m is to be emptied.

How should a further 2400 tonnes of cargo be distributed between
spaces Kg, 5 mand Kg, 19 mso that the final KG is to be no more than

11.5m.
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INCLINING TEST (ANSWERS)

1. KG asinclined 4 m
Light ship, KG 3.987 m

2. KG as inclined 4.76 m
GM after loading weight —0.08 m (unstable)

3. Iy =33928.9m*
KM=6.962 m
EG=4.726 m

4. KG asinchned 12.17 m
KGopa 12.11 m
Load 835 tonne at Kg 14 m

645 tonne at Kg 8m

8. GM as rolled 2.75 m
KG as rolled 11.45 m
Load 1870 tonnes at Kg 5 m
530 tonnes at Ag 19 m

INCREASE IN DRAFT DUE TO HEEL (Figure 5.8)

A vessel draft 4 is heeled or listed to some angle 6. At angle 0 the
maximum draft of the vessel is a + 4.

-

NI

Figure 5.8 Increase in draft duc to hecl
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Then if the vessel has breadth B

B .
a=§sm 0
b=-dcos 0

Draft heeled =§ sin 0+dcos 8

This relationship can be adapted to take into account rise of floor and
turn of bilge. However, the indication of increased draft given by the
equation will be sufficient for most practical purposes.
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Stability at large
angles of heel

This chapter deals with the assessment of stability of large angles of heel,
when the assumptions about the transverse metacentre used in Chapters
4 and 5 are no longer valid. Regulations about merchant vessel stability
are introduced.

OBJECTIVES .

1. To develop the form of the G curve as the vessel is heeled to any

angle of heel. _
To present the conditions of equilibrium as G curves.

2.

3. To assess dynamical stability.

4. To assess the stability condition of a vessel with respect to Load Line
Rules and Grain Rules.

5. To describe the effect of changes of form on the stability of a vessel.

6. To assess the effect of wind on the stability of container vessel.

FORM OF G{ CURVES

When conditions of equilibrium were discussed, it was shown that the
stability condition of the vessel depended upon the sense of the couple
formed by displacement acting through the centre of gravity and
buoyancy acting through the centre of buoyancy.

Since the magnitude of the force of displacement is constant at all
angles of heel, the size of the couple depends upon the arm of the couple,
measured from the centre of gravity G to a point { on the vector through
B. Therefore the measurement of the value of G at all angles of heel gives

an indication of the stability of the vessel.

121
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122 . STABILITY AT LARGE ANGLES OF HEEL

For a ship shape the values of G will have the following pattern for a

stable vessel.

1. Figure 6.1(a). Suppose the vessel is heeled to some angle €, then the
centre of buovancy will move from B, to By as the result of shift of

"
M
r’
[~ ® 91
9 * 9 b
— GJ Zg
B+ Bg
W\\.
M
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do * —5
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t .Ze
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|
l
]
i

Frgure 6.1 I<orease 1in GZ up to anglr of deck edge immersion
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buoyancy from g, to g,. Now if the vessel is heeled through a further angle
0, (8, =0,) (Figure 6.1(b)), then provided the deck edge is not immersed,
or the bilge emersed, it can be seen that a larger volume of buoyancy will
move from g, to g5 and that g,g;> gog,. Hence the shift of the centre of
buoyancy BB,> B,B,,. Hence the value of G will be increasing and
increasing more rapidly as the vessel is heeled.

Note that if BB,> ByB,, then the metacentre M can no longer be a
fixed point on the centreline.

The value of G will continue to increase until either the deck edge is
immersed or the bilge is emersed.

2. Figure 6.2. When the deck edge is immersed the condition will change.
It is no longer possible to assume that the buoyancy 1s transferred equally
from one side of the centreline to the other. The condition that
underwater volume is constant must be maintained. Hence the emersed
volume of buoyancy must equal the immersed volume of buoyancy.

Note if the waterlines are drawn so as to intersect at the centreline, then
a volume represented by a. b .c must be replaced by the vessel ‘sinking’
until a layer of buoyancy a.d.e.f. is immersed. Clearly the centroid of this
layer is on the emersed side of the centreline. Hence the shift of buoyancy
is reduced. The rate of increase of G will be reduced.

After deck edge immersion it becomes difficult to describe the

f

N J

Figure 6.2 Effect of deck edge immersion
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w # JVw

S

Figure 6.3 Stability at 90°

behaviour of GZ, particularly as the bilge emerges. However, if we
consider the extreme case of the vessel at 90° heel then the sense of the
theoretical couple depends upon the relative positions of G and B
(assuming G has not moved), i.e. if in Figure 6.3 the centre of gravity is at
G, the vessel is stable at 90° while if it is at G, the vessel is unstable.
If this pattern of movement of B relative to G is plotted as values of G
against angle of heel a typical curve of statical stability (G{ curve) is

obuained. (Figure 6.4, 6.5(a), (b), (c), (d)).

FEATURES OF G CURVES

Initial slope and GM

A knowledge of the initial GM can be used to determine the slope of the

onigin of the GZ curve.
In Figure 6.6, AD is a line drawn as a tangent to the origin of the G{
curve. AD cuts an ordinate DE erected at 57.3° heel. BC is drawn close to

the origin at angle 0.
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r 57.3° %

Heel

Figure 6.6 Relationship between GM and G curve
Triangle ABC is similar to :riangle ADE
DE_BC

AE AC

DE G0

513 6

Now if 6 is small

GZ=GMsin 0

and sin 0~0, (6 measured in radians)
and 37.3°=1 radian

. DE _ GMB,

1 0.

Thusifan ordinate equal to GM is erected at 57.3°and a line drawn to the
origin then the slope of this line indicates the initial slope of the G{ curve.

Deck edge immersion is indicated by the point of flexure of the curve,
although the exact point of flexure will depend upon sheer and position of

superstructure.
Maximum GZ and the angle at which it occurs can be found by

inspection. The range of stability can also be found by inspection.
It must be emphasized that only the early part of the curve up to say
40" heel can be regarded as giving a reasonable representation of the
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actual G< value, as in practice at very large angles of heel it is probable
that:

(a) Cargo will have shifted.
(b) Equipment will have broken loose.
(c) Water will have entered the vessel.

Thus making invalid the assumption that G does not shift.

DYNAMICAL STABILITY

Before dealing with regulations about stability it is necessary to be able to
measure dynamical stability using the G{ curve.

In the general discussion on conditions of equilibrium, the concept of
dynamical stability was presented on the rise in the centre of gravity of a
body as it was disturbed. In the case of a floating body the concept can be
considered in terms of the separation between the centre of gravity G and
the centre of buoyancy By,B; —B, as a vessel which is initially stable is
heeled. '

In Figure 6.7 a vessel which is initially stable is heeled through a small
angle 0 from the upright. If the initial separation between Gy and By is d,,.

-

Figure 6.7 Dynamical stability
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Then if we assume that the metacentre M remains fixed on the centreline
and centre of buoyancy will move in an arc centre M radius MB,,. If the
vertical separation between G, and By is now measured and is d;, it can-be
seen that d,> d,. Hence work has been done separating G and B.

Dynamical stability = W(d, — d,)

The problem is to determine this value in general. If we consider a vessel
heeled to some angle § and then heeled through a further small angle 8.
Then in Figure 6.8(a) and (b) the increase in separation of G and B, is

GL 400

G<=0

do—d))= ¥ G780
O

Go=

Ifon GZ curve (Figure 6.9) GZ 460 is plotted it can be seen that GJ60 isan
element of the G curve. Therefore in the limit

(do—dn)=JH GR 48
0

which is the area beneath the G curve up to angle ®

Dynamical stability = W (Area beneath G curve)

STABILITY REQUIREMENTS UNDER LOAD LINE RULES

These regulations, as well as others, define the stability of a vessel by
defining the G curve up to either 40° or the angle of progressive flooding
and sometimes to deck edge immersion.

The angle of progressive flooding is taken as the angle at which water
could enter the vessel through say an airpipe or other non-watertight
opening.

The Merchant Shipping (Load Line) Rules 1968 require that a vessel
should have satisfactory stability in all probable loading conditions, and
when loaded to the assigned freeboards. The rules lay down the following

specific criteria (Figure 6.10):

(a) The area under the curve of Righting Levers (G< curve) shall be not

less than:
(1) 0.055, radians up to an angle of 30°.
(ii) 0.09 m radians up to an angle of either 40° or the angle at which the

] —_— e ——
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Figure 6.8(a) Relationship between dynamical stability and G

de+de

Figure 6.8(b) Detail of relationship between dynamical stability and G

lower edgesof any openingsin the hull superstructure of deck house being
openings which cannot be closed weathertight are immersed if that angle
be less.

(ii1) 0.03 m radians between the angles of 30° and 40° or such lesser angle
referred to in (ii).
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Figuré 6.9 Relationship between area under G curve and dynamical stability |
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Figure 6.10 Stability requirements of 198 Load Line Rules

(bi The Righting Lever (G<) shall be atleast 0.20 m at an angle equal to
or greater than 30°.

(c; The maximum Righting Lever (G) shall occur at an angle of heel of
not less than 30°.

(d: Theimmnal transverse metacentric height shall be not less than 0.15 m.
In the case ofa ship carrvinga umber deck cargo which complies with (a)
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Figure 6.11 Minimum curve

by taking into account the volume of timber deck cargo the initial
transverse metacentric height shall not be less than 0.05 m.

The rules also require the vessel to undergo an inclining test to
determine whether or not the vessel complies with the requirements (Ref.
SI 1968 No. 1053 Schedule 4 Part 1 2.(2)(a)-(d)). The minimum curve
would have the form shown in Figure 6.11, although as drawn the area
under the curve between 30° and 40° would probably be deficient.

CONDITIONS OF EQUILIBRIUM FROM GZ CURVES

The curves shown so far all indicate a vessel in initial stable equilibrium.
For vessels in other conditions of equilibrium the curves would appear as
follows

Unstable initial equilibrium (Figure 6.12)

The vessel may go to an angle of loll at which point the vessel is stable
relative to the angle of loll. Note_that the initial negative slope is very
shallow and the +GAM small. The maximum G issmall and the range of
positive stability small, The vessel is in a dangerous condition.

This condition can be corrected by lowering the centre of gravity.
There are three possible methods

(a) Lowering weights, generally impractical as loll is much more likely in
a full vessel rather than an empty one.
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Figure 6.12 G curve of vessel in unstable equilibrium

(b) (1) Filling a subdivided double bottom tank on the low side of the
vessel. This has the effect of keeping the vessel over to one side while G is
lowered and keeps free surface to a minimum. (i) Bringing the vessel
upright by filling a tank on the high side.

This method reduces freeboard and if the vessel has only a small reserve of
stability will cause a large angle of list with consequent risk of cargo shift.
(c) Removing weight from the high side. This in practice means
jettisoning cargo from the deck or removing ice. The effect is the reverse
of (b) except that freeboard is-increased which is an advantage.

The most important lesson to learn from these procedures is that it is
much better not to loll in the first place.

Neutral initial equilibrium (Figure 6.13)

The curve is initially horizontal, hgwever, it should be noted that in most

cases the curve will slope upwards after a few degrees of heel and the

vessel would have some range of positive stability.
In Figures 6.14(a), () and (c) the curves are redrawn to show the effect

of heeling to port and starboard.
The following properties can be noted:

. The vessel is stable whenever the G< curve is in a positive quadrant.
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Frgure 6.13 G curve of vessel in neutral equilibrium

[N]

The vessel moves into stable equilibrium whenever the curve crosses
the heel axis in a positive direction.

3. The vessel is in unstable equilibrium when the curve crosses the line
in a negative direction.

EFFECT OF FORM ON GZ CURVE

The G{ curves used to illustrate this section are based on computer
outputs for the G{ curves of box shapes.

1. Change in _freeboard (Figures 6.15 and 6.16)

Suppose a vessel has centre of gravity at G, and freeboard f,,, can have
additional freeboard added to give freeboard f; with the draft remaining
constant and the centre of gravity remaining at G,. (G can remain fixed if
weight 1s redistributed.)

Then if the vessel is heeled by an external force the initial shape of the
curve will be unchanged. However, the angle of deck edge immersion will
be delayed for the vessel with high freeboard. Thus the curve will
continue to rise, until the larger angle of deck edge immersion. There is a
considerable increase in max. G, the range of stability isincreased and at
large angles of heel the dynamical stability in increased. The improved
stability at very large angles can be accounted for by considering the

increased width of waterplane.
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GZ GM
+
port Heel stbd
Figure 6.14.a) G curce to port and starboard of upright for stable vessel
¥
GZ
<+
N [\ T
<
port Heel stbd

Figure 6.14 b, GZ curve to port and starboard for vessel in unstable equilibruon
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port Heel

sthd

Figure 6.14(c) GZ curve to port and starboard for vessel in neutral equilibrium

Figure 6.15 Effect of stability of increasing frecboard
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Figure 6.16 Effect on G curve of increasing freeboard

2. Superstructure (Figure 6.17)

Watertight superstructure has a similar effect to increased freeboard,
provided the superstructure is distributed equally about the centre of
buoyancy, i.e. forecastle and poop or uniformly stowed timber deck
cargo, etc.

However, if the superstructure is not uniform, i.e. offshore supply
vessels, there will be a considerable shift of the centre of buoyancy when.
the superstructure enters the water causing the vessel to trim. As in the
figure the trim will be towards the part of the vessel with the lower
freeboard. This change of trim due to shift buoyancy asa vessel is heeled 1s
called free trim.

All vessels will trim to some extent as they are heeled, in most cases the
effect is ignored in presenting G< curves. The use of computers makes the
calculation of free trim practical and some programmes for calculating
GZ take free trim into account.

3. Increase in beam (Figures 6.18 and 6.19)
Suppose a vessel with centre of gravity at G, and beam By, has its beam
increased to B,. In this case the centre of gravity can remain at G,
However displacement must be increased. Since the width of the
waterplane is increased, the inertia of the waterplane must be increased,
hence the metacentre will rise to M ;. The initial slope of the G curve will
be increased. However the angles of deck edge immersion will be earlier,
and thereafter the slope of the curve will be reduced.

At darge angles the waterplane is not greatly changed, there 1s little
change in stability at these angles, the curves coincide at some very large

,

o s e
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Figure 6.18 Effect on stability of tncreasing beam
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HEEL

Figure 6.19 Effect on GZ curve of increasing beam

angle. In the special case of a box shape the curves intersect at 90°; for
most other vessels the point of intersection will be at some angle less than
90-.

Since displacement has been increased there will be an increase in

righting moment.

e e i

s bt o
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Table 6.1
Increased Even Unezen Increcsed Increased
Jreeboard super- super- beam length
Structure structure
Displacement No change  Nochange  No change Increase Increase
M ) No change No change No change Increase No change
Deck ‘edge Increased Effective Effective Reduced No change
immersion increase increase
Max. GJ Increased Increased Increased Small No change
increase
Range of stability Increased Increased Increased Possibiv No change
increased
or
decreased
Righting moment Increase Increase Increase Increase Increase
at large at large at large
angles angles angles
Dvnamical stability Increase Increase Increase Increase Increase
to 40°
Trim No change  Small Large No change  No change
change change
Angle of flooding Increased Possible Possible Possible No change
small large reduction
reduction reduction
4. Length

Length can be increased without altering the position of G and there will
be no effect on the value of KM for box shapes and little effect for ship
shapes. There will be no change in the angle of deck edge immersed, the
shape of the G curve will be little changed. However, displacement must
be increased thus increasing both righting moment and dynamical
stability. The effects of changed form can be summarized in Table 6.1.

EFFECT OF SHIFTING WEIGHTS WITHIN THE. VESSEL

Vertical shift of weight

In Figure 6.20 a vertical shift of weight has caused the centre of gravity to
rise from Gy to G,. If the vessel is heeled to some angle () then the value of
the righting lever has been reduced from Gy to G-
Gi1<1=00<0—Go
(;0./\'2 G()Gl SiI] ()
GIZI = GO{O - GOGI Sin ()
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v

Figure 6.20 Effect on G of moving G vertically

and if the centre of gravity is lowered
Gl’zl =G(}Zo + GOGI Sin 0

The effect on stability is shown in Figure 6.21.
The rise in G therefore reduces the range of stability, the maximum G

and reduces G.M by GG, .
In Figure 6.22 the effect of G4G| > Gy M is shown. During the early part

of the curve
GoG, sin 0> GOZ,,
hence the vessel is Q)]ling. The vessel reaches the angle of loll when

GoG, sin 0= Gyl

R et e s dam i
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Figure 6.22 Shift of weight vertically causing instability

Horizontal shift of weight

141

In Figure 6.23 a horizontal shift of weight has caused the centre of gravity
to move from G, to G,. If the vessel is heeled to some angle 8 then the

value of the righting lever has been reduced from Gy, to G, <.
G1<1=GoKo—GoX
GoX =GoG, cos 0
G2, =Goo—GoGy cos 0
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Figure 6.23 Effect on G of morving weight
horizontally

The effect on stability 1s shown in Figure 6.24. The value of GS 1s reduced

at all angles of heel.
The vessel moves to an angle of list where

GoG, cos =Gy,

The range of stability on the low side will be reduced and dynamical
stability will be reduced. The vertical separation between G and M when
the vessel is upright is unchanged.

Example 6.1 (Figure 6.21)

A vessel displacing 15 000 tonnes has KG, 7 m. Cargo is redistributed to
cause KG to rise by 0.25 m. The values of G in the initial condition
where

Heel 0 15 30 15 60 75 90  degrees
N 000 0.391 - 1.000 1.138 0.774 0.129 -0584 m
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Find for the initial and final condition

) The range of stability;

(a

(b) The maximum GZ and the angle at which it occurs;
(c) The dynamical stability at 40°;
(d

) An estimate of the GAf.

Heel . 0 15 30 45 60 75 90

Golo 0.000 0.391 1.000 1.138 0.774 0.129 -0584m
GG, sin heel 0000 -0.064 -0.125 —-0.177 -0217 -0.242 -0.250m
e e 0.000 0.327 0.875 0.961 0557 -0.113 -0.834m

GoM, 126 m Range 78°
G, M, 1.0lm Range 72°
Max. Go<p 1.20m at 42°
Max. G,{, 1.00m at 40°

Dynamical stability (imitial)

Heel 74 M F (Area)
0 0.00 1 0
10 0.24 4 0.96
20 0.60 2 1.20
30 1.00 4 4.00
10 115 1 1.15
7.31

Area =% xhx Y F (Area)

Lo
~3%573
= (.43 in radians

Dynamical Stability= W x (Area under GZ curve)
= 15000 x 0.43 tonne m

= 6450 tonne m
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Dynamical stability (final)

Heel GZ SM F (Area)
0 0.00 ] 0.00
10 0.16 4 0.64
20 0.50 9 1.00
30 0.88 4 3.59
40 1.00 ] 1.00
6.16

Area=:—31— x hx > F (Area)

1 10 )
=§xmx6.16m radians

= 0.36 m radians

Dynamical stability = W x (Area under G{ curve)

= 15000 x 0.36 tonne m

5700
= tonne m.

]

Example 6.2 (Figure 6.25)

A vessel displacing 12 000 tonnes has KG, 7.64 m. The valuesof G are as
follows:

Heel 0 10 20 30 40 50 60 70 degrees
674 0 0.19 0.50 0.94 1.16 1.03 0.60 006 m

Cargo is redistributed so as to make the centre of gravity 0.13 m to port.
Find the list and the dynamical stability from the list angle to 30°.

Heel 0 10 20 30 40 50 60 70

Golo 0 0.19 0.50 0.94 1.16 1.03 0.60 0.06

GoG, cos 0.13 0.13 0.12 0.11 0.10 0.08 0.07 0.05
I

G2, -0.13 0.06 0.38 0.83 0.95 0.53 0.0l
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Figure 6.26 Stability requirements under Grain Rules

From Figure 6.26

Heel 7°
Area 10°-30°
Heel GZ (m) SM F (Area)
10 0.06 1 0.06
20 0.38 4 1.52
30 0.83 1 0.83
2.4|

Area 10—30=:—)1’ hxY F (Area)

1 10

— x — x 2.4]1 m radians
3 57.3
0.1

40 m radians
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Area 7-10 assuming that area is triangular

3
Area = — x 57—3 x 0.06 m radians

= 0.00]1 m radians
Area 7-30 = 0.14]1 m radians

Dynamical stability = Displacement x area
= 120000 tonnes x 0.14] m radians

= 1692 tonne m.

GRAIN

When a vessel is loaded with grain, the calculation of her stability
conditions has to take into account the possibility of horizontal and
vertical shift of the grain. The loading of grain is subject to regulations.

The grain regulations define the intact stability requirements for any
ship carrying grain in bulk as follows? (Figure 6.26).

Intact stability requirements

In all ships to which these Regulations apply, the intact stability
characteristics of any ship carrying grain in bulk shall be shown to meet
throughout the voyage at least the following criteria:

(1) the angke of heel due to the shift of grain shall be not greater than 12°
unless, in relation to a particular ship or class of ship a lesser angle is
required by an Administration;

(ii) in the statical stability diagram, the residual area between the heeling
arms curve and the righting arm curve up to the angle of maximum
difference between the ordinates of the two curves or 40° or the angle of
flooding (6;) whichever is the least shall in all conditions of loading be not
less than 0.075 m radians and

(1i1) the initial metacentric height after correction for the free surface of
liquids in the tanks shall be not less than 0.30 m.

The angle of flooding (f;) is the angle of heel at which openings in hull,
superstructures or deck houses, which cannot be closed weather tight
immerse. Small opening through which progressive flooding cannot take
place can be disregarded.

The vessel is to be upright on completion of loading.
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Figure 6.27 Assumed shift of grain

The heeling arm curve mentioned in (ii) above is calculated from
information about the assumed shift of grain within the vessel. The
detailed assumptions are given as Reference 2. The regulations assume
that for ‘filled’ compartments there will be a void space beneath the top of
the compartment, the depth of the void being determined by formula
which depends the distance from the hatch to the compartment
boundary, and the depth of the hatch side girder.

The grain in the filled compartment is then assumed to shift 15° to the
horizontal (Figure 6.27). The Volumetric Heeling Moment (VHM) can
then be calculated from the geometry of the compartments. In most cases
the volumetric centre of the compartment will be taken as the KG of the
grain. However, the KG is lowered by taking into account the void spaces
then the vertical shift of grain must be taken into account and then

total heeling moment=1.06 x calculated heeling moment

In the case of partly filled compartments, Figure 6.27 the grain is assumed
to shift 25° to the horizontal before the VHM is calculated, when

total heeling moment= [.1Z calculated heeling moment

e iy —— .
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The sum of all the values of VHM is taken for a particular load
condition and the value /, calculated from:

. Assumed volumetric heeling moment
o= '
° Stowage factor x displacement

/.0 1s equivalent to
Weight of grain shifted x distance shifted
GoG, = Di
isplacement

The value 7,44=0.8%4

The values of /4 plotted at 0° and /,, plotted at 40° give the two points
through which the heeling arm curve is drawn. Comparing this process
with plotting the general heeling arm curve G,G, cos 0

GOGI = /..0
GGy cos 40° = GGy x 0.766
~0.87,
Hence the assessment of stability under the grain rules is a rather complex
application of finding list due to transverse shift of weight, noting that

VHM is very similar to free surface except that it is calculated for two
particular angles of heel.

Example 6.3 (Figure 6.28)
A vessel displacing 16 500 tonnes has KG, 7.50 m. Calculations of grain
shift give the following data.

Volumetric heeling moment = 3960 m*
Stowage factor = 1.2 m*/tonne

For the given displacement and K'G the vessel has the following values of
G< at the angles of heel given.

Heel 0 15 30 45 60 75 90
(€74 0.00 0.267 0.645 0.571 0.163 -045¢ -L104m
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Figure 6.28 Example 63

; _ Volumetric Heeling Moment
o Displacement x S.F.

3960
~16500x1.2

=0.20 m

;.40 = 0.8;.0

=1.16 m

From curve
Area 20° —40°

Heel GS !res) SM F (Area)
20 0.21 1 0.21
30 0.48 4 1.92
10 0.50 1 0.50

2.63
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1 10

Area = 3 X 573 x 2.63 m radians

=0.153 m radians
Area 12°-20°

This area can be regarded as being approximately triangular
8

Area=—x——x0.2] m radians

2 57.3
= 0.015 in radians

Area 12—-40=(0.153+0.015) m radians
=(0.168 m radians

Initial GM =0.776 m satisfactory |
Heel = 12° marginal
Residual Area  =0.168 m radians satisfactory

Example 6.4 (Figures 6.29 and 6.30)

The MV Nonesuch has light displacement 7304 tonnes and KG, 10.09 m.
‘The data in Figure 6. 29 can be assumed to apply to all compartments She
loads grain SF 1.3 m?/tonnes as follows:

No I Full
No 2 Ullage 8 m
No 3 Full
No 4 Full
No 5 Ullage 2m

No 3 DB Oil Fuel 1360 tonnes KG, 1.67m
Fresh Water Tank 284 tonnes kG, 12.72m

Does the vessel comply with the Grain Regulations?

y VHAM
Comp Volume SF 14 eight AG Moment
73697
7304 10.09
Leshe 0 13 6046 7.90 47 zgi Hggg
: e 13 3115 19 15264 600
; o 1.3 6046 7.90 4776 829
y i ' 6046 7.90 47763 2
. i l\?& 5615 7.40 1531 9210¢
’ 730 ' 1360 167 2.4(1)
Ne el 284 12.]2 3612
FW |
35816 12.72 979684 19160

e em e pe
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Figure 6.29 Grain and stability data for holds of MV Noneusch

KC _ Moment 3 279684

: = = Om
Weight 35816
kM = 11.300 m
CM = 349/ m
Heel N KG sin GZ
S N <
0 0 0 0
> 1.00 0.68 0.38
12 2.42 1.62 0.80
15 2.90 2.02 0.88
30 5.60 3.90 1.70
45 7.30 5.52 1.78
60 8.05 6.76 1.99
75 8.20 7.54 0.66
90 7.60 7.8 —0.9]
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Figure 6.31 Heel dus to wind loading

The instructions reconmend that 8 should not exceed the angle of
. flooding and that

0, l<O.65 (angle of deck edge immersion)
I
|

Example 6.5 (Figure 6.54)
A vessel has the following values of G{ at the angles of heel indicated

0 5 10 23 30 40
0 0.04 0.09 0.09 0.29 0.32

\The vess]el is displacing 32000 tonnes, has G, 10.3 m and A'A4, 10.8 m.
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Figure 6.33 Stability recommendations for wind loading of container vessels

She is floating at draft 11 m. ‘

The windage area is 3800 m? and the centroid of the area is 6 m above the
waterline.

The angle of deck edge immersion is 23°.

The angle of flooding is 34°.

Assess the ability of the vessel to withstand heeling due to wind (Figure
6.34).

Station GZ Displacement Righting moment
0 0 X 32000 —> 0
5 0.04 * 32000 — > 1280
10 0.09 IS 32000 —~ 2880
20 0.19 32000 6080
30 0.29 32000 9280

40 0.32 32000 10240
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110.8 x 57.3

. et A A

5690
=112
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Range=18°—1.12°
=16.88°
Interval=5.66°

Stations Ord. SM F (Area)

0 0 ] 0

1 1900 3 5700

2 3800 3 11400

3 5400 ] 5400

22500
3 5.66

S, == x——x 22500 tonne m radians

1787573

=833.4 tonne m radians
Which is sufficiently close

Oy, = 10.8° + 16.88°

=27.68°
O;=34° 8, satisfactory
f,=8° _
0.650,, =0.65 x 23°

= 14.95°

8, satisfactory

References
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7 Calculation of righting
level and assessment
of stability

The methods of calculating G< are outlined for moderate and large
angles of heel. Methods of presenting stability data by reference to a
single parameter are discussed.

OBJECTIVES
To describe the calculation of KN curves.

1.
2. To use KN curves to find G{ for a vessel.
3. To use the wallsided formula to find G curves values up to deck edge

immersion. =

4. To use the wallsided formula to find list and loll under applicable
conditions.

5. To appreciate methods of presenting simplified stability data.

6. To assess the stability of a vessel using the dead weight moment
approach to simplified stability data.

KN CURVES

In Figure 7.1 bbis a vertical line drawn through B at some angle of heel 8
when the vessel is at displacement I#. Then if the horizontal distance KN
can be determined it can be seen that:

GI=KN-KX

KX=KGsin @

GZ=KN—-KGsin0

Thus if KN can be determined for a series of angles of heel say, 15°, 30°,
45°, 60° 75° and 90° over a range of displacement up to load

161
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\_

Figure 7.1 Caleulation of G gives KN

displacement, then if KG is known it is possible to determine values of G

and plot a G{ curve.

In principle KN can be found by taking moments of volume of the
inclined vessel about a vertical axis CC (Figure 7.2) through K ata series of
waterplanes for the angles of heel required. Then,

moment of volume about CC

KN =

volume

The calculations are very tedious and in practice the values of KN are
. determined using programmes which find KN from the offsets which
define the form of the vessel. The most advanced programmes take free

trim into account (Chapter 6).
A set of KX curves for MV Nonesuch is given in Figure 7.3.

Example 7.1 (Figure 7.4)

MV Nonesuch is displacing 26 000 tonnes and has KG, 9.6 m. Does she
comply with the Load Line Regulations while in this condition?

Heel 0 5 12 15 30 45 60 75 90

AN 0 1:05 2.67 3.19 6.42 8.45 8.88 8.69 7.63
KZsind 0 0.84 2.00 2.48 4.80 6.79 8.31 9.27 9.6
G 0 0.21 0.67 0.71 1.62 1.66 0.57 ~0.58 -1.97
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Figure 7.2 Determination of KN

KM 11.9m
kG 9.6 m
€ —
GM 2.3 m
Max. G 1.81 m at 38° Complies
GM 2.30m Complies
Heel 174 SMo_30 F (Area)o_ 3 SMo-40 F (Area)o - 40
0 0 | 0.00 1 0.00
10 0.48 3 1.44 4 1.92
20 1.04 3 312 2 2.08
30 1.62 1 1.62 4 6.48
40 1.80 1 1.80

6.18 12.28
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3 A30-40
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Figure 7.4 Example 7.1

Areag_ 30:% xhx) F (Area)

=§x]—0x6.18m radians

57.3
=0.464 m radians

l
Areag_40= 3 xhxY F (Area)

=lx —10— x 12.28 m radians

3 573

=0.714 m radians

Areayq 40 =0.252 m radians

Areag _ 30 = 0.404 m radians
0 — 40 = 0.714 m radians
30 — 40 = 0.252 m radians

Complies
Complies
Complies
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Questions on G{ curves

1

MV Nonesuch has KG, 12.0 m and displacement 14 000 tonnes, at
constant AG the displacement is increased to 24 000 tonnes. Compare
the G curves of the vessel in both conditions.

MYV Nonesuchis displacing 30 000 tonnes and has KG, 8.00 m. Produce
a G{ curve and find the dynamical stability at 40° heel.

The KG of the vessel 1s then raised to 8.50 m at the same
displacement. Produce the amended G{ curve and find the
dynamical stability of the vessel at 40° heel.

MV Nonesuch is displacing 24 000 tonnes and has KG, 8.50 m. As a
result of cargo shifting the centre of gravity moves 0.5 m to port. Find
the angle of heel and the reduction of dynamical stability up to 30°
heel.

G{ curves (al;SWCI‘S)

]

Displacement 14 000

GM +.10m

Heel 0 5 15 30 45 60 73 90
GZm 0 038 1.12 142 1093 -0.65

Displacement 24 000

GM 0.000 m

Heel 0 5 15 30 4 60
G m 0.0 0.0 0.12 044 005 -1.50

(i) GM 3.560 m. Dynamical stability 0.93 m radians

Heel 0 5 15 30 45 60 75 90

G 0 035 098 210 2.07 1.60 075 -0.48

(i) G.M 3.060. Dynamical stability 0.12 m radians

Heel 0 3 15 30 45 60 75 90

G 0 031 085 185 1.72 1.17 0.27 -0.98
Initial Condition G.M 3.505 m. Dynamical Stability 30° 0.539 m
radians

Heel 0 5 15 30 4 60 75 90

G 0 029095 238 255 165 046 —0.92

Find Condition GAf 3.505. Dynamical Stability 30° 0.357 m radians
Heel 0 5 15 30 45 60 75 90
GZ -05 -0.21 047 1.95 220 1.40 033 -092

———————— e 4
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WALL-SIDED VESSELS

Ifitis assumed that the sides of the vessel are parallel, then it is possible to
calculate values of G{ for the early part of the G curve. Under these
circumstances, the ‘Wall Sided Formula’ will give accurate results so long
as successive waterplanes intersect at the centreline.

In Figure 7.5 a vessel breadth B, length L, is heeled to an angle of heel § |

by an external force. The centre of buoyancy will move from B to B, and
vertically from B, to B,.

" GZ=GX+XZ

Figure 7.5 Wallsided formula

~
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The component GX is due to the horizontal shift of the centre of buoyancy
from By to B,. The component X< is due to the vertical shift of the centre

buoyancy from B, to B,.
Now if a wedge of buoyancy volume V has moved across the vessel

when she is heeled to some angle and the centre of buoyancy of the wedge
has moved from g, to g, then considering the horizontal shift

V x (8081 )u

L] B
Vx(gogl)H=L§x§-xtan9xd1x§x—2—x2
LB3xdl

= 0
ta"L 2 .,
=/Ixtan 0

(See derivation of BM, Chapter 4)

BOB,=é tan 0

BOBl =Bolw tan 9

.". the vertical line through B intersects the centre line at M, the upright
metacentre.

GX=GM,sin 0

Considering the vertical shift B, B,

Blez———Vx (éogl)‘.

*B? 1
Vx(gogi)v = —xtaandlx—XEXMnﬂxQ
o 8 32

_tan20 L B3 x dl
2 ) 12
_tanz()
)

{
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1 7
B,Bz=§xf7-xtan29

|
B,Bz=§ x BoM x tan2 0

1
B22’=§xBoMxtan20xsin9

1
GZ=GM sin 9+§BOM tan? 0 sin 0

G =sin 9<GM+% BoM tan? 0)

This formula givesan analytical base to the description of the early part of
the GZ curve given in Chapter 6. GM sin 0 represents the small angle
formula for G<.

3B, M tan? 0 sin 0 represents the additional shift of B due to larger
wedges of buoyancy being moved across the vessel. It should also be noted
that when 0 is small:

, 1
}B,M tan? 0 sin 0 = 5 B,M0,’
- and therefore a small quantity. This sustains the small angle assumption
GZ=GoM sin 8 " '

Within the limits of the assumptions, used to formulate the wall sided
formula, the formula can be employed to find the angle of loll and the list
which results when weights are shifted when GM is zero.

ANGLE OF LOLL (Figure 7.6)

If the vessel initially has a negative metacentric height GM,,.
As the vessel heels she may reach some angle of heel @ when B, and G
are once more in the same vertical line and the metacentreisat M, above

G.
At this angle of heel

GZ=0
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Figure 7.6 Determination of angle of loll using wall-sided formula

Using the wall sided formula

Gl =sin O(GM0+% BM tan? 9)

0=sin 9<GM0+-12-BM tan? 9)

either sin 8=0

which can only occur if the vessel is upright or

GM0+éxBoMx tan’ =0

%xBoMxtan29= -GM,
 —2xGM
2 _ 0
=g M

—2xGM
0= |———2
tan \/ o
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GZ GMg

Figure 7.7 Determination of GM lolled

Note that the GM is the initial GM and since the vessel is initially unstable
this GM is negative. Thus the numerator in the above expression will be
positive. Also this expression will always give a value for the angle of loll.
However, the formula is limited by the same factors as those for the wall
sided formula. '

Thus, if the angle of loll is greater than the angle of deck edge
immersion, the formula is not valid and whether or not the vessel reaches
an angle of loll can only be found by constructing a G{ curve.

In Figure 7.7 it can be seen.that at the angle of loll, the vessel has a
positive GM, . If it is recalled that GM can be found by measuring the
slope of the G{ curve where it crosses the heel axis (Chapter 6), then the
GM at the angle of loll can be found (Figure 7.7).

1
G =sin 0<GZ+ 3 BM, tan? 9)
Differentiating using the product rule

d(GL) _ 1 2
B - cosB(GMo + 2BMO tan 9)

+ sin 0 BM,, tan 0 sec @
Putting 6 =0,

—2GM,

tan2 0, =
- A = TR,



172 CALCULATION OF RIGHTING LEVER AND ASSESSMENT OF STABILITY

since 8, is the angle of loll

d(GR) ( 1 ( - QGMO))
=cos 0| GMy += BM,| -
0 0 BMO

do 2
- 201“10
+ BAfO (W) secC 01
d(G
GM, ol = fjng)

GMiyy=0—2GM, sec 6,
GMb" = - QGJMO sec 61

LIST WHEN GM,=0

When GMy=0 the relationship tan 0=GoG,/Gy M,y would give the

result that 6=90°.
However, in Figure 7.8 using the wall sided formula

G =sin 0<G‘M+é BM tan? 9)

Figure 7.8 List when GoMy=0
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and putung

G =GoG, cos )

H x d
TE cos
GM =0
Wxd |
I': xcos=—2—xBA/IOxtan 0 xsin 0
d 1
w;:/ =§sz\/[0xtan39
2xwxd
39_
Ay MW
2xwxd
tan 9—3\/ BMW

Again it should be noted that this relationship only holds good within the
wall sided limits. Any case which falls outside those limits must be
examined by constructing a G curve and plotting the GOG ; cos O curve -
on it.

Example 7.2

MYV Nonesuch has draft 8 m and KG, 10 m. Compare values from KNV
curvés with values from the wall sided formula for 5°, 12° and 15° heel.
From Hydrostatic data

KM 116m KM 11.6m  Displacement 28 200 tonnes
kG 10.0m KB 42m

GCM 1.6 m BM 7.4 m

1
Gl =sin H(GM+ 5 BM tan? 9)

=sin 0(1.6+ 3.7 tan? 0)
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Heel 74
5° 0.140 m
12° 0.367 m
15° 0.483 m
From KN curves
KN
5° 1.02
12° 2.49
15¢ 3.08m
Example 7.7

A box-shaped vessel has length 8.0 m, breadth 9 m, depth 8.5 m and is
floating at draft 5> m with KG, 3.7 m in salt water. Find the angle of loll

KGsin 6
0.87
2.08
2.59

GZ m
0.15
0.4
0.49

and the GM,,, if a weight of’SOO tonnes is loaded at KG, 8 m.

Initial displacement=L xBxdx p
=80x 90 x 5 x 1.025 tonnes

= 3690 tonnes

Load KG
Weght KG
3690 3.7
500 - 8.0
4190
KG= mor'nent
weight
3 17653
~ 4190
=4.213m
Load draft
Je displacement
 LxBxp
3 4190 -
~80x9x1.025

=3.678 m

Moment
13653
4000

17653

¢ —

f AR N Y
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Final KM
_4. B
2 124
_5678 92
2 12x5.678
KM=4.028m
KG=4213m

GM=-0.185m

tan loll= \/ —26M

BM

_[=2x(-0.185)
- 1.189

loll=29.15°
GM,,= —2x GM, sec loll
= —2x0.185 xsec 29.15°
=0.424 m |

Example 7.8

A vessel has displacement 25000 tonnes KG 10.6 m, KM 12.0 m, KB
6.1 m. Angle of deck edge immersion 27°. Estimate the dynamical

stability at 20° heel

GCM=KM-KG
=12.0-10.6=1.4m

BM=KM—KB
=12.0-6.1=59m

BM

TA=2.95m

Calculating G< at 5° intervals is

GZ =sin H(GM +% BM tan? 9)
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Heel 0 5 10 15 20
2.95tan®0 0.000 0.023 0.092 0.212 0.391
+1.4 1.400 1.400 1.400 1.400 1.400
1.400 1.423 1.492 1.612 1.791
xsin 8 0.000 0.098 0.174 0.259 0.342
GZ 0.000 0.124 0.260 0418 0.613
M 1 4 2 4 1
F (Area) 0.000 0.496 0.520 1.672 0613 =3.301

Area =§ > F (Area)

—l X —5— x 3.301 m radians

37573
=0.096 m radians
Dynamical Stability = Area x W
= 0.096 x 25;000 tonnes m
= 2400.0 tonne m

Example 7.9

A bc?x shaped vessel has length 120 m, breadth 18 m, depth 12m is
floating at draft 8 m in fresh water with KG 7.278 m. A weight of 432
tonnes is loaded on deck at Kg 12 m. Find the dynamical stability of the

vessel up to the angle of deck edge immersion.
Displacement=.L x B xdx p
=120x 18 x 8 x | tonne
=17280 tonne

Weight KG " Moment
17280 7278 125755.2
432 12 000 5184.0
17712 130939.2
Kczmor.ncnt
weight
| )
=L939_2= 7.393 m

17712
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displacement
LxBxp

17712
T 120x 18 x 1

d B?
KM =5+ 124

_s2 . 18
=3 Mt Toxg2™

KM=7393m

KG=1393m

Draft=

=8.2m

GM=(1:OOO m

Angle of deck edge immersion
_ freeboard

* half breadth
12 -8.

—9
0=22.89°

tan

‘i

Gl =sin 9(0M+-§BM tan? 9)

GZ=%3M tan? 0 sin 0

BM=3.293 m

BM
—2—= ]646 m

GZ=1.646 tan® 0 sin 0
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Area 0-20
Heel G2 SM F (Area)
0 0.000 I 0.000
5 0.001 4 0.004
0.009 2 0.018
0.031 4 0.124
0.075 1 0.075
0.221
Ar _ ] > 0.221
Pon=3X573%"
= (0.0064 m radians
Areay 2 ’
Heel 4
20 0.075
22.89 0.114

0.189
Using: trapezoid rule

1 2.89
Area=—x——x 0.
ea 2x57.3x0189

= (0.0048 m radians

Areag_59 = 0.0064 m radians
Areagy 5,9 = 0.0112 m radians

Dynamical stability = area x displacement

=0.0112x 17712 tonne m

= 198.4 tonne m

Example 7.10

A vessel has displacement 22500 tonnes, KG 7.3 m, KM 7.4 m, BM
3.6 m. A heavy lift of 150 tonnes at KG 2.5 m on the centreline is lifted
using a derrick with head 17.5 m above the keel and swung 3 m to port.
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Determine list

Weight KG Moment G from CL  Moment P
centreline
- 22500 7.3 164 250
-~ 150 2.5 — 375
+ 150 17.5 2625 3 450
22 500 166 500 450
moment " moment
KG= =
weight Gol weight
_ 166 500 B 450
~ 22500 ~ 22500
=7.400 m =0.02 m
KM = 7.400 m
GM =0.000m
. QGOG] 2 x 0.02
t l = =
an list=3 \/ BM 3 \/ 36 )

tan list=0.223
list=12.57° port

QUESTIONS ON WALL SIDED FORMULA

1

A box shaped vessel has length 100 m, breadth 10 m, depth6 mand is

floating at a draft of 4 m, £G 3.5 m. Find the dynamical stability of

the vessel at 20° heel.

A vessel has KG 7.68 m and KM 7.60 m. She is at an angle of

inclination of 11° to port and is displacing 7500 tonnes. What will be
the list if a port side double bottom tank is filled with 200 tonnes of
water witha Kgof 0.5 m, 4 m to portof the centreline? Find the G{ of
the vessel at 20° heel after filling the double bottom tank.

A vessel displacement 223500 tonnes, KG 7.3 m, KM 7.4 m, BAf

3.6 m. Alift of 150 tonnes at Kg 2.5 m on the centreline is lifted using
a derrick with head 17.5 m above the keel and swung 3 m to port.

Find the list.
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4  Aboxshaped vessel haslength 80 m, breadth9 m, depth 8.5 mand is
floating at draft 5> m with KG 3.7 min salt water. Find the loll and the
GM lolled if a weight of 500 tonnes is loaded at Kg 8 m.

WALL SIDED FORMULA (ANSWERS)

I GM=0.583m
Area 0-20=0.0392 m radians
Dynamical Stability 160.72 tonne m.

2 BM=4235m
Using WSF and GG, cos 8 curve to find list
list=17° to port
G{ at 20°=0.0342 m

3 List 12.57°p.

4 Loll 29.15°
GM lolled 0.424 m. i

SIMPLIFIED STABILITY INFORMATION

The object of this type of information is to enable the stability of the vessel
to be assessed with respect to a single parameter such as KG, GM or more
commonly, deadweight moment.

If a boundary line between deficient and adequate stability can be
established such that on the adequate side of the line the vessel complies
with, say, the Load Line Rules, then the calculation of all aspects of
stability can be avoided. Figure 7.9 shows sketches of possible forms of this
information. The method of use is similar for all types of presentations.
We will concentrate on the deadweight moment method.

Deadweight moment is the moment of cargo, fresh water, fuel stores,
etc. about the keel, including free surface moment, i.e.:

_ moment of weight about keel

KG=

displacement

__light ship moment + deadweight moment
B displacement

Thus if deadweight moment is increased for a particular displacement,
KG will be increased and stability reduced.

Figure 7.10 is a possible deadweight moment curve for the vessel used for
the hydrostatic data. Note that at light displacement the vessel will not
have zero maximum permissable deadweight moment. This is because
the vessel will always have an adequate reserve of stability in the light
condition and will have a substantial permissable deadweight moment in

this condition.
The use of the curve is best illustrated by an example.

KG
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Disp-

Deficient

Disp-

KG —»

Deficient

Adequate

Disp-

GM ————»

Adequate

Deficient

MSS - 7

Deadweight >

Moment

Figure 7.9 Methods of presenting simplified stability
data
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Example 7.11

MYV Nonesuch (Figure 7.10) 1s displacing 15 000 tonnes and has deadweight

moment 40000 tonnes m. She loads cargo as follows:

No 1 4000 tonnes Kg 7 m

No 2 3000 tonnes Kg 6.5 m’
No 3 4500 tonnes Kg 7.2 m
No 4 3000 tonnes Kg 7.3 m
No 5 4000 tonnes Kg 6.9 m

She discharges

Nol TSWT 800 tonnes Kg 12m
No 5 TSWT 600 tonnes Xg 11.8 m

During the subsequent voyage, 1t is estimated that she will use 300 tonnes
of fuel from Kg 2.0 mintrgducing a free surface moment of 800 tonnes m.
Will she be ina satlsfactory condition on arrival?

Compt Weight kg Moment FSM
1 15000 40000
1 4000 7.0 28 000
2 3000 6.5 19500
3 4500 7.2 32400
4 3000 7.3 21900
5 ~ 4000 6.9 27 600
1 TSWT — 800 12.0 —9600
5 TSWT —600 11.8 —-7080
Fuel —300 2.0 —600 +800
31 800 152 120
800
152920

Plotting displacement

Indicates that the vessel is In a satisfactory condition.

Effect loading or discharging from a particuiar Kg

31800 tonnes
Deadweight moment 152920 tonnes m

Suppose in Figure 7.11 a vessel is loaded in the condition indicated by C,

then if cargo is loaded anywhere in the vessel

(a, Displacement must increasc;
(b; Deadweight moment must increase.
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T] summer load displacement

/

30 000

Deficient

Displacement _ F Adequate
tomne | Stability Stability
20 000 -
2
10 000
mal I T ] ] T 1 T T ] I
0 100 000 200 000

Deadweight moment

tonne m

Figure 7.10 Deadweight moment diagram for MV Aonesuch

300 000
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Load Disp. | / /
1

Adequate

Disp.

Deficient

Light Disp.

Dw M
Figure 7.11 Use of deadweight moment diagram

The vessel could move to condition Cy such that if cargo continued to be
loaded in that position, the vessel’s stability would become deficient.
Alternatively, the vessel could move towards condition C, where, if cargo
continued to be loaded, the amount loaded would be limited by the
summer load displacement. It is possible for the vessel to move to
condition Cj, if a free surface moment is increased while displacement is
kept constant or weight is redistributed.

Similarly, if cargo is discharged from a particular position, deadweight
moment and displacement must be reduced to some conditions such as
C4. The limiting factor in this case being deficient stability or reaching
light displacement. A vessel could move to condition Cs by reducing free
surface moment or redistributing weight.
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Example 7.12

MYV Nonesuch has displacement 25000 tonnes and deadweight moment
180000 tonnes m. How much deck cargo may she load at Kg 14 m if the
vessel is to be in a satisfactory stability condition after loading the cargo.

Try loading 2000 tonnes at Kg 14.m.

Weight Kg Moment
25000 180000

2000 14 28000
27000 208 000

Plot points
Displacement 25 000 DWM 180000

Displacement 27 000 DWM 208 000
on data sheet.

Join the points and produce to cut the boundary line between adequate
and deficient stability.

Read displacement at crossing point=27 700 tonnes
Present displacement = 25000 tonnes

Cargo to load 2700 tonnes

QUESTIONS ON USE OF SIMPLIFIED STABILITY DATA

1 MV Nonesuch has displacement 14000 tonnes and deadweight .
moment 40000 tonnes m.

She loads:

No 1 5000 tonnes Kg6.8m
No 3 7000 tonnes  Kg 7.2 m
No 5 6000 tonnes Kg 8.3 m

No 2 TSWT 1000 tonnes Kg9.0m  FSM 600 tonnes m
No 4 TSWT 900 tonnes Kg9.2m  FSM 580 tonnes m

Does the vessel have adequate stability on completion.

2 MV Nonesuch has displacement 31000 tonnes and deadweight
moment 240 000 tennes m on departure.
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During the voyage it 1s estimated that

(1) Deck cargo will absorb 200 tonnes of water at Kg, 12 m.
(1) The vessel will use 400 tonnes of fuel from Kg, 0.7 m.
(iii)- Using the fuel will remove a free surface moment of

800 tonnes m.

Find the deadweight moment on arrival and whether the vessel will
be in a satisfactory condition or not.

MV Nonesuch has displacement 17000 tonnes and deadweight
moment 140000 tonnes m.

She loads
5000 tonnes Kg80m

7000 tonnes Kg7.0m .
250 tonnes Kgl2m FSM 320 tonnes m.

How much cargo may she load at ]{g,' 11.0 m in order to be in a
satisfactory stability condition.

MV Nonesuch has displacement 20000 tonnes and deadweight
moment 160000 tonnes m. She is to load a total of 5000 tonnes of
ballast.

(1) 1000 tonnes of ballast £g, 1.0 m. FSM 0 on completion.

FSM on commencing ballasting this tank 400 tonnes m,
(1) 4000 tonnes of ballast Kg, 7.0 m. FSM 300 tonnes m on

completion.
While ballasting this compartment, the worst conditions will occur
when there are 2800 tonnes of ballast on board witha Kgof 5.0 m and

a FSM of 10000 tonnes m.

Ballast the vessel so that she is always in a satisfactory condition,
stating the displacement and deadweight moments at each stage.

SIMPLIFIED STABILITY DATA (ANSWERS)

]

Displacement 33 900 DWM 192660
Adequate
Displacement 30800 DWM 242320
Adequate

Load 1250 tonnes more at Kg 11 m.

e e
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Loading 1000 tonnes

Iniual
Final
Loading
Worst
Final

Disp. 20000
Disp. 21 000
4000 tonnes
Disp. 23 800
Disp. 25000

DWM 160400
DWM 161000

DWM 185000
DWM 189300

Marginal
Marginal

Adequate
Adequate



@ Longitudinal
P stability—trim

This chapter examines the conditions which can cause a ship to change
trim due to shifting, loading and discharging weights. Change of trim due
to change of density is considered. The determination of displacement in
a trimmed sagged, or hogged ship is introduced. :

OBJECTIVES

Definition of longitudinal metacentre and centre of flotation.

2. Determination of moment to change trim one centimetre (MCTC)
and the position of the centre of flotation. .

3. Determination of drafts of the ship after handling moderate and large

weights.

Loading and discharging to a given draft.

Determination of displacement (Draft Survey).

—_—
.

o

Definition of trim

Trim is the difference between the forward and after drafts of a vessel, by
convention trim is measured in centimetres. .

If a vessel is initially floating at waterline W,L, (Figure 8.1) and
changes trim at constant displacement to float at W,L,, then the
difference between the trim at waterlines WL, and W, L, is the change
in trim. In practice the difference between trim and change of trim is
obvious, however, students should take care to distinguish between these
values when carrying out calculations when studying.

The two waterlines in Figure 8.1 intersect at the centre of flotation (F).
Since the displacement waterline W,L,and W, L, is constant the wedges
of buoyance Wy, F, W, and L, F, L, are equal. This can only be the case
if the areas of water plane forward and aft of F are equal so that the

188
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Figure 8.1 Longitudinal metacentre and centre of flotation

LEA

volumes swept out as the vessels changes trim by a moderate amount are
equal. Hence, the centre of flotation is at the centroid of the water plane.

In Figure 8.1 the centre of buoyancy has moved from B, to B,, the
displacement vectors through By and B, intersect at M, the longitudinal
metacentre. Using similar methods used in Chapter 4 it can be shown

that

Bol" L=1—I;

where [, is the second moment of area of the waterplane about a
transverse axis through F.

All normal ship shapes are very stable longitudinally, so in considering
longitudinal stability we are only concerned with the changes of trim
which occur when the centres of buoyancy and gravity are moved out of
the same vertical line. The ship will always trim until the centre of gravity
and centre of buoyancy are in the same vertical line.
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Figure 8.2 Loading a weight at centre of flotation

3

EFFECT OF LOADING OR DISCHARGING A WEIGHT AT
THE CENTRE OF FLOTATION

In Figure 8.2 on a vessel displacement I, a weight w is loaded directly
above F'the centre of flotation a horizontal distance dm from the centre of
gravity Gy and the centre of buoyancy B,. The vessel will sink from
waterline Wyl to W,L,, a layer of buoyancy volume v-is added.
Provided the sinkage is small the centroid of this added volume will be at

F. -
Then the shift of Centre of Gravity is GyG,;

and the shift of the centre of buoyancy BB, 1s

vxd p wxd
B.B, = Fo
o8 Vo p Wew
Hence
BO-BI=GOGI

The vessel does not change trim ifa moderate weight isloaded in line with

F.
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CHANGE OF TRIM DUE TO SHIFTING A MODERATE
WEIGHT ALREADY ON BOARD

In Figure 8.3 the vessel displacement ¥, length L is floating at waterline
WoLo with centre of gravity at B, centre of gravity at Gy and centred
flotation at F.

A moderate weight w already on board is moved a distance dm from
forward to aft.

The Centre of Gravity of the vessel will move from G to G, and the
vessel will trim about # until the centre of buoyancy has moved to B,
vertically beneath G;. The vessel will now be at waterline W, L,.

W,C is a construction line drawn parallel to W,L,, M, in the
longitudinal metacentre.

Change of trim= W W, + LyL,

14/70W1 = LIC
Change of tnm=Ly,L, +L,C
=L0C
Wi
M;
b ‘ .
I
1 | - / c
' —
¥

-~
-

Wo{ ]
1\
w, F G144 Go C
B, WBO °
k.
k .
b
l

Figure 8.3 Change of trim and determination of MCTC
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In tnangles
WoLoC, M, GG,
LC=LGy~90°
LWy= L M, =trim angle
A WoLoC is similar to A M, GG,

L,C 3 GG,
Wolo GoM,
GoG,
L,C=W
0 o X CoM,
wxd
GoGr=—7-
LyC = Change of trim ’
Lxwxd
Wolg=———
oLo=757 GoM,
: . Lxwxd
Change Of tnm= W—XGO_ML

This formula is not very convenient to use and in practice, for
moderate weights, it is better to use the Moment to Change Trim One

Centimetre (MCTC). .
The MCTC is the value of wxd which will change trim one

centimetre. Noting that the units of the formula above and

m X tonne xm

tonne xm =m
Then w x d is the MCTC
I LxMCTC
100 W x GoM,
Wx G,M
MCTC=]—OO-XOL—L

This value of MCTC is given as part of the hydrostatic data of the vessel.
The value of Gy M, will vary with the loading condition of the ship, in an
unpredictable manner and is thus not very useful for calculating
hvdrostatic data. However, for ship shapes, the difference between By M,

-~
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and Gy M, will be small when compared to the value of ByM, . ByM, can
be calculated for each displacement. Therefore to a good approximation
W x BOML

100 x L

For moderate weights

MCTC=

moment changing trim
MCTC

Change of trim =

Distribution of trim

If, in Figure 8.4, the centre of flotation is a distance 1 m from the after

perpendicular in a vessel length L, and the vessel changes trim through

tcm then

/

— X

L

(L-1
L

If weights are loaded or discharged then the change in draft has to be
taken into account from

Change in trim after = t

xt

Change in trim forward =

w

kave—
Sinkage TP

Examprie 8.1 (Figure 8.5)

A vessel displacing 30 000 tonnes is floating at drafts /8.3 m, 4 9.6 m.
MCTC, 300 tonne m/cm. Centre of Flotation, 109 m forward of after
perpendicular (AP), length, 210 m.

Find the drafts fore and aft if 1000 tonnes of ballast are moved from a.

al A [
T.j/k F ‘11
- ' —

- ; —

Figure 8.4 Distnbution of trim
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215m

X

175m 3om
— ——
L 205m q ’
- —
Figure 8.5 Example 8.1

tank centre of gravity 175 m forward of AP to a tank 205 m forward of
AP. '

moment changing trim

., MCTC

_ 1000 % 30
300

! :
Change of aft = 7> Change of trim

Change of trim =

=100 cm

109

=21—0x 100cm= —-51.9
Change in trim forward = +48.1 cm
F A
8.300 m 9.600 m
+0.48l m —0.519m
8.781 m 9.081 m
Draft Forward 8.78 m Aft 9.08 m

Example 8.2 (Figure 8.6)
A vessel floating at draft Forward 9.84 m; Aft 10.62 m.
She loads

Weight LCG from AP
(tonne) (m)

450 23

320 100

Discharges 140 110
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110m

¥

10

Y

Figure 8.6 Example 8.2

TPC, 26 tonnejcm; MCTC, 148 tonne m/cm; LCF, 64 m forward of AP;
length, 120 m.

Weight LCG from F Moments Moments
tonne forward - aft
tonne m tonne m
450 39 17550
320 36 11520
- 140 46 - 6440
630 5080 17550
— — 5080

12470 by stern

moment changing trim

MCTC

12470
=T48-=84.3 cm

Change of trim

! :
Change of trim after = 7x change of trim

64 .
=]—26x84.3=4:)cm
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Change of tnm forward=39.3 cm

w
Sinkage =——
inkage TPC
639
=—=242
26 2
F A
Initial draft 9.840 10.620
Sinkage 0.242 0.242
10.082 10.862
Trim . —0.393 +0.450
Final draft 9.689 m 11.312m

Example 8.3

A vessel about to enter port has drafts: forward, 11.20 m; aft, 12.00 m. If
the vessel is to enter port on an even keel find the amount of water ballast
to transfer from the double bottom LCG 80 m forward to AP to the fore

peak tank 195 m forward of AP.
MCTC, 210 tonne m/cm; LCF, 95 m forward of AP; length, 200 m.

Let w be weight of ballast to shifted a distance of m
d=199m-80m=115m
Change of trim=12.00—11.20
=0.80m
=80 cm

wxd

MCTC

wx 115
210

w= 146 tonnes

Change of trim =

80=

P e, ol
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Change of trim after = I

95
=—2'®X80

=38 cm

Change of trim forward =42 cm

F A
Initial draft 11.20 12.00
Trim +0.42 —0.38

Final draft 11.62 11.62 =mean draft

Note that the average draft is 11.60 m, i.e. the mean'draft is not equal to

the average draft.
In practice itis often necessary to load a particular draft aft or forward.

In Figure 8.7, a weight w is loaded over the centre of flotation, causing the
vessel tosink from water line I/ ,L, to 14, L,. If the weight is then moved
a distance d m aft, the vessel will trim to waterline I¥,L,. Thus the
change of draft can be expressed as

+ Change of draft aft= +sinkage +change of trim aft

+Change of draft afi= -+ 22 %2
ange of draft aft=+ ——+ —F——
s “TPC™ L x MCTC

Sign conventions tend to be rather awkward to apply in these examgles
and students are advised to check their work carefully to ensure that they
have been consistent in applying signs.

We will adopt the convention that an increase in draftis + ve, loading is
+ ve and change of trim by stern in 4+ ve.

Example 8.4

A vessel is about to enter a river port over a bar where the maximum
depth at highwater is 9.2 m. She must have a minimum clearance of
0.5 m and is at present at draft. Forward 8.40 m, Aft 9.00 m tank. How
much water must be discharged from an afterpeak tank LCG 7 m
forward of AP?

TPC, 25 tonne/cm; MCTC, 125 tonne m/cm; LCF, midships; length,
220 m.
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Maximum draft aft=8.70 m
Present draft aft=9.00 m

Change of draft aft=0.30 m
=30cm

d=103 m

Let w be ballast to discharge
+Change in draft aft= +sinkage +change in trim aft

w [ wxd

w [110x 103 xw
=25t 200x125

30=0.04w+0.41 2w
30=0.452w
w=66.4

30

Amount of ballast to discharge=66.4 tonnes

wxd

Ch f trim=
ange of trim CTC

_ 66.4x 103
125

=54.7cm

/ :
Change of trim after = I Change of trim

=£9 x54.7=27.4cm

220

Change of trim forward = 27.4 cm

w

Rise =

=@=2.7 cm

25

199
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F A
Iniual draft 8.40m 9.00 m
Rise 0.03 m 0.03 m
8.37 m 897 m
Trim +0.27 m —0.27 m
Final draft . 864m . 870m

Note that it is always necessary to check the final draft forward as it is
possible that it could exceed the maximum permissable draft.
In the special case of keeping the draft aft, or forward, constant (Figure

8.7) we have
0= +sinkage +change of trim aft
sinkage = change of trim aft

w [ wxd

TPC L~ MCTC

From this equation, d represents the position to load a weight to keep the
draft aft constant

_LxMCTC
" Ix TPC

Note that the weight term does not appear in the equation. These are two
limitations on the use of this equation:

1. The vessel could trim by the head until the forward draft is greater
than the after draft.

2. The amount loaded could be greater than a moderate amount
making the values of MCTC and TPC invalid.

In practice the position defined by 4 can be regarded as the centre of
gravity of the weights loaded in compartments forward and aft of the

posttion.

Example 8.5 (Figure 8.9)

A vessel floating at draft: Forward, 7.00 m; Aft, 8.00 m.

Distribute 600 tonnes of cargo between compartment | LCG 75 m
forward 10 AP, and compartment 2 LCG 130 m forward of AP so as to
maintain draft aft constant.

State the final draft forward.
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130m
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e |
L 75m 0 32.31m L 22.69m_J
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Figure 8.9 Loading to keep draft aft constant (Example 8.5)

TPC, 23 tonne/cm; MCTC, 180 tonne m/cm; LCF, 92 m forward of AP;
length 180 m.

Distance of centre of gravity of weight from LCF
_LxXMCTC

. IXTPC

180 x 180

92 x 23

=15.31 m forward of F

LCF from AP= 92.00 m
g from AP=107.31 m 107.31 m
Compartment 1 = 75.00 m Compartment 2 130.00 m

d

32.31 m aft 22.69 m forward

Load w tonne aft
32.31w=22.69 (600 — w)
55w = 22.69 x 600
w =248 tonne

Load 248 tonne in Compartment |
352 tonne in Compartment 2

w 600

e 000
Sinkage TPC- 93 ™ 26 cm
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moment changing trim

Change of trim =

MCTC
_wxd
MCTC
=600x 15.31 5] em
180

92
Ch f trim aft=—
ange of trim aft l80><51cm

=26 cm

Change of trim forward =25 cm

F A

Inital draft 7.00 m ) 8.00 m >
' 0.26 m 0.26 m
7.26 m 8.26 m
Trim +0.25m —0.26 m
Final drafts 7.5l m 8.00 m

MEAN DRAFT

In Example 8.3 it was noted that the vessel trimmed to an even keel draft
which was not the same as the average draft of the vessel before the weight
was moved. Since a vessel trims about the centre of flotation parallel
sinkage will always be the change in draft at the centre of flotation.

Thus, in determining the amount of weight to be loaded or discharged
when moving from one trimmed draft to a different trimmed draft, it is
necessary to determine the change in draft at the centre of flotation. In
Figure 8.8 (see page 198) the vessel length L is floating at a trimmed water
line WyL, the centre of flotation is at F a distance | m from AP with the
draft aft d, the draft at Fd,, and draft forward d;. W,C is a line drawn
parallel to the deck of the vessel.

Then LOCthe trim of the vessel
¢=difference between 4, and d,
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Then using similar triangles

c_t
1 L
—lxt
‘1

[
=d ——xt
d,=d, Lx

Note. In the unusual case of the vessel being trimmed by the head

dm=da+éxt

‘Example 8.6 (Figure 8.10)

A vessel is floating at drafts: forward, 10.80m; aft, 11.40 and is to
complete loading at drafts: forward, 10.90 m; aft, 11.40 m; TPC, 28
tonne/cm; length, 138 m; LCF, 65 m from AP. Find the amount of cargo
to load.

Initial mean draft

)
dm=da_z><tl

65 .
=11.40——x0.

13g < 0
=11.117m

Final mean draft

{
dm-'-——da—ZXtF

65
=11.4——x0.
| 138><05

=11.164 m

Initial mean draft=11.117 m

Sinkage = 0.047 m =4.7 cm



ey ol —

£'8 21dwoxzy [ 1§ 2ndry ¢

-

wovyi

=+
. N

- w9

OJ \
I —— o . QM

- I wog-oL! 4 . oM
-, [} o
.~ 1oz 1SL
T
— la »
5 " woe g
m _A‘ N
o ! wool L
172]
=
Z
w L R 98
= o T wael " squvxy O g anig
O L o
mu. , Y wg9 g
L —_—
weo T oo o ( S |
we oLl . work vl Wy
B B S———— (7

wos ] J// M

2



LONGITUDINAL STABILITY-TRIM 205

Cargo to load =sinkage x TPC
=4.7 x 28 tonne
=131.6 tonne

If the calculation had been carried out between average drafts we would
have

Sinkage=11.15-11.10
=0.05m
Cargoto load =5x 28
= 140.0 tonnes

For large changes in draft the difference between displacements at the
respective mean drafts should be used to determine the amount of cargo
to.be loaded or discharged.

Example 8.7 (Figure 8.11)

A vessel is floating at drafts: forward, 11.48 m; aft, 12.26 m. She is to
completedoading at drafts: forward, 11.90 m; aft, 12.10 m.

Space is available in No 5 hold 30 m forward of AP
and No 2 hold 100 m forward of AP.

MCTC, 120 tonne m/cm; TPC, 32 tonne/cm
LCF, 64 m forward of AP; length, 140 m
Distribute the cargo to be loaded to give the required final drafts.

Initial mean draft

dm=da—zxt,m

64
=12. ~— .7
1226m. l x 0.78 m

=11.903 m
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|

|

Final mean draft i]
f—d_t ki

L™ L

64 X

~1210m -5 x0.2m ,‘

=12.009 m :' '.
Initial mean draft=11.903 m : T

Sinkage =0.106 m
Cargo to load =sinkage x TPC
. =10.6x32 tonne . | ;\
=339.2 tonne ’
Let w be cargo to load in No 2 hold

moment changing trim
MCTC

Change of trim= 78 cm — 20 cm = 58 cm by head

34 x (339.2 -w) — 36w
120

—-6960=11532.8 - 34w — 36w
~6960=11532.8—- 70w
70w = 18492.8
w=264.2 tonnes

Load 264 tonne in No 2 hold
75 tonne in No 5 hold

Change of trim=

—58=

For completeness the following example is given to illustrate the
calculation of MC7C from first principles.

Example 8.8

A vessel, length 200 m has the following 4 ordinates of the 1l m
waterplane commencing from aft are

Station 0 | 2 3 4 ) 6 7 8 9 10
3 ord m 0 10.0 13.0 14.0 14.2 14.3 14.1 14.0 11.5 6.2 0.2
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Under water volume to 11 m waterplane 64300 m3

KB 59m EG  89m

Vessel floating in salt water.

r>

~3

Find the change of trim if a weight of 500 tonnes is shifted 60 m from aft

to forward.

Find the MCTC.

Station  ord SM F Lever F Lever F
(Area) (75t mom) (2nd mom)
0 0 1 0.0 0 0.0 0 0.0
1 10.0 4 40.0 1 40.0 I 40.0
2 13.0 2 26.0 2 52.0 2 104.0
3 14.0 4 56.0 3 168.0 3 504.0
4 14.2 2 28.4 4 113.6 .4 454.4
5 14.2 4 56.8 5 284.0 5 1420.0
6 14.1 2 28.2 6 169.2 6 1015.2
7 14.0 4 52.0 7 364.0 7 2548.0
8 11.5 2 23.0 8 184.0 8 1472.0
9 6.2 4 24.8 9 223.2 9 2008.8
10 " 0.2 | 0.2 10 2.0 10 20.0
335.4 1600.0 9586.4
A=20m
Area Centroid from AP
9 . kx> F (Ist moment
A=—-hx) F (area) = ( )
3 > F (area)
2 € - 20 % 1600.0
=-~x20x335.4 =_—
3 335.4 -
=4472.0 m? =954l m

2
]Ap=§/l3 2. F (2nd moment)

2
=~x 20° x 9586.4

3
=51 127467 m*
1}’ = 1.-\P - A'\:Z

=51127467-4472.0x95.412

=10418546 m*
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I

BA/IL=§ - KM =BM, + KB
_10418546 16,0 i
=162.0m =167.9m

GM, = 89m
W="vp GM, =159.0m

=64300x 1.025
=65907.5 tonne

) H'X G'OA/[L

MCTC= [00x L

;]
_ 65907.5 x 159.0 tonne m
~ 100 x 200 cm

- _ . tonne m
=524 ———
cm

d
Change of trim =Ii/z—ué;M

200 % 500 x 60
T 65907.5x%159.0

=0.573 m

CHANGE IN TRIM DUE TO CHANGE IN DENSITY

A special case of change of trim occurs when a vessel moves between
waters of different densities, if the centre of flotation and centre of
buoyancy are not in the same vertical line.

In Figure 8.12 a vessel displacement I is floating at waterline IV,
with centre of gravity at G and centre of buoyancy at Bo vertically
beneath G. The centre of flotation is at F a horizontal distance d from Bo.
The density of water is Py, and there is parallel sinkage to waterline

W,\L,, when water density is reduced to p,.
A layer of buoyancy volume v has been added. Since the change in

draft will be small, the centroid of this volume can be assumed to be at F

the centre of flotation.

T
O L T R PR
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There will be a horizontal shift of the centre of buoyancy from B, to B, .

If the underwater volume of the vessel is V

vxd
V+u

BB, =

There will be a moment changing trim.

Moment changing trim= W x BB,

: W x BoB,
Cha f =
and nge of trim ICTC
Sinkage can be found from FWA and DWA formula or from
do+s Po
do p
’ p
do+ 5= dox —>
Py
Po
s=dyX——d
05 T4

Po
s=dox | ——1
° (pl )

The increment of volume can be found from
v=Sinkage x area of waterplane

TPCx 100
Po

U=s X

or
(V+o)p,=Vp,
Po

P
v=VX@E—l>
Py

Example 8.9 (Figure 8.13)

A vesselis{loating at drafts: forward, 8.72 m, aft, 9.00 mn water density,
1.025 tonne/m>. She is to enter dock water density 1.004 tonne/m*. Find

V+ur=Vx
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her drafts fore and aft in dock water, taking due account of the change of

trim due to change of density.
MCTC, 162 tonne m/cm. TPC, 29.8 tonne/cm; LCF, 82 m forward of
AP, LCB, 90 m forward of AP. Length, 170 m.. Displacement, 27 000

tonnes.

Initial mean draft
d,=d, —1- x ¢
T L

82
=9.00 ~T70% 0.280

=9.000—-0.135
=8.865m

Final mean draft
oo = Gy X ﬂ
. Pr
1.025
1.004
=9.050 m
d, =8.865m
s=0.185
=0.19m
w

V=—
Po

27000

=————m

1.025
=26341.5m3

Pr
1.025
=26341.5 x| —— —
* (1.004 l)

=551 m?

=8.865 x

m
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vxd
V+u

_ 551x8
T 26341.5+551

=0.164 m

Since B has moved aft trim is by head

BOBI =

moment changing trim
MCTC

. I'VX BOBI

- MCTC

_ 27000 x 0.164
- 162

Trim=

=27.32 cm

[ .
Change of trim aft = 7* Change of trim

2 x27.3=13.2cm

=170

Change of trim forward =14.1 cm

F A
Initial draft 8.72 9.00
Sinkage 0.19 0.19
8.91 9.19
Trim +0.14 -0.13
Final draft 9.05 m 9.06 m

CALCULATION OF TRIM WHEN HANDLING LARGE
WEIGHTS

Ifa vessel is floating at a light trimmed draft and is to load to a load dratt,
the methods described above are unsatisfactory, as the value of MCTC
will change as will the position of the longitudinal centre of flotation. It1s

therefore necessary to use other methods.

———— .
et e vt
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The method most used in practice is to carry out the following steps.

1. Determine the position of the longitudinal centre of gravity in the
initial condition.

2. Determine the position of the longitudinal centre of gravity in the
final condition.

3. Using hydrostatic data find the position of the longitudinal centre of
buoyancy, longitudinal centre of flotation, MCTC and mean draft at
the load displacement.

4. Find the trimming moment and hence change of trim by taking the
moment composed of the horizontal distance between LCG and LCB

and the displacement.

Determination of longitudinal centre of gravity

In Figure 8.14 the vessel is floating at a trimmed water line W,L, with
displacement . The centre of gravity G is vertically above the centre of
buoyancy at B,. Now if the vessel where trimmed by an external force
about the centre of flotation F to float at the even keel waterline W_L, the
centre of buoyancy would move to B, . If the horizontal distance between
B, and B, is x then the trimming moment is " x xand the trim ¢ could be
found from

CooTop— Wx x

MCTC
x_txMCTC

W

The position of B, can be found from hydrostatic data ascan the values of
MCTC and displacement.
Hence the position of the longitudinal centre of gravity G can be found.

Example 8.10 (Figure 8.15)

MYV Nonesuch is floating at drafts: forward, 5.8 m; aft, 6.6 m. Determine
the position of the longitudinal centre of gravity, length, 174 m.

Average draft =&;6'69= 6.2 m

From hydrostatic data LCF 3.7 m forward of 3&

MSS - 8
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L
LCF from AP=§+3.7 m

=87.0+3.7
[=90.7m

l
Mean draft =d, -7 x ¢

90.7
=6.6 ~ 174 % 0.8

=6.18 m

215

Note. For most practical purposes the average draft will be sufficiently

accurate.
At draft 6.18 m
MCTC=356 tonne m/cm
4= 21 500 tonne
'LCB=5.2m forward of 3&
tx MCTC

W

_ _ E
= 215 —1.3..3m

Since vessel is trimmed by stern G is aft of even keel LCB

LCG®=5.200—1.325
=3.875m

§= 87.000 m

LCG AP=90.875m

Example 8.11

MV Nonesuch is floating at drafts: forward, 2.90 m; aft, 4.7 m; length,

174 m.
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She is to load cargo as follows

Compartment Weight LCG from AP
No l 3800 146
No 2 4800 123
No3 2200 100
No 4 5100 77
No5 5300 51
ERDB _ 1000 22

Calculate the drafts of the vessel on completion.
Initial LCG
Average draft =%4'—7 m
 =380m

From hydrostatic data LCF, 5.3 m forward of 3

LCF from AP= (g + 5.3) m

=87m+53m
=923 m

[
Mean draft = d,——z X

92.3
=47 ———x 1.

7 174xl8
=3.75m

From hydrostatic data
W =12100 tonnes
LCF=5.3 m forward
LCB=6.0m forward
MCTC=326 tonne m/cm

_txMCTC
W

_180x 326
© 12100

=48'm

X
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Since vessel trimmed by stern G is aft of B

LCG from AP=$+6.0—4.85
=87+4+6.0—-4.85=88.15m

217

Compartment Weight LCG from Moment
(tonne) AP (m) (tonne m)
No 1 3800 146 554 800
No 2 4800 123 590400
No 3 2200 100 220000
No 4 5100 77 392700
No 5 5300 31 270300
ERDB 1000 22 22000
Initial Cond 12100 88.15 1 066 620
34300 3116820
moment
LCG from AP =——
weight
3116820
34300
=90.87 m

=3.87 m forward of &

From data at displacement 34 300 tonne

LCF, 1.6 m aft of 3
LCB, 4.0 forward of 3
MCTC 432 tonne m/cm
mean draft 9.6 m

x=LCB—- LCG
=4.00—3.87 m aft of B
=0.13 m aft
Trim by stern
e WxX
MCTC

~34300x0.13
B 439

=10.3cm
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LCF from AP=-211 — LCF from &

=87-1.6
/=854m

Tnm aft=éxt

85.4

=5cm

Trim forward=5.3 cm

F 4
Mean draft 9.600 9.600 -
Trim —0.053 +0.050
9.547 9.650
Final draft Forward 9.55m
Aft 9.65 m

In practice the above example would be carried out on a proforma such
as that shown in Table 8.1. This type of form is used to calculate fluid GM
as well as the final drafts. There is no need to find the initial LCG as the
work is always done from the light condition using, the lightship
displacement, LCG and KG.

However, if there is insufficient data about the initial condition, it may
be necessary to find the initial LCG. The choice of working about the AP
or midships is a matter of personal choice. Working about the AP avoids
negative numbers but results in rather large values.

Trimming tables

For small weights, work can be simplified by the provision of trimming
tables. These tables ar graphs give the change in draft fore and aft as the
result of loading some convenient unit of cargo say 100 tonnes, at any
pointalong the length of the vessel. The information is normally given for

load draft and ballast draft.
In Figure 8.16 on a vessel length L m with centre of flotation as distance

S i v s .

e

——
e —— ————an,
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Table 8.1 Proforma for determination of GM; and draft

LOADING CALCULATION FORM

\, : /
No. 5 No. 4 No. 3 No. 2 No. 1
CARGO E= BALLAST FUEL OIL (IIM) FRESH W.
COLUMN No. wzzcﬂr 2 3M5Hé§2 o 5J;_;?4 ? >
ITEM (t) nf (x105 ton) (m)  [(x10%t-m)| (t-m)
|
N" 1 “CARGO HOLD <59. 728 |
No. ¢~ -35.104 —
No. 3 o m -12.90 —
N [l " q_98
No. s TARGD HOLD 35.92
No, 1 TOP SIDF TK (PAs) -57 &8
No, 2 "y -35.60
No, 3 % " ) -12.90
0. &4 " T ™y 9.90
No. 5 TOP SIDE TK (P&S) 36.30
ON DECK CARGD
CARGO TOTAL
WATER BALLAST;
NQ. 1 TOP SIDE TK (P&S) -67.58
No, 2 " v —( w7y ~35.60
No, 3 " % (") -12.90
No. 4 _ " _=® ) 9.90
NO. 5 TOP SIDE TK (P&S) 36. 30
No, 1 D.B,W.B.TK_ (P&S -58,87
No. 2 % w— ([ =35 56
No. 3 * " 0,26
No. 4 D.B.W.B.TK (C) 35,21
FORE_PEAK TANK ~75.11
PFAK TANK 77.21
No. 3 C.H./W.B.TK -12.90
W.B. TOTAL
F1iFL 011
No. 3 D.B.F.0.TK_(P&S) 0.29
No. 4 D.R.F.0.TK (P) 38.02
F.0, SETT, & SERV, TK 61 52.18 3.2 [ 12.00 0.7 60
F.0. TOTAL =
DIESEL OIL: .
No. 4 D.B.D.0.TK (5) 36.02
5 D.B.D.0.TK_{P) 55,43
SETT. & SERV. TK 20 59,19 1.2 | 20.95 | 0.2 10
D.0. TOTAL
FRESH WATER
FRESH WATER TANK _(P) 9,04
FRESH WATER TANK_ (S) 77.16
DIST. WATER TANK (P) 74.33
.W. TOTAL
CONSTANT 158 48 13 76 | 17 1% 13 -
DEADWE IGHT
LIGHT WEIGHT 7,308 15,55 3.4 [ 7009 | 73.7 =
DISPLACEMENT
CORRESPOND. (] ETACENTER ABOVE B.L. KA(mJ
DRAUGHT FOR'D m) [.OF GRAV. ABOVE B.L. KGim)
AFT m) IETACENTRIC HEIGHT __ CM[m]
MEAN tm) FFECT OF FREE SURFACE Geoln)
TRIM NERTICAL METACENT.HI, GoM(m
‘"CT'UF"G£IVT_FRUH"B__BG m TILL FAX,BERDIRG AT, (t-m) (8t FF- )
m ATER MAX.SHEAR.F, [t}  (at Fr. ]
[ G OF ELOAT, EROM B BF ) QTES; - e AOUADR AL LD
.10 Crmnat (RIM fcm MICTR-&) T 1o ) SICN_SHOWS FORWARSFEOMMIPSHIP
JONS PtR Tcm TMMERSTOR TPU (X)) TRACFTOADEDTROLD
7
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I m from the after perpendicular, the unit weight w is loaded-a distance

d m from the centre of flotation.
Then

w Ixwxd

TPC L x MCTC

For unit weight w/TPC is a constant K, and (! x w)/(L x MCTC) 1s
another constant K

Change in draft aft=Ky+ K;d

This is the equation of a straight line. Therefore by finding the values for
the change in draft when the weight is loaded forward and again when
the weight is loaded aft, a line can be drawn representing the change in
draft aft after loading the unit weight at any point along the length of the

vessel.
Similarly, for the same weight the change in draft forward will be

Chb | draft o (L=1) xwxd
ange 1n drait iorwa _TPC+ I x MCTC

Change in draft aft =

.ow (L-1)xw
again W=Ko and I < McTC -2
The equation of the straight line is now
Change in draft forward = K+ K ,d
The sign of the change in draft will depend upon the sign of d.

Example 8.11 (Figure 8.17)

Produce trimming table or graph for MV Nonesuch at displacement 35 000

tonnes assume length of vessel is 174 m.
Find the change of drafts if 400 tonne is loaded 120 m forward of AP.
From hydrostatic data.

Draft=9.75m
LCF  3.8m forward of 3
TPC 39.3 tonne/cm

/=87 +3.8=90.8m from AP

If weight is loaded at FP d= —83.2m
If weight is loaded at AP d= 90.8m
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K - I xw ‘ _90.8x100cm
'Y IxMCTC 174x438 m

01192
m
po_ L=Dw _(174-90.8) x 100
27 LxMCTC™  174x438
=0.100 <2
m
Change in draft aft

(i) Loading at FP
Change of draft aft =K+ K,d
=254+0.119 x (—83.2)

=~—7.36cm
(1) Loading at AP
Change of draft aft Ky + K d
; =2.54+0.119x90.8.
= +13.35cm

Change in draft forward
(i) Loading at FP
Change of draft frd = Ky + K ,d
=2.54+0.109 x 83.2
=11.61 cm

(i) Loading at AP
Change of draft frd = Ky + K,d
=254+ 0.109x90.8
=12.44 cm

Loading 400 tonnes 120 m forward of AP

Change forward from loading 100 tonnes= + 6.9 cm
Total change=4 x6.9=27.6 cm

Change aft from loading 100 tonne= — 2.5 cm
Total change=4x2.5cm=10cm

I N A
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DETERMINATION OF DISPLACEMENT (DRAFT SURVEY)

In many cases when a vessel is loaded with bulk solid or liquid cargo, the
only way of measuring the amount of cargo carried, is by finding the
displacement of the ship. ,

On most ships displacement is presented as a scale of displacement
against mean draft (see page 202). This displacement is calculated on the
assumption that the vessel is on an even keel and is not hogged or sagged.
In practice the ship will be trimmed and in the loaded condition slightly
sagged or possibly hogged.

The problem is to determine displacement sufficiently accurately using
available data such that if the ship loads w tonnes of cargo and

C; = consumables on board on departure.
C, = consumables on board on arrival.

K = constant for stores, crew, etc.
W, =light ship displacement.

W, =measured displacement on departure.
W, = measured displacement on arrival.

Then ‘
Wo—(M+G+K)=W,—-(WM+C+K)=w

In general W, or W, could be determined by measuring the underwater
volume of the vessel V and then

W=V xp,

Unfortunately there is only rarely sufficient data available to enable this
calculation to be carried out to the degree of accuracy required although
this is an area where computers could make the calculation feasibl® in
practice. _

Some ships are provided with detailed forms and correction tables
which apply to that ship only, in other cases shore-based operators
require a standard procedure to be followed for all ships using a
particular facility.

All the methods ultimately need to produce a value for draft d. which
after corrections for trim gives a value of I, or W, which is consistent
with the above formula.

(Note. The value of w has to be consistent rather than accurate.)

A typical procedure would have the following steps:

1. Read density and find under keel clearance.

2. Read drafts port and starboard, forward
port and starboard, midships
port and starboard, aft
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FP

Figure 8.18 Correction of draft marks
to draft at FP

3. Take average of drafts port and starboard.

4. Correct average drafts forward and aft to give draft at fore
perpendicular and after perpendicular. In Figure 8.18 the draft marks are
a distance d metres from the fore perpendicular then if the vessel is
trimmed ¢ metres by the stern and has length L the draft at the forepeak is

4= average draft forward — f

t
= average draft forward —— x d

L
Similarly

l
d, = average draft aft +7 X d

R
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The actual sign of the correction will depend upon the trim and the
position of the draft marks relative to the FPand the AP. In practice there

may be correction tables.
5. In Figure 8.19 the waterline is represented by WL indicating that the

ship is sagged. (Note. The waterline is horizontal and the ship bent.) XX
is a line drawn parallel to the bottom of the ship. If XX is positioned so
that the volumes V,; V,, and V;between XX and waterline are made to be

Vo=V.+ W}

then 4, is the draft on the displacement scale which will give the even keel
displacement for the ship in the sagged condition

¢=M+D
2
D =constant x (a’m—é-;df)

where 4, is the draft midships. If the waterline cuts XX a distance / m
from midships '

l 2 x1
Co = =
nstant 7 7
2

If / is expressed as a proportion of L investigation of ships forms leads to
values of

2x1 of between -2- and —3-
3 4

L
Substituting - and — for constant leads to values for d
between
d, + 4+ 44, ( 2)
d=—27 constant =~
6 3
d, + &+ 6d, 3
=——g  |constant=7

6. If the vessel is trimmed, a further correction is necessary. In Figure 8.20
t=d, —q. W,L, is a line drawn parallel to the waterline through. d
amidships. If the centre of flotation is a distance | m forward of midships
and the ship has length L.
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Then if the correction to 4. 1s £:

The correction to the displacement found for 4, is

correction (1) =100 x ¢, x TPC x Pow
Psw
The sign of the correction depends upon the direction of the trim and
position of the LCF from midships. The sign can be obtained by
inspection or from 7able 8.2.
7. A further correction, generally referred to as N emoto’s correction, is
sometimes applied. The need for a further correction arises because as the
ship trims, the area of the water-plane passing through the centre of
flotation must increase and hence the displacement increase as the
volume beneath each successive trimmed waterline increases. (Note. This
does not mean that trimming a ship increases displacement, it means that
as successive waterlines through F are considered as trim increases, the
volume beneath these waterlines increases.)
The formula 1s

2 x 50 x_dil_
Lep &

where ¢ is the trim in metres
Lpp 1s the lerigth between perpendiculars

correction (2) =

Table 8.2 Sign of correction for trim (1)

LCF | Forward of | Aft of
Trim midships midships
by head - +
by stern + -

Correction
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dM

dZz

—= 1s the change in MC7C over a range of drafts of

say (d +¢)+0.5mand (d +4)—0.5m

The derivation of the formula is outside the scope of this book.
The correction is always positive. Unless trim is large the correction is
small, i.e. for a typical ship displacing 30 000 tonnes trimmed | m by the

stern the correction is:
t2x50 dM
Ip &
_Ix50x26.8
174

= 4 7.7 tonnes

correction (2) =

[ ]
but if trim where 3 m

correction (2) = +69.3 tonnes

A typical proforma for carrying at a draft survey is used in the example

below (see 7able 8.3).

Example 8.12

MV Nonesuch has the following draft when floating in water density 1.020

tonne m?>.

Aft p 9.59 m Fore p
Aft s 9.65m Fore s

Correction to forward draft
Correction to after draft
Under keel clearance

Length between perpendiculars

Heavy oil
Diesel o1l
Lube o1l
Fresh water
Ballast water
Constant
Light ship

8.07m Mid p
8.19m

8.82 m
Mid s 9.20m

—~0.02m to FP

+0.0l m to AP
5m

174 m

894 tonnes

102 tonnes

22 tonnes

152 tonnes
0

51 tonnes

7304 tonnes

Find the amount of cargo on board. Use hydrostatic data from 7able 8.4.
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Table 8.3 Proforma for draft survey

M.V. Nonesuch Draft Survey Form

Density D
Underkeel Clearance

Drafts as read

Aft Port 9.59
Aft Stbd 9.65
Aft mean 9.62
Corr to AP + ,01
da : (a) 3.63

(f) 8.11
(a - f) 1.52

[(m)>(e)+, (m)<(e)-]:(e)=(2/3)x(m)-(e) :dc:(c)

Displacement at (c) from hydrostatics :

Correction for trim 1

TPC from hydrostatics

Correction for trim 2

From hydrostatics
MCTC at ({c)+0.5m)
MCTC at ({c)-0.5m)

dm/mz e :(2)

Deductions

Heavy 011l
Diesel 0il
Lube 0il
Fresh Water
Ballast Water
Constant
Light ship

Wk

894
102

22
152

51
7304

8525

1.020
Sm
Fore Port 8.07 Mid Port
Fore Stbd 8.19 Mid Stbd
Fore mean 8.13 Mid mean
Corr to FP .02
df : (f) 8.11 dm ; (m)
(a) 9.63
(a + f) 17.74
(a + f)/2 : (e) 8.87 (e)
t - o)
2/3 (m - e
(e)
We
Wex(D/1.025) wWp
100x(a-f) {t)
LCF from midships: (1)
Lpp L)
38.05 TPCx(D/1.025) H(T)
(T)x(t)x(1) 7{L) :(C1)
429 50X(a-f)2x(Z)/(L):(C2)
400
29
W
Sign from Table (8.2) * C?
+ c2
Wy
-VJK

8.82
9.20

9.01
5.07

8.87

.14
.09
8.87

3 96m
31904

31748

152 tonne
0.47

174

37.9.

=5

16.3

31748

+ 16
19

31783
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Table 8.4 Hydrostatics for MV Nonesuch

Draft Displacement TPC MTC LC8 LCF KB KM
14,00 52418 42.1 517.9 1.35f 3.47a 7.3 11.76
13.50 50320 4.8 509.3 1.56f 3.62a 7.05 11.65
13.00 48235 41,6 500.5 1.79f 3.72a 6.77 11,54
12.50 46162 41.4 491.0 2.04f 3.7% 6.51 11,46
12.00 44103 1. 482.8 2,30f 8.70a 6.24 11.38
11.50 42055 40,8 474.6 2.59‘f 3.53a 5.98 11.33
11.00 40022 40.5 465.4 2.89f 3.23a 5.70 11.28
10.50 38002 40.2 45'5.8 3.21f 2.82a 5.44 11.26
10.00 36002 . 39.9 443.6 3.52f 2.20a 5.17 1.25
9,50 34019 - 39.5 429.4 3.83fF 1.44a 4,91 11.29
9.00 32060 39.0 413.3 4.12f 0.53a 4.64 11.33
* g0 30122 38.6 400.5  “4.40f 0.24f 4,39 11.43
8.00 28206 38.1 386.5 4.65f l.iBf 4.12 11.55
7.50 26309 37.7 374.3 4.87f 2.00f 3.87 1n.75
7.00 24430 37.4 366.7 5.08f 2.60f 3.60 12.00
6.50 22565 370 358.9 5.26f 3.19f 3.3 12,35
6.50 22565 371 358.9 5.26f 3.19f 3.35 12,35
6.00 20714 36.8 351.7 5.43f Nf 3.08 12.77
5.50 18877 ‘ 36.6 345.6 5.58f 4,15f 2.84 13.36
5.00 17052 36.3 339.8 5.72f 4,54f 2.56 14.08
4,50 15240 36.1 334.5 5.84f 4,88f 2.32 15.06
4.00 13440 35.8 328.8 5.96f 5.18f 2.05 16.31
3.5 11653 35,6 323.1 6.07f 5.43f 1.81 18,04
3.00 9883 35.2 316.3 6.18f 5.66f 1.53 20,36
2.50 8125 34.9 308.9 6.29f 5.84f 1.28 23.83
2.00 6397 34.4 298.9 6.41f 6.03f 1.02 28.87

QUESTIONS ON TRIM

|, The vessel to which the following data applies shifts 300 tonnes from
a position 56 m forward of the 4Pto a position105 m forward of‘the
AP.
Drafts forward 8.92 m; aft 10.62 m
MCTC 162 tonne m/cm
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Cof F 6 m aft of amidships
Length 124 m
Find the final drafts.

The vessel to which the following data applies discharges 150 tonnes
of cargo from a position 45 m forward of midships

Drafts forward 8.37 m; aft 8.29 m

TPC 16.8 cm

" MCTC 98 tonne m/cm

Cof F 3 m aft of amidships

Length 100 m
Find the final drafts.

A vessel is floating at drafts: forward, 8.60 m; aft, 3.20 m.
400 tonnes of cargo is loaded 126 m forward of AP.
250 tonnes is discharged 91 m forward of 4AP.
Find the final drafts
MCTC 280 tonne m/cm
TPC 35 tonne cm
LCF 96 m forward of AP
Length 202 m

A vessel is floating at drafts: forward, 9.87 m; aft, 10.50 m. Sheis to
complete loading at an even keel draft of 10.40 m. Distribute the
cargo to be loaded between spaces LCG 29 m forward of the AP and
126 m forward of the AP.

MCTC 180 topne m/cm

TPC 25 tonne/cm |

LCF 80 m forward of AP

Length 150m

A vessel is floating at drafts: forward, 6.00 m; aft, 6.70 m. The draft
aft is to remain at 6.70 m. Distribute 1250 between spaces 38 m
forward of AP and 118 m forward of AP.

MCTC 150 toone m/cm

TPC 25 tonne/cm

LCF 86 m forward of AP

Length 176 m

A vessel isabout to entera river port overa bar where the maximum
draft of water 1s 9.2 m. She must have a clearance of 0.5 m and is at
present at drafts: forward, 8.40 m; aft, 9.00 m.
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How much water must be discharged from the after peak tank
LCG 3'm forward of AP in order to achieve a safe draft aft.
MCTC 125 tonne m/cm
TPC 25 tonne/cm
LCF 106 m forward of AP
Length 212m

A box shaped vessel length 60 m, breadth 10m, depth 6 m is
floating at an even keel draft of 4 m in salt water witha G of 3 m.

What will be the drafts of the vessel if a weight of 20 tonnes,
already on board, is moved a distance 50 m along the vessel from
forward to aft.

A vessel about to enter port is at drafts: forward, 11.20 m; aft,
12.00 m. Ifthe vessel is to enter port with an even keel draft, how
much ballast must be transferred from a tank LCG 40 m forward of
AP to a tank LCG 135 m forward of AP.
What is the even keel draft?

MCTC 210 tonne m/cm

LCF 95 m forward of AP

Length 200 m

A vessel is floating at drafts: forward, 12.00 m; aft, 12.40 m.

She loads cargo as follows
Weight LCG from AP

Tonne AP m
400 135
600 55

She discharges
Weight  LCG from
Tonne AP m
500 60 m

Find the drafts on completion
MCTC 700 tonne m/cm
LCF 83 m forward of AP
TPC 46 tonne/cm
Length 170m

A wall sided double bottom tank depth 1.5 m has half ordinates of
breadth as follows at 4 m intervals commencing at the after

bulkheads.

Station
jordm

o
[
W
RS
(S,
()]

6 59 5.7 5.4 4.9 4.3m

P
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The after bulkhead is 65 m forward of the centre of flotation.
Calculate the change of trim if the tank is filled with fuel o1l
density 0.95, MCTC 200 tonne metres/cm.

A vessel floating at drafts: forward, 9.48 m; aft, 10.40 m in water
density 1.002 tonne/m?> and is to be on an even keel draft when in
salt water.

How much ballast would you transfer from a tank LCG, 10 m
forward of AP to a tank LCG 60 m forward of AP. What is the final
draft?

MCTC 130 tonne m/cm
LCF 70 m forward of AP
LCB 65 m forward of AP .
TPC 25 tonne/cm

Length 138 m

Displacement 22000 tonnes.

MYV Nonesuch is floating at drafts: forward, 4.20 m; aft, 5.98 m;
length, 174 m in SW.
Cargo and ballast are handled as follows

Cargo loaded

Compartment Weight LCG in

(tonne) . Sfrom AP
No 1 hold 8100 o 146 m
No 2 hold 6500 100 m
No 5-hold 6900 5l m

Ballast discharged

Fore peak 890 162 m
No | TSWT 600 145 m
No 1 DB 800 146 m
No 2 DB 750 123 m
No 3 hold 5100 100 m
No 4 DB 400 52 m

Find the drafts of MV Nonesuch on completion.
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TRIM (ANSWERS)

1. Final drafts
2. Final drafts
3. Final drafts
4

Sinkage 23.6 cm
Load -

5. Load

6. Discharge 66.4 tonnes
Final draft

7. Final drafts

8. Even keel draft, 11.62 m
Transfer, 146 tonnes

Final draft

Mass of oil
Change of trim

11. Transfer 190 tonnes
Final draft

Initial LCG 89.2 m forward of AP

LONGITUDINAL STABILITY-TRIM

Forward, 9.42 m Aft, 10.2] m
Forward, 7.89 m Aft, 8.55m
Forward, 8.88 m Aft, 9.02m

29 m forward of AP
126 m forward of AP

163 tonnes,
527 tonnes,

Centroid of compartment 76.4 m forward of LCF

Final LCG 91.]1 m forward of AP

" Final draft

308 tonnes, 38 m forward of AP
942 tonnes, 118 m forward of AP
Forward, 8.64 m Aft, 8.70 m
Forward, 3.835 m Aft, 4.165 m
Forward, 12.22 m Aft, 12.40m
377.3 tonnes

144.1 cm

Forward, 9.7l m Aft, 9.71 m
Forward, 8.49 m Aft, 8.67 m




Dry docking and
grounding

This chapter deals with the stability and trim conditions which occur
when the upthrust acting on the vessel is transferred from buoyancy to

keel blocks or the ground.

OBJECTIVES

I.  Description of the stability effects of the transfer of upthrust from
buoyancy to the ground.

2. Assessment of stability during dry docking.

Assessment of stability at critical instant.

4. Assessment of stability as the tide falls after grounding at a single

point. -

(8%

DRY DOCKING

When a ship touches bottom and the water level is lowered, there is a
steady transfer of upthrust from the centre of buoyancy to the point of
contact with the ground. In Figure 9.1 the ship has displacement I4". Then
if the upthrust through the keel (X)) from the keel blocks in P, the upthrust
through the centre of buoyancy will be 41— P.

The resultant of these two forces will have magnitude It"and will act at
some point between B and K. The centre of gravity will remain at G and
the displacement [ will continue to act down through G. As the force P
increases it can be seen that the resultant of the forces Pand P will get
closer and closer to K. Evenutally the resultant upthrust 11" will act in
such a way that the ship will become unstable.

The danger in dry docking is that the ship may become unstable before
additional support can be given using bilge blocks or possibly side shores.
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~ Figure 9.1 Trangfer of upthrust from bugyancy to keel blocks

In the case of grounding the possibility of capsize is probably ratherless as
there will be larger areas of contact and the ship will only rarely be left

high and dry.

ASSESSMENT OF REDUCTION IN KM (Figure 9.2)

A vessel displacement [17is resting on keel blocks and is heeled to a small
aungle (). The upthrust at the keel blocks is P the upthrust through the
centre of buovancy is J1=F. The vector [1'=P intersects the centreline at

M.
The vesultant of vector P and 11 =P intersects the centreline at .M, and

has magnitude 11"
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pT Wa aW-P

M,

Figure 9.2 Reduction of KM (MoM,)

If the vector W~P is a distance y from M, then

(W-P)y=Px
X=KM,sin 0
J'=M0M1 sin 0

(W=P) x MoM; xsin @=Px KM xsin 6
WxMM,—PxMM,=Px KM,
W x MOMI =PXKM1 +PXM01WI

If the value of Pis small, it can be assumed that the force [1"—P intersects
the centreline at the upright metacentre. If P is large the position of A,
will be the position of the metacentre at displacement J1—P.
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K wyw W-P

Figure 9.3 Effective rise of G (GoG)

ASSESSMENT OF RISE IN EFFECTIVE KG (Figure 9.5)

In this case the resultant of the upthrust P acting through the keel and
displacement IV acting through G is a force =P acting through G,

above Gy.
If the vector P is a horizontal distance X from G, and the vector I1"a

horizontal distance y from the vector through G,
IHy=Px
X=KG,sin b
y=GoG,sin 0
H'x GGy xsin=Px KG, xsin
Hx GoGy=Px kG,
WxGyGy=Px (KGy+ GoGy)

PR MO WA LAtz v it a7
.



[

DRY DOCKING AND GROUNDING 239

”'XGOG]=P><KG‘O+P><G()61
(IW=P)G,G, = P x KG,

This formula can be interpreted as the rise in G resulting from the
removal of a weight P from KG zero. Unlike the first formula this formula
makes no assumptions about the point of intersection of the vertical
through B, with the centreline is valid for all values of P.

Either of these formula can be used to find an approximate value for
GM aswater level falls. The values calculated will be sufficiently accurate
for the early stages of docking and grounding. If an assessment of initial
stability is necessary over a large range of .drafts, the following methods
may be used.

Example 9.1 (Figure 9.4)
MYV Nonesuch is to be dry docked. She has mean draft of 5.00 m and KG

11 m. \

Produce curves to give GM at drafts between 5 m and 2 m and from the
curves estimate the draft at which the vessel becomes unstable.

From hydrostatic Table 8.4:

Draft © Displace-  Displace- P . GoG, KG, KG, KMy, G M,
(m) ment ment (tonnes) Px KG,
Smdraft  (W-P) ( IV_P
(tonnes) (m) .
5.0 17052 17052 0 0 11.00 11.00 14.08  3.08
4.5 17052 15240 1812 1.31 11.00 12.31 1506 275
4.0 17052 13440 3612 2.96 11.00 1399 16.31  2.32
3.5 17052 11653 5399 5.10 11.00 16.10 1804 194
3.0 17052 9883 7169 7.98 11.00 1898 2036 1.38
2.5 17052 8125 8927 12.09 11.00  23.09 2383 0.74
2.0 17052 6397 10655 18.33 11.00 2933 2887 -—0.46

Draft at which MV Nonesuch becomes unstable, 2.18 m.
Note that from the above table the value of P is in general

P = initial displacement — displacement during docking

When a ship is being docked it is necessary to be sure that she will be
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Draft m

Figure 9.4 Assessment of effective GM at all drafts

stable until she touches the blocks fore and aft when additional support
given by side shores and bilge blocks makes the vessel secure. In most
cases the ship will enter dock trimmed by the stern. The ship will touch
the blocks at or near the after perpendicular.

As the water level is lowered P will steadily increase and stability be
reduced. The most critical moment will be just as the ship touches blocks
fore and aft. This moment is called the critical instant.

P at the critical instant can be assessed as follows (sec Figure 9.5).

The ship is floating at waterline ¥/ L, trimmed ¢ cm by the stern with
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displacement I1". The centre of flotation is a distance 1 m from the after
perpendicular. As the water level falls the ship will trim and P increase

until she is at even keel.
The moment P x 1 can be regarded as a moment causing a change of

trim {cm

) 3 Px!
‘M= McTC
PztxA':CTC

This value of P at the critical instant can be used to assess the loss in
stability at the moment the vessel takes the keel blocks fore and aft.

Example 9.2

A vessel about to dyy dock is in the following condition.
Draft forward, 6.10 m; aft, 6.70 m
K.‘!O 7.20 m; I{Go, 68 m
MCTC 135 tonne m/cm
TPC 22 tonnefcm
LCF 80 m forward of AP
Length 180 m

Displacement 11000 tonnes

Find (a) The GM of the vessel at the critical instant.
(b) The righting moment at 1° heel.
(c) The drafts fore and aft at the critical instant.

t x MCTC
po X
i
_60xl:’>5_“63[
= 80 = . onne
PXKGO PXK;MO
GoCr=—77p MM, =——p7—
_ 116.3x6.80 _116.3x7.20
T 11000-116.3 11000
=0.0727 m =0.0761 m
Golwo = 06000 m GOMO = 06000 m

G M,=0.5273 m Go M, =0.5239 m

-
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Righting moment= (I#=P)G Mg sin 0
= (11000~ 116.3) x 0.5273 x sin 1°
=100.16 tonne
Righting moment= ¥ x W x GoM, sin 0
= 11000 x 0.5239 x sin 1°
= 100.56 tonne

" Within the limits of reasonable rounding the righting moments are equal.

The apparent difference in the measurement of stability given by G, M
and GyM, can be explained in terms of righting moment

P

‘Bodily rise’ = ——
B01yr1§e TPC
1163

22

=5.3cm

cm

1
Change in trim aft=—[: X ¢

80 60=26.7
= — X = .
180 cm

Change in trim forward =33.3 cm

Fm Am
Initial draft 6.10D 6.700
Rise 0.053 0.053

6.047 6.647
Trim +0.333 —-0.267
Draft on blocks 6.380 6.380

Example 9.3

——

A vessel about to dry dock is in the following condition.

Draft forward, 5.62 m; aft, 6.82m
KM, 7.90m; KGy 7.40 m
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MCTC 104 tonne m/cm
LCF 62 m forward of AP
Length 118 m

Displacement 8400 tonnes

At the cnitical instant the GM is to be no less than 0.45 m.
How much ballast should be transferred from a double bottom tank X

0.5 m, 30 m forward of AP, to a double bottom tank Kg 0.5 m, 90 m
forward of the AP to ensure that the vessel will be in a satisfactory

condition.

MM, =G My -G,
=(0.50-0.45) m
=0.00m

Px KM,

W

P MM, x W
KM,

0.05 x 8400
719
= 53.2 tonnes

MOMI =

Maximum permissible trim

_txMCTC
- [

Pxl
~ MCTC

_5&2x62c
104

=31.7cm

l

m

31.7cm

Max. trim
120.0 cm

. Present trim

Change in trim 88.3 cm
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Let ballast to shift be « tonnes.

moment changing trim

MCTC

Change of trim =

60 x w
104

B 88.3 x 104
B 60

= 153 tonnes

Shift 153 tonnes of ballast forward.

88.3=

W

Change of trim forward=41.9 cm

' F A
Initial drafts 5.62m 6.82 m
Change in trim +0.42m —146m
Final draft 6.04 m 6.36 m
Example 9.4
A vessel is to be drydocked and is in the following condition
Drafts

Forward 7.92 m; aft, 9.30 m
KM, 11.43 m; KG,, 10.90 m
MCTC 400.5 tonne m/cm
TPC 28.1 tonne/cm 4
LCF - 88.5 m forward of AP
Length 174 m

Displacement 28 200 tonnes

The depth of water in the dock is initially 10.00 m. Find the effective GM
of the vessel after the water level has fallen by 1.2 m in dock.
What are the drafts of the vessel after the fall?

Dépth of water 10.00 m
After draft 9.30m
Clearance 0.70m
Fall 1.20m
Change in draft aft 0.50 m=50 cm
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If P is the upthrust
+Change in draft = + bodily rnise +change in trim aft

50 = 4+ P + I xPxl
T T TPC L x MCTC

_ P B 88.52x P
38.1 174x400.5

50=0.2626P+ 0.1123P

50=0.1396P

P =358.2 tonnes

PX KGO
IV-P

_358.2x10.90
7 28200-358.2

=0.140m
GoM;=0.530 m

~50=

GOGI =

G, My=0.390 m

P
ily rise = ——
Bodily nise TPC

358.2
38.1
=9.40cm
Pxl
MCTC

_ 358.2 x 88.5
~ 4005
=79.15cm

cam

Change in trim =

cm

!
Change of trim aft = 7 t

88.5
=17 x 79.2=40.6 cm

Change of trim frd = 38.9
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F, A,
Initial draft 7.920 9.300
Bodily rise 0.094 0.094

7.826 9.206
Trim +0.389 —0.406
Drafts after fall 8.215 8.800

Example 9.5 (Figure 9.6; see page 241)

A vessel has been damaged forward and is to be docked in the
following condition taking into account effective of damage on
hydrostatic data. Waterline intersects forward perpendicular at

10.20 m; Draft, aft 9.00 m.
Vessel. touches the blocks 10 m aft of the forward perpendicular

KM, 11.25 m; kG, 10.6 m

MCTC 440 tonne m/cm

TPC 39.5 tonne/cm

LCF 84 m forward of AP

Length 176 n )
Displacement 35500 tonnes

Find the eflective GAM of the vessel when she takes the blocks fore and aft.
What will be the draft on taking the blocks.
In this case [ is from 10 m aft to FP to LCF.

b=(L-5)—-10
=(176-84)—10m
=82 m
p_ MCTC x ¢t
A
=ﬁ08x2—120=643.9 tonnes
MM, =P><1'{1\4
, I
_644 x11.25

353500
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=0.204m
GoMy=0.650m

GoM,=0.H46m
P
T
Bodily rise TPC
=3—9.—5cm=16.3cm

[
Change of trim aft = X t

84 -
_Wﬁ— X 120':3/3 cm
Change of trim frd =62.7 cm ‘
F, A,
Initial draft 10.200 9.000
Rise 0.163 0.163
10.037 8.837
Trm —0.627 +0.573
Draft on blocks 9.410 9.410

GROUNDING

When a ship grounds at a single point it is possible to make an estimate of
the upthrust at the grounding point and the changes in mean draft and
trim if the fall in tide is known.

The method used is an extension of the relationship used to calculate
change in draft aft in Chapter 8. In the case of grounding we know the
change in draftat the point of contact, if we know the fall in tide. In Figure
9.7the vessel length L m grounds at a point C, x m forward of the centre of
flotation. The tide falls a distance y cm and the waterline changes from
Woloto M L,. The change in draft at the point of contact is the same as
the fall of tide y cm.
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Figure 4.7 Grounding at a single point
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Then
Change of draft at C=bodily rise + change of trim at C

P X Pxx
=—4+— X
Y=7pct I McTC

from which P can be found.
Once Pis found it is possible to calculate the new drafts of the vessel by

treating P as a weight discharged from C. Similarly the effect on stability

can be calculated. The method must be regarded as approximate as the
change in water level may be large and the value of TPC, MCTCand X

will change considerably.

Example 9.6

A vessel floating at drafts: forward, 8.70 m; aft, 9.40 m, grounds at a
point 30 m aft of the forward perpendicular.
Estimate the drafts of the vessel and the GM after the tide has fallen by

70 cm.

MCTC 340 tonne m/cm
TPC 28 tonne/cm -
KG, 7.60 m, KM, 8.40 m
Length 162 m
LCF 78 m forward of AP
Displacement 29000 tonne
P AxPxX
J= +
TPC LxMCTC
70 P 54x54xP
=287 162340

70 = 0.0357P + 0.0529P
P=1789.7 tonnes~790 tonne

Px KG,
IW—P
_ 790 x 7.80
29000 - 790
=0.218 m
GoMy=0.700 m

GOGl =
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P__7%

7PC~ 28 ™

=28 cm

Px X

MCTC

B 790 x 54

T340

Bodily rise=

Change in trim=
cm
=125.5cm

Change in trim aft = 7 t

n 78 o
= 1—6—2— x 125.5.cm
‘ =60cm
| Change in trim frd =65.5 cm
Forward (m) Aft (m)
Initial draft 8.70 9.40
Rise —0.28 —0.28
_ 8.42 9.12
. Trim —0.66 + 0.60
Final draft 7.76 9.72

QUESTIONS ON DRY DOCKING AND GROUNDING

1. Avesselisto bedry docked and the reduction in GM is to be no more
than 0.1 m before the critical instant.
Find the maximum permissable trim

AMCTC 146 tonne m/cm
LCF 70 m forward of AP
KG, 840 m; KM, 9.0m

Displacement 14000 tonnes
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A vessel is to be drv docked and is at draft: forward, 7.80 m; aft.
8.90 m. Find

(a) GAI at criucal instant.

(b) Righting moment at 1° heel at critical instant.

(c) Drafts fore and aft at critical instant.

(d) Upthrustacting on vessel when water level has fallen 20 cm after
critical instant.

MCTC 172 tonne m/cm
TPC , 27 tonne/cm

LCF 92 m forward of AP
Length 176 m

KRG, 7.50 m; KM,, 8.4 m
Displacement 12500 tonne _

A vessel is to be dry docked and is floating at drafts: forward, 6.00 m;
aft, 7.00 m. .

Given the following data is it safe to drydock the vessel?
MCTC 460 tonne m/cm

KG, 9.0m; KMy, 9.3 m
Length 300 m
LCF 153 m forward of AP

Displacement 12 500 tonne

A vessel about to be dry docked is floating at drafts: forward, 9.90 m;
aft, 10.70 m. She has

KG, 94 m; KM,, 10.2m
MCTC 360 tonne m/cm
TPC 34 tonne/cm
LCF 82 m forward of AP
Length 160 m
Displacement 23 500 tonnes

Find (a) GAM at critical instant

(b) Drafts as critical instant
(c¢) GM when draft is 10.00 m

A vessel is to be dry docked in a damaged condition. She is floating at
drafts forward 12.60 m, aft 9.00 m. It is estimated that she will take
the blocks 15 m aft of the fore perpendicular. Given the following
data, is it safe to dry dock the vessel in this condition?
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Estimated data

KG, 89m; KM, 94 m
TPC 21.3 tonne/cm
MCTC 290 tonne m/cm
LCF 76 m forward of AP
Length to FP 165 m
Displacement 19500 tonnes
Estimate the drafts at the perpendiculars on taking the blocks fore
and aft.

6. A vessel length 130 m is floating at drafts forward 6.8 m; aft 7.6 m
goes aground at a single point 20 m aft of the fore perpendicular. The
tide falls by 1 m. Given the following data estimate the GM of the
vessel and the drafts after the fall of tide.

KG, 6.2m; KMy, 7.0m
MCTC 180 tonne m/cm
TPC 20 tonne/cm

LCF 64 m forward to AP

Displacement 18000 tonne

DRY DOCKING AND GROUNDING (ANSWERS)

1. 75 cm by stern.

2. P at critical instant 170 tonne
(@) GoM{=0.797 m; G;M;,=0.786 m
) Righting moment 171.5 tonne m
) Drafts forward and aft 8.262 m
) P after addition 20 cm fall= (170 + 540) tonne
=710 tonne

(b
(c
(d

3. P=301 tonne

G My=0.206 m safe but marginal.

4. At critical instant

P =351 tonnes G,My=0.656 m
GoM, =0.648 m
Draft 10.28 m fore and aft
At draft 10.00 m
P=1303 tonnes G, My=0.265m
GoM,; =0.236 m
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P=1411 tonnes
G,My—0.194m GoM, —0.180 m
Therefore unsafe
Drafts 10.000 m Forward and aft.

Drafts forward, 5.54 m; aft, 8.17 m
G, My 054 m; GopM, 0.52 m.
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In this chapter the effect on draft and stability of flooding will be
considered. The work will be restricted: to simple box shapes and is
intended to given an indication of the principles involved rather than a
full description of the process of determining floodable length and the

production of flooding curves.

OBJECTIVES

1. To determine the draft and stability condition of a box shapeafter a
symmetrical midship compartment is bilged.
2. To determine the permeability of a compartment containing cargo.
4 3. To determine the list of a box vessel when a midship side
b compartment is bilged.
¢ 4. To determine the trim of a box vessel when an end compartment is
bilged. .
5. Description of the use of flooding curves.

FLOODING AND STABILITY

When a compartment is laid open to the sea and flooded it is said to be
bilged. There are two possible ways of viewing the flood water. Firstly the
water can be regarded as an addition to the displacement of the vessel.
This approach hasseveral disadvantages such as the difficulty in assessing
the amount of water in the compartment, the need to take into account
the change in KG and the effects of the free surface of the added water.

The second approach is to consider the bilged compartment as having
been removed from the vessel so that it no longer contributes to the
buoyancy of the vessel. This approach has several advantages, i.e. the
displacement of the vessel does not change nor does the position of the

255
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Figure 10.] Bilging of midship compartment

centre of gravity, there is no need to consider free surface eftects. The lost
buoyancy, or constant displacement approach also lends to a very simple
relationship between the condition of the vessel before and’after bilging.

Intact underwater volume before bilging
= Intact underwater volume after bilging

In Figure 10.] a box vessel has length L, breadth B and is floating at
draft 4. Amidships centre line compartment length [, breadth &
extending the full depth of the vessel is bilged. Then if the bilged draftis d,

Intact volume before bilging = Intact volume after bilging

LBd = LBd, — lbd,

from which 4, can be determined.

It is nearly always more convenient to work by subtracting the
underwater volume of the bilged compartment from the total underwater
dimensions of the vessel in the bilged condition. Since there are many
different possibilities for the form of the bilged compartment even for a
simple box shape, there is little profit in attempting to produce a general
expression for d,, the bilged draft.

The stability of the vessel will be affected because the position of the
centre of buoyancy will move and the inertia of the waterplane will be
altered as a result of the changes in area of the waterplane.

The general relationship that:

KM=KB+BM=KB +é
holds good for the bilged condition. However, it is not possible to produce
a general relationship for AA{ and each case must be examined
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individually, bearing in mid that the underwater volume V remains
constant, when compared with the intact condition. Some examples will
amplify the possibilities.

Example 10.1

A box vessel : length, 110 m; breadth, 12 m; depth,8 m is floating at draft
6 m. A midships compartment extending the full breadth of the vessel
length 9 m is bilged. If the vessel has KG 4.8 m and is floating in salt

L=t}
water. Find

) the bilged draft;

the GM of the vessel in the initial condition;

the GM of the vessel in the bilged condition;

the GM of the intact vessel at the bilged draft;

the righting moment of the vessel at 1° heel in conditions (b), (c) and

(d).
Intact volume before bilging = Intact volume after bilging
LBD, = LBd,— [Bd,

110x12x6m>=110x12xd,—9x 12 x d,

7920 m> = 13204, — 1084,

7920 m> = 12124,

d,=6.535m Ay
Displacement = LBd, psw
) = 7920 x 1.025 tonne

=8118 tonne

b

a
c
d

p——

(
(
(
(
(

€

KM intact

d, B?
KM=t 2
2+1%/},

6,1
“2" 126
=3+2=5m
GM=5-48=0.2m
Righting moment= I x GM xsin ¢

;7920'>< 0.2 x sin 1° tonne m

- , S S———
) / = 27.64 tonne m
Z -
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KM bilged
!

x‘:ﬁ -
K& AB+V

d _(L-0) « B
12(L-1) x B x d,

535 ﬂ; h
2 \12x 6.537
=3.268 + 1.836
=51 m

KG=4800m R
GM =0.304 m

Righting moment = J#"x G\ x sin 6
=7920x 0.304 x sin 1°

=52.02 tonne m

KM intact at bilged draft
2 V 7
Kﬂ/f:éﬁ-—B— ﬂﬂfLO K—‘(ﬂ: :

27124, y

_6.535+ 144
T2 T 12x6.535

=5.104 m
KG=4.800m
GM=0.304 m
Intact displacement at 6.535=LxBxd, xp
=110x12x6.535 x 1.025
= 8841.9 tonnes

*

Righting moment= I x GA xsin 1°

=8841.9x0.304 xsin 1°
=49.9] tonne m
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In this example the bilged GM is greater than the initial GM.

This is not a general result, a change in the dimensions of the vessel or
the intact draft could have produced a reduction in GM. In the case of a
full breadth compartment being bilged, the bilged GM of a box vessel is
the same as GM for the intact vessel at the bilged draft.

However, since the bilged vessel has less displacement than the intact
vessel, the righting moment is reduced and the vessel is less stable than it
would have been had it been intact. Also the freeboard is reduced with
the consequent effect on the G curve as described.in Chapter 6. If the
compartment does not extend the full breadth and/or depth of the vessel
the situation is modified.

Exdample 10.2 (Figure 10.2)

A box vessel; length, 80 m; breadth{6 m; depth 4 m; is floating at draft
2m, KG, 2‘2 m. A mldsl'up centrahng compartment length, 10 m;
breadth @m)extendmg the full depth of the vessel is bilged.

Find the bilged draft and the GAf in the intact and bilged condition.

Intact volume before bilging =intact volume after bilging
LBd, = LBd, — lbd,
80x6x2=80x6xd, —10x4xd,
960 = 480d, — 40d,
960

§
lF 80m K
: '. T .
—_)— — - _ —|— :
I ' IZm 2.182m
| |
10m

4m 6m

Figure 102 Example 10.2
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AM intact
K8, 8
2 12d
3 36 5 = )
= ’lgx)z_.am '~
=25-22
=0.3m
AV bilged
KM=KB A
M= +@=8oxéx2_
2,189
K =%—=——= 1.091 m

béff c LB zzﬂ)

AN ' s

’y / dd 3 3 - et
.(/ _80x6°—10x4 puel T T
12
17 280 x 640
= 1386.7 m®

12 .

KM =1.001 4{—" NG, A
‘ ‘ o £ }A
—1.091 +1.444=2535m i L5 V75

GM,=KM- KG ,2
= 2.335 — 2.200
=0.335m

> Example 10.3 {Figure 10.5)

A box vessel length 140 m; breadth, 20 m; depth, 14 m;_is floating at
draft 5.8 m; KG 8.00 m. A midship compartment length 24’ m, breadth
7 m, }E‘a“watertight flatat a height 6 m above the keel. Find the bilged
raft and the G.M in the intact and bilged condition.
In this example there are two possibilities:

I. The watertight flat will be immersed;
2. The flat i1s not immersed.

s A
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140m

'y
A&

______.___i:_—-_::il, U
l | 6m Is.s 6.61m

0] [ [

Figure 10.3 Example 10.3

If the flat is not immersed the example is similar to Example 10.2.
Assuming the flatis immersed. Then if the flat is a distance L m above the
keel.

Intact volume before bilging = Intact volume after bilging
LBd, = LBd, — lbh
140 x20x5.8=140x20xd, — 24 x 7 x 6
16 240= 28004, — 1008

17 248

%= 5800

=6.16 m

- KM intact

=29+5747m=8.647Tm
GM =KM - KG

= 8.647 — 8.000

=0.647 m
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KM bilged

In this case the KB must take into account the fact that the underwater
shape is not symmetrical. KB must be found by taking moments about the

keel.

p ( Volume Y Kb Moment
LxBxd 14‘0"10% 1 17 248 £23.08 53123.8
Ixbxh oFxTx — 1008 3.00 ~3024.0
16 240 50099.8
KB= moment
volume
50099.8 .
=Teog0 ~>08m
In this case the waterplanel is Intact
By=1
I
LB3
T 12LBd)
\
BZ
202
= e 5.8=5'747 m

GM, = KB+ BM — KG
— 3.085 + 5.747 — 8.000
~0.832m

PERMEABILITY

If a compartment contains cargo machinery, etc then the flood water
cannot occupy the whole of the compartment. The proportion of the
compartment which can be occupied by water is called the permeability

ol the compartment.

W e a8
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Volume of compartment occupied by water
Volume of compartment

In most practical cases permeability must be estimated. For example a
typical ‘empty’ compartment pt will be about 957,. Permeability will be
high for cargos such as cars and low for many bulk cargoes.

Permeability can be calculated in special cases where both the density
and stowage factor are known.

If cargo hasdensity p tonne/m? and stowage factor SF m>/tonne. Then

m3

Permeability (y) =

| tonne of cargo stowed solid occupies —
p tonne

1 tonne of cargo as stowed occupies SF m*/tonne

1
Space available for water= <SF -—;) m?>/tonne

&F_—%)

Permeability = SF

oras a percentage

(#-3)
;l=lOO—p—

SF

4 '! '

Example 10.4

A box vessel length, 100 m; breadth, 9 m; depth, 6 m; is floating at cra}ft
5 mFA full breadth midship compartment length 20 m contains cargo
stowage factor 1.2 m?/tonne density 2 tonne/m find the bilged draft.

1

SF——
- p_1.2-%
H=7SF ~ 12

0.7
~15=0:83

Intact volume before bilging = Intact volume after bilging
LBd, = LBd, — [Bd, it
100x9x5m?=100x9xd,—20x9x0.583 x dy
4500 m* =900 x dy — 104.94,

d,=5.6>m
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Ifthereis cargo in a compartment the change in stability can best be dealt
with by reducing the second moment of the bilged area in proportion to
the permeability, i.e. in Example 10.4.

) 4 I
[B3
I=T§—E;l
_lOOx93—20x93x0.583
B 12
=3366 m*
5366 ‘
M=2. — = 4.022
K 283m+4500 m

BILGING OF A MIDSHIPS SIDE COMPARTMENT

In Figure 10.4 a box vessel has length, L; breadth, B; and is floating at
draft, d at waterline, I1'yL, the centre of gravity is at G and displacement
"

An empty midships side compartment: length, {; breadth, 4; extending
the full depth of the vessel is bilged.

The vessel sinks to water line I, L, to draftd,. The centre of buoyancy
will move to B,. If the horizontal distance between displacement acting
down through G and up through B, is x, there will be a heeling moment
I xx

If the bilged metacentre is at M, vertically above B, the vessel will
heel until the centre of buovancy is at B, vertically beneath G and this

vertical will pass through A, provided the list angle 6 is not too great.
Then if the heeling arm x, intersects the vertical through B at I’

GY
) “I“IB

In practice the angle 6 may be quite large, however, the estimate of heel
obtained will give a reasonable indication of the likely effect of bilging a

side compartment.
The calculation for the vessel in Figure 10.4 has the following stages.

(i) Calculation of bilged draft
LBd| = LBd) - [bd;
(i1} Calculauon of G1.

tan 0 =
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A= a,}b

:

\1
ws) | T
- I i
31‘ 5y dp
l 7 i

e
Figure 104 Bilging of midship side compartment
.

The vertical through B, will pass through the centroid of the water plane.
In Figure 10.4 the centroid will be a distance 4 from the side.

moment of area about side
area

h

LxBxg—lxbxé

2

LB—1b

And since G is on the centreline a distance B/2 from the side:

GY=h-

N | Sy
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KB,
Provided the compartment extends the full depth of the vessel

p_ B
AB—E

Bl lwh
The general relationship

]
Bll”h =T;‘

holds good. However /, must be determined about the axis through the
centroid. '
From Figure 10.4 and working about the side

B
T3 3
To find /, we must apply the parallel axis theorem (Chapter 1)
I, = I, — AR?
= L. — (LB~ lb)A?
Then

]
Ble=§b

Then
KM,=KB, + B M,
YM,= KM, - KG
GY
M,

" It is generally more convenient to work about the side rather than the
centreline, however, in some cases it may be easier to work about the

centreline.

tan 0=

Example 10.5 (Figure 10.5)

A box vessel length, 60 m; breadth, 9 m is ﬂoati’rig at a draftof 5 m and
has KG, 3.0 m. Find the list if empty midships side compartments length
£H.m, breadth 6 m is bilged.
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" = ’
D s Dt N AN
N
—"

e —— S ———— __.__ —_— e —— e — ] om
6m
4.607m | 45m
4 N
. ¢

My,
. Euo
- — —_—

1.278m = - — — 71— 0.95m

v|le .
4

By

2.679m ’ f 3m
0.107m

Figure 10.5 Example 10.5

Intact volume before bilging = Intact volume after bilging

LBd, = LBd, — lbd, . . §’ g A(
60x9x5=60x9xd,~6x6xd ;6N [
: A %Z\\ X
d,=5.357 m >.a¥ /TN
KB, =2 o
179
= g m=2679m
A from side
Areza Centroid Moment
(m?*) (m) (m?)
LxB & - 540 P]ﬂm.s 2430
Ixb  gef - 36 3.0 —108

504 2322
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2322

CNTI TS
04

=+4.607 m

("I—/:—-—=460/ 4.5=0.107m

L

(-2

- 33
_60x9°  6x6°
3 3
=14580m*-432 m* = l4l48m"
L= 1.~ Ah? (”70 d)
~ 14148 m* = 504 x 4.607% m*
=345l m?
B,.\I,,:é
3431
/00
B,'M.,= 1.278 m
KB=2679m
KM, =3957m
KG =3.000m
1M, =0.957 m
GY
tan 0 = R
_0.107
0.957
0 =6.38°

BILGING OF AN END COMPARTMENT

When dealing with this problem we will assume that the actual structure
remains in place and that the compartment extends the full breadth of the

vessel.
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Figure 10.6 Bilging of end compartment

In Figure 10.6 a vessel : length, L; breadth, B is floating at an even keel
draft of d; at waterline, 11',L,. Since the vessel is on an even keel the
centre of gravity and centre of buoyancy are in a vertical line midships.

If an end compartment length [, is bilged the vessel will sink to
waterline 4", L,. :

The centre of buoyancy will move to B, at the centroid of the intact
length.

L-1

Distance of centmi.d from AP = 5

N
The centre of gravity is 3 from AP.

Hence the horizontal separation between

If the vessel has displacement I there is a trimming moment }#'x GY.



270 BILGING

The vessel will trim through

moment changing trim
_WxGr

~ MCTC ,
noting that 3/CTC is the value for the bilged condition.

The vessel will trim about the centre of flotation F which will be at the
centroid of the intact waterplane a distance (L —/)/2 from the AP,
L-!

Ch f trim aft = ——¢
ange of trim aft oL

The process is best illustrated with an example as follows.

Change of trim =

Example 10.6

A box vessel has length, 180 m; breadth, 20 m is floating at an even keel

draft of 12 m. AG, 8 m.
Find the drafts of the vessel fore and aft if an empty full breadth end

compartment length, 12 m is bilged.
Vessel floating in fresh water.

Intact volume before bilging = Intact volume after bilging
LxBxd=(L-1!)xBxd,
180x20x12=168 x 20 x 4,

d,=12.857 m
{
GT=§
12
=—2—=6m

IW=LxBxd xp
=180x20x 12 x 1.000 tonne
=43 200 tonnes

Bl.u,_zé
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(L-1)’B
T 12(L - 1)Bd,
_ (L-1)?
~ 124,

1687
T 12x12.857

KB, =64m
KM, =189.3 m
KG=8.0m
GM, =181.3m

W x GML
100L

_43200x 181.3
100180

=435.1 tonne m/cm

=1829m

MCTC=

Note that L is used because in the derivation of MCTC, L is the le%gth
of the structure. h

WxGY
MCTC

_43 200 x 6

T 435.]

(L-1)
2L

_ 168
T 92x%x180

Change of trim frd =318 cm

Change of trim=

=595.7cm

Change of trim aft = x !

x 595.7=278cm

Forward (m) Aft (m)
Bilged draft 12.86 1286 .
Trim 3.18m —2.78m

Final drafts 16.04 m 10.08 m
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Figxre 10.7 Flooding curves

The extension of these calculations to ship shapes and unsymmetrical
flooding away from midships is bevond the scope of this book.

Some ships may be provided with flooding curves. These curves are
primarily used for design purposes. However, under operational
conditions theyv can be used to determine if a given amount of damage
will result in the ship foundering or sinking to an unsafe condition.

The axis of the curve in Figure 10.7 is the length of the ship. The
ordinates of the curve are the length of the vessel which if flooded would
result in the vessel sinking some predetermined trim and draft. There are
two criteria in general use.

1. Sinking to the margin line, a line drawn 76 mm (3 ins) below the
deckline at the side at the level of the bulkhead deck. This criteria is used
for passenger vessels. In all cases the floodable length allowed by
regulation is less than the maximum possible. This length is called the
permissable length (Figure 10.7).

2. Sinking to the trim which would result in progressive flooding.

If the flooding curve for the vessel is Figure 10.7 then I represents the
length of the compartment which would just sink the vessel to the margin

line.
The tan™! 2 lines at either end of the curve are aids to plotting.
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(QQUESTIONS ON BILGING

1.

(@]

A box vessel has length, 100 m; breadth, 10 m; and depth, 8 m. The
vessel is floating at a draft of 4 m and has KG 4 m. If an empty full
breadth midship compartment length 20 m is bilged, find the bilged
draft and the GM before and after bilging.

A box vessel has length, 120 m; breadth, 14 m;isfloating ata draftof
4m. An empty midship centre line compartment length, 20 m;
breadth, 6 m; depth, 3 m is bilged. Find the bilged draft and the K'Af
bilged.

A box vessel has length, 100 m; breadth, 10 m; depth, 6 m is floating
onan even keel ata draftof 4 m. Ifan empty compartment amidships
has length, 20 m; breadth, 10 m with a watertight flat 4.2 m above
the keel, is bilged below the flat. If the KG of the vessel is 2.8 m, find
(a) The bilged draft;

(b) The GM of the vessel before and after bilging.

A box vessel has length, 150 m; breadth, 14 m; and depth, 8 m. A
midship full breadth compartment length 18 m contains coal
stowage factor 1.2 m*/tonnes density 1.5 m*/tonne. If the vessel was
floating at draft 5.5 mand the compartment is bilged, find the bilged
draft.

A box vessel has length, 100 m; breadth, 8 m and is floating at draft
6m with KG 3.2m. A midship side compartment length, 9 m
breadth, 3 m is bilged. Find the resulting list.

A box vessel has length, 180 m; breadth, 16 m is floaung at draft,
10 m with KG 6.5 m. Find the list if a compartment midships length
10 m with longitudinal bulkheads on the centreline and 4 m to port of
the centreline, is bilged.

A box vessel has length, 95 m; breadth, 8 m; depth, 6.5 m and is
floating at draft 4 m in salt water with KG 3.0 m. Find the drafis fore
and aft if a full breadth end compartment length 6 m is bilged.

BILGING (ANSWERS)

l.

Bilged draft 5.0 m
GM intact 0.08 m
GM bilged 0.17 m
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2. Draft bilged 4214 m
KM 6.234 m
3. Bilged draft 484 m
GM intact 1.28 m
GM bilged 1.77 m
4. Bilged draft 58l m
Permeability 0.44
5. GY=0.087 m
List=6.58"
6. GY=0.0282 m
YM=0.696 m
List=2.32" port
7. MCTC s 50.48 tonne m/cm
Trim 183.2 cm

Draft forward 5.254 m; aft 3.404 m
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Bending moment,
shear force and
torsion

This chapter deals with the forces which induce bending, shearing and
torsional stresses into the structure of the vessel. The actual stresses are
dealt with briefly. Methods of calculating bending, shear and torsional
forces in practice are considered.

OBJECTIVES

l. To define shear, bending and torsional forces.

2. To develop methods for producing buoyancy weight, load, shear fofce

and bending moment curves.

3. To relate shear force and bending moment.

4. To consider the effects of waves on bending moment and shear force.

5. To examine the stresses induced into the vessel structure by bendmg
moment and shear force. .

6. To calculate bending moment and shear force for simple shapes.

7. To introduce methods of calculating shear force and bending moment

for ship shpaes.

8. To define torsion.

9. To introduce methods of calculating torsional force in ship shapes.

SHEAR AND BENDING

So far weight and buovancy have always been considered as being equal
and opposite forces acting over the entire body of the vessel. However, if
each section of the vessel is taken individually 1t is clear that some parts of
the vessel will be heavy relative to other parts. For instance in a loaded
tanker, the engine room and forepeak will be relatively light, while the
cargo tanks will be relatively heavy. Therefore it is probable that weight

R
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would exceed buoyancy over the main length of the vessel, while the
reverse situation would occur at the engine room and forepeak.

These changes in the relative value of weight and buovancy give rise to
shearing force and bending moment, which in turn induce shear and
bendingstressinto the structure of the vessel. Changes in buoyancy due to
waves have a similar effect.

To develop ideas of how shear and bending arise we will consider a box
shaped vessel loaded at both ends having an empty midships
compartment.

Shear force (Figure 11.1)
Taking each compartment individually:

Compartment 0 wo> by

Compartment | w, <b,

Compartmeht 2 wo > by

Wwq + W,y +wO=bo+bl +b0

If it were possible to divide the vessel at each bulkhead and allow each
section to float freely (Figure 11.1) then:

Compartment 0 wo= by,
Compartment | w,=by,
Compartment 2 w,=b,,

Therefore when the vessel was floating normally there must have been a
force (bo, — bo) acting at the bulkhead between compartments 0 and 1

/701/// b'] ///b‘;///

7 // 7/ ///L%

Figure 11.1 Shear force for a box shape
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preventing movement from taking place

boy —bo=10—bo

This force is the shearing force (S).

In general shearing force is equal to the difference between weight and
buoyancy to the left or right of a station. There is always an equal and
opposite force to the left or right of a station to balance the shearing force
in order to maintain overall equilibrium.

Bending moment (Figure /1.2)

If the situation amidships is now considered, in this particular case weight
aft of midships equals buoyancy aft of midships.

w, = b,

However because of the end loading the centre of gravity will be at a
distance d, aft of midships which will be greater than the distance 4, of the
centre of buovancy, aft of midships, therefore

w,d, > b,d,

There is a moment acting about midships tending to bend the vessel.
Therefore there must be an equal and opposite moment acting midships
to prevent the vessel bending. This is the bending moment A =

M=u.d, —b.d,

In general bending moment is equal to the difference between the
moment of weight and moment of buoyancy to the left or right of a
particular station. - g

dw

%» ! V/////
0N s

N

b,

!
—

Figure 11.2 Bending moment for a bor shape

NN NN
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It should be noted that at the bulkhead considered earlier there will be
a bending moment because although the weight and buoyancy vectors
are acting in the same vertical line the weight vector is greater than the
buoyancy vector and hence there will be a bending moment at that
bulkhead as well as a shearing force.

Determining shearing force and bending moment is therefore a matter
of finding two quanuues at a series of stations along the length of the
vessel.

(i) The difference between weight and buoyancy (o the left or right of a
station. :

(i1) The difference between the moment of weight and moment of
buovancy to the left or right of a station.

The systematic determination of these two values is at the core of the
various methods of establishing values of shearing force and bending
moment.

In or8er to develop ideas further we will give dimensions to the box-
shaped vessel and develop curves of shear {orce and bending moment
along the length of the vessel. Figure 11.3(a) the vessel has

Length, 20 m.

Length of compartments at ends, 5 m.

Light displacement, 20 tonnes (1 tonne/m).

Cargo 10 tonnes evenly distributed in each of the end compartments

(2 tonne/m).
Load displacement, 40 tonnes (2 tonne/bf

We can now produce curves of weight and buoyancy (Figure 11.3(b)).

The buovancy curve will be a horizontal line representing the uniform
2 tonne/m buovancy. The weight curve will represent the | tonne/m of
the light displacement, with an additional 2 tonne/m in each of the end
compartments.

Area under weight curve = Area under buoyancy curve

It is more convenient to work with the resultants of the buoyancy and
weight curves than to work directly with them. Therefore a load curve is
produced (Figure 11.3(c))

load vector = buoyancy vector — weight vector
In the case of the load curve
area above axis=area below axs

Itisnow possible to produce the shear force curve Figure 11.3(d) by taking
the sum of the loads to the left of as many stations as may be needed,

RSy
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Figure 11.3 Development of shear force and bending moment curves for a bou shape

i.e. 5m from aft there are 5 tonnes of load acting to the left of the station
giving a shearing force of 5 tonnes.

Again 12 m from aft there are 5 tonnes acting ‘down’ and 7 tonnes up
giving a resultant shearing force of 2 tonnes up. giving a shearing force of
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2 tonnes. The maximum shearing force occurs at the compartment

bulkhead, on the system used here it is negative and the first bulkhead

and position at the second, however, there is no particular significance for

the signs other than indicating an opposite sense of the two forces.
Again

area above axis= area below axis

Strictly, shearing force should be measured in Newtons. However, most
svstems for producing values of shearing force available on board ship
give values in tonnes. When considering shear stress later it is important
to convert to conventional force units.

Bending moment can now be found. Starting from first principles:

Bending moment = moment of weight — moment of buoyancy
= moment of load

Thereby by measuring moment of load we can find bending moment.
. - - ]
At the station 3 m from’ aft.
Moment of load = 5 tonne mx 2.5 m=12.3 tonne m

Similarly at a station 12 m from aft
Moment of load =3 tonne mx 9.3 m—7x3.5 m=23 tonne m

However the direct calculation of moment of load is rather clumsy in

practice.
If we consider an elementary length of the load curve d1 (Figure 11.4).

Taking moments about C

S
M+¥+(S—d5)(;—l=M+dM
dl
disregarding dS x 7
Sdl = dM
1 1
Integrating J Sdl = J dM
. 0 0
1
Sdl=M
Jo
1
But Sdl0 is area under shear force curve
0

Area under shear force curve up to station n
= Bending moment at station n

oV Fud AL o

LY S Y

BN -3
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wdl

—4 " e

M s S+ds M+dm

v v

|
|
1
| Cc
Figure 11.4 Relationship between shear force and bending moment

This is a much more convenient way in practice of establishing bending
moment. The student can confirm the relationship by measuring thearea
under the shear force curve at stations 5 and 13 in Figure 11.3(c}.~

The following relationships between the curves of load shear force and
bending moment can be noted.

1. When the load curve crosses the zero axis shear force will be a
maximum or minimum, )

2. When the sum of the loads to the left or right of a station is zero, shear
force will be zero.

3. When the shearing force curve crosses the zero axis bending moment
will be a maximum or minimum value.

4. When the shear force is a maximum or minimum there will be a point
of flexure in the bending moment curve.

In most practical conditions on ships, changes of load will occur at engine
room and hold bulkheads, hence shearing force will normally reach
maximum or minimum or change direction at these points. Also it 1s most
likely that the shear force curve will cut the zero axis between bulkheads
hence maximum or minimum bending moment will generally occur
between bulkheads.

Therefore when calculating shearing force and bending moment 1t is
good practice to arrange stations at bulkheads and midway between
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9n

n-1 n

F h " Figure 11.5 Calculation of element of bending moment

bulkheads (Figure 11.6). These stations cannot guarantee to find all the
maxima and minima, especially for bending moment, but they will give a
good indication of where these values occur. ’

Example 11.1 (Figure 11.6)

A box shaped vessel has length. 72 m; breadth, 12 m;and is floaing atan
even keel draft of 1 m in fresh water. She loads 432 tonnes of cargo into a
midships compartment, length 24 m.

Produce curves of shearing force and bending moment. Find the
maximum values of shear force and bending moment and the points at
which thev occur.

Light displacement= LBdp

=72x12x1 x1 tonne
=864 tonnes

: 864
Structure per unit length=—_/7 tonne/m

=12 tonne/m

9

<

tonne/m

Cargo per unit length= 5

= 18 tonne/m

Load displacement = light displacement + cargo
= (864 + 132) tonne

= 1296 tonne
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129
Buoyancy per unit length = 72 tonne/m

=18 tonne/m

In order to give a clear indication of the form of the bending moment
curve stations will be taken at 6 m intervals. Note that all calculations are
carried out between stations. Only the values of shear force and bending
moment are found at the station.

It is not essential to take stations at equal intervals. However, mistakes
are less likely if stations are taken at equal intervals.
The columns of Table /1.1 have the following values:

a = structure per unit length.
b=cargo per unit length.

c=a+b
d =buoyancy per unit length.
e=d—c¢

Expressed as (d — ¢) to be consistent with the initial description there is no
reason why it should not be written as e=¢—d.
If the interval between stations is A

S=¢h
£1=/o1 -
£2=81+/12
gn:gn—l +‘/t‘n-lyn
) h
Jin-1n = 5 (g(n—1+g,) (see Figure 11.5)
kv =Jo1
ky=k +J112
kn =ktn-|) +j-n-|)n

The basic principles established for a box shape can be extended to ship
shapes.

The weight curve can be determined for the light ship and then
supplemented by the weight of cargo fuel etc.

The loaded drafts can be established using the standard methods for
determining the vessels loaded condition. Buovancy can then be
established using Bonjean curves. For a typical bulk carrier in load
condition curves of shear force and bending moment could be developed
as shown in Figure 11.7.

MSS . 0
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Figure 11.7 Shear force and bending moment for ship in still water

EFFECT OF WAVES

So far only the condition of the vessel in still water has been considered,
however, the vessel will generally have to operate in waves. Vessels will
normally have two limiting values for shearing force and bending
moment, one, higher value, for stull water, to cover the loading and
discharging phase of operations, the other lower value to cover the vessel
in her seagoing condition. The lower value is necessary to ensure that the
vessel is not subjected to excessive shearing force and bending moment
while at sea.

The vessel is assumed to be balanced on a trochoidal wave having
length L and height 0.607 L, when L is in metres. A troichoid is the




BENDING MOMENT, SHEAR FORCE AND TORSION 287

Figure 11.8 Trochoid wave form

curve produced by a point P within a circle radius R when the circle rolls

along a flat base (Figure 11.6).
We are not concerned with the mathematics of the trochoid or the
details of balancing the vessel on the trochoidal wave.
The vessel is balanced on a hogging and sagging trochoidal wave in a
series of conditions and the effect on shearing force and bending moment

- iscalculated. The effect of a sagging wave on the vessel used in Figure 11.7

are shown in Figure 11.9.

BENDING STRESS AND SHEAR STRESS

At this point it is important to emphasise that the failure or otherwise of
the ship structure will be caused by shear stress, or more probably
bending stress, induced in the structure by shear force and bending

~ moment. The magnitude of these forces depends upon the values of

shearing force and‘bending moment and on the amount and distribution
of material in the structure of the vessel. Since the operator has no control
over the distribution or amount of material in the vessel, this book will
only deal qualitatively with these stresses and how modification of the
structure is likely to affect this distribution. A full account is given in
Naval  Architecture  for Manne Engincers (Muckle) published by

Butterworths.

Bending stress (Figure 11.10)

If the continuous longitudinal material has second moment of area /
about the neutral axis V4 and is subjected to a bending moment M, then
material a distance ym from the neutral axis will have a bending stress g.

M
0’=—’)'

/
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Since for any given condition M and /are constant the amount of stress in
the structure will vary directly with the distance y from the axis NA. Then
the stress will be maximum at the deck and bottom and distributed as
shown in the figure. Any increase in M will increase the bending stress.
Any reduction in / will increase bending stress.

The original value of 7/ is in the hands of the designer. During the
lifetime of the vessel / may be reduced by corrosion. Damage to
longitudinal material can effectively reduce /. Adding superstructure can
shift the neutral axis and result in change in / and the magnitude and
distribution of stress.

Shearing stress (Figure 11.11)}

If the continuous longitudinal material has second moment of area /
about neutral axis NA. Then if the shear stress a distance y from NA is to
be found and

= breadth of material at y
A =area of material above y

Y =centroid of area A above y

P

S =shear force on section

T=shear stress

1UUUWU&UUUTUJ‘_‘F

|
1 _ _Jr i Shear
_____________ i - | stress

!

Frgure 11 11 Dutnibution of skear stress
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Then

_sa?
Y/,

Ib will be approximately constant for the side of the vessel. Sisa constant
fora given section in a given loaded condition. Area A will reduce as stress
is found further from the axis N4. ¥ will increase slowly as the distance
from the neutral axis is increased. The net result is that shear stress is a
maximum at the neutral axis and reduces steadily towards the deck and
bottom plating.

Maximum shear stress will typically be about one-sixth of the
maximum bending stress.

Shear stress failure would appear as a wrinkling of plates near
bulkheads near the neutral axis. For a typical vessel loaded

homogentiously the effect of stress can be summarised as:
]

Maximum = Magnitude Appearance
Bending stress Deck and bottom X Fracture of deck plating
K
Shear stress  Neutral axis 3 Wrinkling of plates

CALCULATION OF SHEAR FORCE AND BENDING
MOMENT FOR SHIPS

Single point bending moment

This method finds the bending moment at a single point. 7able 11.2 and
Figure 11.12illustrates the method used to find bending moment at frame
121, probably just forward of the accommodation on the vessel. The table
is used to find moments for trim as well as bending moment. The

correction term:
Total weight x 90.13

is the w x d term necessary to transfer the moment of weight from the after

perpendicular to frame 121. .
The displacement 59 500 tonnes is from elsewhere in the calculation.

This method is reverting to the basic principle that:
Bending moment = moment of weight — moment of buoyancy

The method is restricted to vessels where the operator can usually be
confident that the position of maximum bending moment will not vary
significantly in the loaded condition.

— i —-
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Table 11,2 Moments of weight about after perpendicular

Cargo Loaded This Port
Bay Tonnes L.C.G. Long. Moments
01 225.82
02 222.75 -
03 1 219.32 . 2413
05 40 211.02 8 441
06 207.95
07 204 .52
09 192 196.44 37 716
10 76 193.37 14 696
1 204 189.94 38 748
13 100 180.98 18 098
14 177.91
15 392 174.48 68 396
17 341 164.64 56 142
18 . 161.57
19 368 158.14 58 196
21 343 149.18 51 169
22 146.11
23 382 142.68 |- 54 501
25 132.60
26 131.53
27 128.10
29 449 119.14 53 494
30 116.07
31 440 112.64 49 562
33 778 102.67 79 877
34 99.61
35 1926 96.18 - 185 243

6042 Forward Fr. 121 776 634
37 18 60.77 1 094
38 57.73
39 7 54.35 380
41 46.08
42 48 43.00 2 064
43 39.58 ¢
45 263 30.58 8 043
46 27.50
47 231 24.06
49 14,33 5 562
50 11.26
51 7.84
Loaded this Port| 6609 793 837
Loaded previous
Port 22205 2 854 987
Total 28814 3 648 824

Tabular method

If the cargo is to be loaded in a series of configurations, i.e. alternate holds
empty for ore, topsided wiiig tanks used for ballast and grain. then it is
possible that maximum bending moment and shear force will occur at
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Figure 11.12 Detenmination of bending moment a single point (Frame 121)
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several points along the length of the vessel, and that maximum bending
moment will occur away [rom midships. Therefore there has to be a
method for {inding bending moment and shear force at several points
along the length of the vessel.

One method is to assess the effect of loading a standard amount of
cargo, typically 1000 tonnesin each on compartment at a series of stations
along the length of the vessel. A section of a typical table is shown in 7able
11.3.

The stations for shear force correspond to bulkheads for shear force.
The stations for bending moment correspond to the centroid of
compartments. The table is for use near specific displacement. Typically
the table would be available for ballast condition and load displacement.
If the tabulated values are used at displacements which are very different
from the base values or are used for very uneven cargo distributions which
would result in extreme trim there could be considerable error. The
method is arithmetically laborious and is generally applied within a
loading computer.

In Table 11.3 weights are given in units of 1000 tonnes. Thus loading
1000 tonnes in No 1 hold reduces the draft aft by 0.408 m, increases the
draft forward by 0.954 m, increases the bending moment at frame 53 by
6030 tonne m, increases the shear force at frame 37 by 193 tonnes m and
SO on.

Similarly loading 2400 tonnes in No 2 hold produces the changes
shown in the second row of the table. Light ship values are giveén as data.
In this method the shear force has to be corrected as shown in the lower
box.

QUESTIONS ON BENDING MOMENT AND SHEARING
FORCE

I. A box shaped vessel has length 80 m and light displacement 800
tonnes.
The vessel loacls 200 tonnes in a forward compariment length,
20 m and 200 tonnes in an after compartment length, 20 m. Produce
curves of shearing lorce and bending moment.

2. A box shaped vessel has lcnqlh 120 m and light displacement 1440
tonnes. Cargu is loaded into six compartments of equal length as
follows:
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Cargo (tonnes)
500
0.0
400
400
0.0
500

Produce curves of shearing force and bending moment.

OﬁU‘-«th\D'—‘k
S

3. A box shaped vessel has length, 120 m and light displacement, 1440
tonnes. She loads cargo in six compartments of equal length as

follows:

No. Cargo (tonnes)
l 300

2 0

3 300

4 200

5 200

6 200

Produce curves of shear force and bending moment.

4. A box shaped vessel has length, 100 m and light displacement, 1000
tonnes. 500 tonnes of cargo is loaded into amidships comparsment
length, 20 m. Produce curves of bending moment and shearing force.

5. A box shaped vessel has length, 140 m; light displacement, 5600
tonnes, loads cargo as follows in a compartment of equal length.
No. Cargo
I 400
2 1000
3 0
4 1000
5 0
6 1000
7 400

Produce curves of shearing force and bending moment.

BENDING MOMENT AND SHEARING FORCE (ANSWERS)

I. Length 0 10 20 30 10 50 60 70 80 m
SF 0.0 500 1000 50.0 00 -500 -100.0 -50.0 0.0 tonnes
BM 0.0 2500 1000.0 17500 2000.0 17500 10000 250.0 0.0 tonnes
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2. Length 0 20 10 60 80 100 120 m
SF 0.0 2000 -100.0 0.0 1000 ~-200.0 0.0 tonne
BM 0.0 2000.0 3000.0 2000.0 3000.0 2000.0 0.0 tonnem

Max. BM 3320 tonne m at 33.2m and 86.7 m from aft.

3. Lengh 0 20 0 60 80 100 120
SF 0.0 100.0 -100.0 00 00 00 00
BM 0.0 10000 1000.0 0.0

Max. BM 1550 tonnes 30 m from forward.

4. Length 0 20 10 60 80 100 m
SF 0.0 -100.0 -200.0 2000.0 100.0 0.0 tonne
BM 0.0 -10000 -4000.0 -10000 -1000.0 0.0 tnnem

Max. B} 5000.0 tonne m midships.

5. Length 0 20 10 60 80 100 120 - 140
SF 0 -143 314 -229 229 229 143 00
Length 0 10 30 50 70 90 10 130 140
BM 0 357 —1714 2072 00 2072, -—1714 -357 0.0
TORSION

Torsion is the term used to describe the effects on a structure when it is
subjected to torque. Torque can be regarded as the sum of the turning
moments acting about the longitudinal axis of a structure. If a body
subjected to torque is not free to rotate then the structure will twist and
stresses will be induced in the structure. A typical structure subjected to
torsion is the engine, propeller shaft propeller system.

For most ships torsion is not induced by normal cargo operations,
although all ships are subject to torsion in oblique sea waves. However
container vessels can be subjected to torsion due to containers being

loaded so that:
(a) the vessel is upright or very nearly upright.
Moments port~ moments starboard.

(b) Containers are loaded so that a moment to port in bay 0l is balanced
by a moment to starboard in say bay 14.

In this way there will be a series of torques applied along the length of the
vessel (Figure 11.13) -

wodo, wldl .o wldl e wddn

Atany point along the length of the vessel the torque (torsional moment)
will be the difference between the net moment forward of the station and
proportion of the total torsional moment acting on the vessel at that

e L T OV

e Sl
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Figure 11.13 Torstonal moments in a ship

station, i.e. if at each station along the length of the vessel there is a
moment M| =w,d; and a total moment / along the length of the vessel.
w,d, = moments port + moments starboard,
where moments to port are + and moments starboard —

H=M +M,+.. Mi+...M,

and if station M is a distance / from forward in a vessel length L, torsional
momernt at station { is

T, = (M, +M2...M;)—%H
Note that it is quite possible for

H=0
and that if H60 the vessel will be listed.
Similarly for any particular station it is possible to have
“L{l'*-ﬁfz N +A4=O .

The data on board ship will give a proforma for calculating 7;and also a
maximum value for 7; at each station.

A section of a typical proforma is given in Table 11.2. This particular
proforma is used on the same vessel as uses the tables presented in Tables
11.4 and Example 11.2

Example 11.2

A container vessel loads containers in bay as follows:

Row No 10 08 06 04 02 ol 03 05 07 09
Dist. ¢ 1228 962 695 400 134 134 400 695 962 12.28
Weight 1062 1486 862 11.00 800 736 1462 1228 762 1527
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The remaining bays at frame 94 have a transverse moment of + 123
tonne m. At the remaining torsional moment stations the torsional
moments are as follows:

Frame No 114 104 94 84 72 40 AP
M; -~ 862 —981 +102 - 1041 +1982° 4219
! 39.3 67.6 96.3 125.1 1544 183.1 216
Max. 1310 2250 3200 3030 20350 1090 0
Ty

L=216.

Find the torsional moment at each station.
Does the torsional moment exceed the maximum permissible value?

+ Port . = Starboard
Row No  Dist. Weaght Moment Row No  Dist. [Veight Moment
10 12.28 10.62 130.41 01 1.34 7.36 9.86
08 9.62 14.86 142.95 03 4.00 14.62 58.48
06 6.95 8.62 59.91 05 6.95 12.28 85.48
04 4.00 11.00 44.00 07 . 9.62 7.62 73.30
02 1.34 8.00 10.72 08 12.28 187.57
+387.99 —414.69
- 387.99
*-26.70
+123.0
Remaining moments 96.30
) Y
Torsional moment calculation
Frame Transverse Sum of _1_ IH Torsional Max.
MNo © moment transverse L T momen( value
H
M; T M, LM+
114 - 862 - 862 0.182 -70.8 -791.2 1310
104 —981 — 1843 0.313 -121.8 -1721.2 2250
94 +192 — 1651 0.446 -173.5 - 14775 3200
84 +102 ~ 1549 0.579 ~225.2 -1323.8 3030
72 - 1046 - 2590 0.715 -278.1 -2311.9 2050
40 + 1982 - 608 0.848 -3299 ~278.1 1090
AP +219 —389 1.000
H=-389.

Torsional moments are exceeded at frame 72.



Squat interaction and
turning |

This chapter is intended to give a qualitative introduction to the forces

which cause vessels to squat in shallow water and interact as they pass
each other. The process of turning is brieflv considered.

OBJECTIVES

To describe the process of squatting.

To describe methods of predicting squat.
To describe the processes of interaction.
To describe the process of turning.

To consider factors affecting turning.

O 00 PO —

~ SQUAT

Squat is the term used to describe the changes in draft and trim which
occur when the depth of water beneath the vessel is less than one-and-a-
half times the draft and the vessel is travelling at considerable speed. It
may also be necessary to consider squat when reading drafts when there is
little under keel clearance on a berth with a considerable tide running.

The initial stages of squat can be described using Bernoulli’s Theorem.
This theorem deals with the conservation of energy in a liquid.

The theorem states that for any liquid:

Potential energy + pressure energy + kinetic energy = constant

]
mgl + 7%/? + §mv2 = constant

300
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Assuming liquid does not change height and therefore the potential
energy term remains constant

mp

——+ mv® = constant

p 2
thus if the velocity of the liquid is increased then the pressure energy term
must be reduced. If this happens beneath a ship the reduction in pressure
must result in sinkage and because the centre of buoyancy will move due
to changes in distribution of pressure the ship will also change trim.

In Figure 12.1(a) a vessel travelling at speed ¢, in deep water does not
significantly disturb the main body of water and the ship continues at her
underwavdraftand trim. In Figure 12.1(b) the vessel enters shallow water,
her passage will force the water toaccelerate to i, , this will in turn reduce
the buovancy vector to B,. The vessel will sink to restore equilibrium
(Figure 12.1(c)) and the buovancy vector will move to B,. There will be a
trimming moment and in the figure the vessel trim by the stern (Figure
12.1(d)).

At this point the flow of water past the vessel is becoming more
complex, the ship will have slowed down due to the increased resistance
following the changes in sinkage and trim. The simple Bernoulli flow will
not give a satisfactory assessment of squat.

There has been considerable research aimed at giving the mariner a
method of assessing the sinkage and change in trim due to squat. Figure
12.2 illustrates a method developed at the National Maritime Institute.’
Using the curves and following the dashed line to take into account,
water depth, trim and ship length an estimate of the sinkage and trim for
a full formed tanker up to 300 m length can be made.

This method is considered to give reasonable results for ratios of depth
of water to draft in therange 1.1 1o 1.5. The method was developed using
models; however, it has been found to give good predictions when
compared toa well documenled groundmg due to squat.”

An alternative method”® gives squat in terms of:

midship €54
channel (54

S = blockage factor =

and block coefficient (
CB v’ l, 'ng

Squat= ——

or in simplified form as

VAN
Squat =
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Figure (2.2 Nomogram for determining squat for full formed tanker

or

215 .

in confined water

Squat =
There is general agreement that there is a velocity squared term when
considering squat. Thus slowing down will always produce a rapid
reduction of squat.

Discussion of the two approaches in the literature indicates t'hat'lhe
graphical approach is more conservative in that it predicts grounding due
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Figure 12.3 Single condition squat for bulk carrier

to squat at a lower speed than does the method using the formula. Itis not

for the author to make specific recommendations on the conflicting

claims. Extensive discussion of the methods is available in references.
The graphical method is not available for all types of vessel. On the

other hand the formula depending upon block coeflicient and speed can
be applied generally, although there are considerable doubts about the

assumptions made to achieve this general application.

There is no doubt that the prudent mariner should apply the well tried
practice of slowing down when approaching shallow water and if
unexpected squat i1s encountered, reducing engine revolutions as rapidly
as is possible and consistent with maintaining steerage.

Figure 12.31s an example of data as supplied to a ship for assessment of

squat in single condition. The curve is from the same area of research that
produced the graphical approach but is taken from the stability and

handling data supplied to a bulk carrier.

INTERACTION

Interaction has a similar theoretical basis to that applied to squat. Water
in a narrow channel being accelerated betweeri two vessels passing along
a channel or between the vessel and the bank of the channel. Pressure is
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reduced between the vessels or between the vessel and a bank. The vessels
move bodily towards each other or the bank and redistributed pressure
over the hull causes yaw.

When interaction is being considered the simple theory is complicated
by the pressure waves at the bow and stern, the effect of the screw race
and the action of the rudder. Typical patterns of movement associated
with overtaking, passing and bank effect are given in Figures 12.4 and 12.5.
As with squat the most prudent course is to proceed along narrow
channels at a moderate speed.

Under adverse conditions, particularly when there is a large
discrepancy between the sizes of the vessels involved, it is possible that
there could be a collision. Also when small vessels, tugs, etc. are close to
large vessels travelling at high speed, the changes in pressure between the
vessels and beneath the smaller vessel can result in the smaller vessel
listing towards the larger vessel. '

If the small vessel then collides with the larger vessel in extreme
conditions the small vessel could capsize. This capsizing appears to be
most likely when a small vessel is stationed near the bow of a larger vessel.

TURNING

Figure 12.6 gives the definitions of the terms used to describe the turning
circle of a vessel. The track followed by the centre of gravity othc vesl‘»SC
gives the actual turning “circle’. At the centre of gravity there will always
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be a drift angle, with the head of the vessel inboard of the circle. At some
point ahead of the centre of gravity, there will be a point where the fore

and aft line of the vessel is parallel to the turning circle. this is the pivot
point. ' ;

When the rudder is put over a turn develops in the following stages
(Figure 12.7):

(a) The forces of resistance F, and propulsion F, are in equilibrium with
the rudder midships.

(b) The rudder is put over, a drag force F; and a side force £ develop at
the rudder.

(c) The F,+ Fy reduce the vessels forward speed.

(d) The F at the propeller can be resolved into a side force Fgacting at the
centre of gravity and a moment .\ about the centre of gravity.

(e) The vessel is canted across the line of advance. with F, and F; again
acung at the rudder, the hvdrodynamic forces £\, which develop at the
stern and bow can now be considered.

() F, can be resolved into a side force at the centre of gravity and a
moment A, .

(g) The moments .M, and M, are equal and opposite. The forces F,. F,,
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F,, F, are once again considered as acting at the centre of gravity.

‘(h} These forces resolve into a small ahead force F, and side force F,.

(i) Finally these two forces resolve to F, acting towards the centre of the
turning circle and maintaining a steady rate of turn.

The size of the turning circle for a given rudder angle will depend upon
forward speed, whether or not the propeller is turning and the depth of
water.

Forward speed does not affect the form of the turning circle, only the
time taken to complete the circle; the time taken to complete a given turn
being approximately in proportion to the forward speed.

Propeller operation greatly increases rudder effectiveness. In deep
water the rudder mayv be as much as five times more effective in terms of
side force than when stopped. In shallow water the rudder may be ten
times more eflective when the propeller is operating than when it Is
stopped. Hence the value of the ‘kick ahead’ which can give a large
ncrease in F with little change in F..

In deep water the side force F;, which develops as a result of the vessel
canting across the flow will be small. Hence a small side force F, at the
rudder will produce a large drift angle and a high rate of turn. On the
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Frgure 12.7 Mechaniom of turning
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other hand, in shallow water, F) is large when the vessel cants, hence
the rudder side force F, will only produce a small drift angle and
consequently there will be a low rate of turn. Experimental work
indicates that turning diameter could increase from 3.5L where clearance
is greater than 40% of draft to 8.74L when clearance is reduced to 15%; of

draft.

DIRECTIONAL STABILITY

A vessel is directionally stable if after putting the rudder midships while
turning, the vessel settles to a steady heading. A vessel is directionally
unstable if after putting the rudder midships while turning, the vessel

continues to turn. 4
In general, fine lined ships are likely to be directionally stable while full

formed ships will be directionally unstable.

Directional stability is desirable for most ships as this quality will
reduce wear on steering gear on long passages, and as tugs will be
available to help handling in port the reduced manoeuvrability will not

be a great disadvantage.

Figure 12.8 Heel dur w0 turning
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HEEL WHILE TURNING

When a vessel is in a steady turn it can be assumed that the centrifugal
force is acting at centre of gravity G, and the equal and opposite
centripedal force is acting at the centre of buoyancy B,. The vessel will

reach a steady heel when (Figure 12.8).
Righting moment = d x centrifugal force

where d=vertical spearation between G and B,.

2

Centrifugal force = el
r

M = Mass of vessel Kg
V= Velocity in m/s
r=radius of turn m
Putting displacement= Mg
g=acceleration due to gravity
2
Mg xGS = ﬁrv— x d

GZ=
ng

For small angles
GZ=GMsin 0
* d=B,Gcos

2
GM sin 9 — 2 B0C s 0
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Flooding KM transverse
effect on stability, 255 determination for box shape, 76
flooding curves, 272 determination for ship shape, 84
Flotation principle of, 37 of flooded vessel, 256
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effect on G{ curve, 133 KN, 161
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calculation, 107
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due to squat, 305
GZ curve, 121
effect of beam, 136 M draft, 202
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calculation, 206
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Paralle] axis theorem, 21. 266

Righting lever; see G
Righting moment, 70

Inclining test, 112 Rise of floor, 4

Interaction, 305

Intermedi i
cdiate ordinates, 10 Second moment of area, 18
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Shear, 4
Shear force, 276
calculation by tubular method. 293
curve for box vessel. 279
curve for ship shape. 286
in wavcs, 286
Shcaring stress, 289
Simplified stability information. 179
methods of representation. 181
dead weight moment, 180
Simpson's Rules, 6
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first rule, 6
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5,8, —1 rule, 12
six ordinate rule, 12
Squat, 300
assessment, 303
grounding. 305
Stable equilibrium. 68. 70
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Suspended weights, 93

Tonne per centimetre, 43
Torsion, 296
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distribution, 193
effect of change of density. 208
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mechanism, 309
Turning circle, 308

Unresisted rolling, 116
Unstable cquilibrium, 69, 71
G curve, 125, 134

Vertica! shift of weight, 61
effect on GZ, 139
Volume, 15 .
Volumetric heeling moment, 148
rcprcscmation of data, 152

Wall sided formula, 167
Wind loading heel, 154

Vosuen a0

n vere et .

—— s










	sdsd
	Stability Lester
	1
	2
	3
	4
	5


