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TRIGONOMETRY

The word “trigonometry” literally means “the measure of triangles”. However, from
its inception what we today call “trigonometry” has been utilized to deal with a wide

variety of problems. From its roots in Greece around 300 b.c. until the 17th century,
developments in trigonometry were driven by problems in astronomy involving the
locations and relative motions of the sun, moon, planets, and stars, as well as by earth-
bound problems of surveying, navigation, map making, and construction. These appli-
cations required the measurement of angles, the lengths of line segments and circular

arcs, and areas of geometric figures in the plane and on the surface of a sphere. As
a result, plane and spherical trigonometry developed simultaneously with many fruit-
ful connections between them, but with spherical trigonometry preeminent.

In the 17th century, mathematicians and scientists began to realize that the alge-
braic, graphic, and analytic properties of the trigonometric functions could be

exploited to solve problems in new areas of pure and applied mathematics. For exam-

pie, trigonometry played a basic role in the development of coordinate geometry and
calculus. These developments were stimulated by such problems as modeling peri-
odic behavior, representing and approximating numbers and functions, analyzing
wave phenomena and mechanical vibrations and motion problems, and represent-
ing and analyzing curves and surfaces. In this setting, the connections between plane
trigonometry and the analysis of functions predominated. Though spherical trigonom-
etry continued to play an important supporting role in certain applications, plane
trigonometry’s role became larger.

The primary emphasis of trigonometry, as it is currently taught in high school
and college, is on plane trigonometry, and that is the focus of our discussion in this

chapter. Because trigonometric content is typically presented in several different
courses in high school and college, we provide here a more global perspective of the
basic principles and concepts of plane trigonometry as well as a sample of the diver-

sity of its applications. We also discuss in more detail the fascinating historical and

conceptual evolution of trigonometry. This historical and evolutionary perspective
is essential to understanding and teaching trigonometry within the broader context

of mathematics and science.



432 Chapter 9 I Trigonometry

| Unit 9.1 Angle Measure and the Trigonometric Ratios

9 . 1.1 Angle measure and arc length
In this section, we discuss the common units for measuring angles and arcs. You may wish
to refer to the discussions of angles and rotations in Section 7.2.2 and of arcs in Section 8.2.4.

Units of angle and arc measure

Degree measure, introduced by the Babylonians between the years 2000 and 1600 B.C.,
is not only the oldest surviving system for measuring angles, but also the most famil-
iar. A degree can be defined as the measure of an angle ZACB that corresponds to

a rotation of the initial side CA to the terminal side Cif of magnitude ^ of a revo-

lution around C. More briefly,

1 degree
360

of a revolution.

The other common measure is the radian. This word was introduced around
1870 by Thomas Muir and James Thompson, Sr., to stand for “radial angle”. Given
an angle ZACB , and a circle of radius r centered at the vertex C of the angle, the
radian measure of ZACB is y, where sr is the length of the arc with central angle
ZACB on the given circle.

Because the circumference of a circle of radius r is 2irr, this definition implies that

2-77 radians = 1 revolution.

This definition raises a mathematical question, “Does the radian measure of an angle
depend on the radius r of the given circle in that definition?” The following result
shows that it does not.

Theorem 9.1 (Arc-to-Radius Similarity Principle): Suppose two arcs have the same measure on |
circles with radii rx and r2 and a common center C. If the arcs have lengths L x and

L2 , then “r = “r.

Figure 1

Proof: Let the arcs A x B x and A 2 B2 have the same measure in the circles Kx and K2 ,

both centered at C, as shown in Figure 1. Then a suitable rotation around C maps
the central angle ZA X CB X onto the congruent central angle ZA 2 CB2 and the arc

A X B X onto an arc A{Bx on Kx . The length of A{B X is equal to L x , the length of

A X B X because a rotation is a congruence. Then a size change transformation cen-

tered at C of magnitude y maps the circle Kx onto the circle K2 and image arc A{BX

on K x onto the arc A{B2 with length L2 . This size change is a similarity transfor-

mation, so L2
= yL x . Consequently^ =

-y. J
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Degree measure is directly related to radian measure by the radian-degree con-

version formula

measure of angle in radians = ^ • (measure of angle in degrees),
because 2it radians = 360°.

The formula for the length s of an arc of radius r with a central angle of mea-

sure 9 in radians is especially simple and elegant. The fraction ^ represents how
much of the circle’s circumference has been traversed. Multiply that by the circum-
ference 2irr and we arrive at the following theorem.

Theorem 9,2 Let .v be the length of an arc of a central angle with measure 6 radians in a circle |
with radius r. Then s = r6.

If the central angle 9 is measured in degrees rather than radians, we can still

compute the length s of the arc but the formula is not as elegant. Using the radian-

degree conversion formula, we obtain this corollary.

Corollary: Let s be the length of an arc of a central angle with measure 9

degrees in a circle of radius r. Then s —

In many applications, either Theorem 9.2 or its corollary can be used, as we

choose. However, the simplicity of the formula in radians leads to a corresponding
simplicity in analytic formulas for the trigonometric functions. For example, the fol-

lowing familiar formulas from calculus are valid only if 9 is measured in radians.

d
,

d
,

Te {sme) — cos 9
d9

93 95

sin 9 = 9- — + ~r
... +

3! 5!

92 94

cos 9 = 1 — — _|_ — ... +
2! 4!

(cos 9) = — sin#

(-1 ) k92k+l

(2k + 1)!
(-1 ) k9lk

+

(2k)\
+

These formulas are more complicated if 9 is measured in degrees (see Problem 8).

Other angle measure systems

Although radian and degree measure are the most commonly used systems for angle
measure, other units are useful in certain contexts. The following are illustrations of
such systems.

In grad measure, which is used in some engineering contexts,

1
1 grad = of a revolution.

Grad measure is better suited to the decimal system than degree measure because a

right angle has a measure of 100 grads, a straight angle is 200 grads and a full revo-

lution is 400 grads. The formulas

measure of angle in radians = • (measure of angle in grads)

9
measure of angle in degrees = — • (measure of angle in grads)

relate grad measure to degree and radian measure.
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In mil measure, which was developed for use in some military contexts,

1
1 mil

6400
of a revolution.

The apparently odd choice of the fraction ^ is explained by the calculation

277

6400
= .00098175

1000

Thus, an angle of 1 mil subtends an arc of length very nearly 1 yard at a distance of
1000 yards. This approximation makes it possible to use quick mental arithmetic to

calculate the distance to objects whose size is known.

9.1,1 Problems

1 . What is the radius of a circle for which the radian measure

of an arc equals its length?

2. What is the length of a 212° arc in a circle of radius 14?

3. In a circle of radius 2, suppose a chord AB has length 1.

a. What are the degree measures of the major and minor arcs

AB in that circle?

b. Generalize part a.

4. Unique among the measure systems mentioned in this sec-

tion, the degree contains subunits of minutes and seconds that
are often used in contexts such as latitude and longitude and

surveying. Specifically, 1° = 60 minutes, denoted 60', and
1 minute = 60 seconds, denoted 60".

a. Convert 37°6'52" to a decimal number of degrees.
b. Convert 37°6'52" to radians.

c. Find sin-1 0.4 to the nearest second.

5. Consider a watch with an hour hand, a minute hand, and
a second hand. In a time interval of x seconds, what is the
measure of the arc traversed by each of these hands? Give an

answer in degrees and an answer in radians.

1
6. Find the grad and mil measures of the angles with degree
measure 30°, 45°, and 60°.

7. An observer sees a tank in the distance and measures the

angle of elevation from ground level to the top of the tank to

be 2 mils. If he knows that this type of tank is 9 ft tall, approx-
imately how far away is the tank?

8 . The following three calculus formulas require the measure

of the angle 9 to be in radians.

i. ^(sin 9) = cos0

ii. lim^ = 1
e-o

8

-■

a - a 03
, 05

, (- 1 )*02A:+1
,iii- sin 9 9 3 ; T- T (2k+\)\ T • • •

a. Find the corresponding formulas for degree measure.

b. Find the corresponding formulas for grad measure.

9. The radian measure of an angle 9 is defined in a calculus
book 1

as follows: Given an angle ZACB , and a circle of radius
r centered at the vertex C of the angle, the radian measure of

2Sr

ZACB is —, where Sr is the area of the sector with central

angle ZACB on the given circle. Explain why this definition
is equivalent to the definition given in this section.

10. Prove the converse to Theorem 9.1.

9.1.2 The trigonometric ratios

The trigonometric ratios for the sine, cosine, and tangent are so important that they
are introduced in textbooks at grade levels from before high school to college. Before
the appearance of hand-held calculators, tables of their values from 0° to 90° appeared
as appendices in the backs of these textbooks.

Trigonometric ratios of acute angles
Recall that these ratios are defined for acute angles as follows: Let AABC be a tri-

angle with right angle at C, as shown in Figure 2.

1 Apostol,Tom. Calculus, Volume 1 (New York, NY: Blaisdell, 1964).
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/\B
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EXAMPLE 1

Solution

The sine of the acute angle A, abbreviated sin A, is defined to be

BC length of opposite side
sin ^ — —

AB length of hypotenuse

Similarly, the cosine of the acute angle A, abbreviated cos A, is defined as

AC length of adjacent side
cos A = =

.

AB length of hypotenuse
The remaining four trigonometric ratios of different sides in a right triangle, the

tangent, the cotangent, the secant, and the cosecant of angle A are abbreviated and
defined for the A ABC as

tan A
BC

AC
cot A

AC

BC’
sec A =

AB

AC
esc A =

AB

BC

It is straightforward to verify that the value of any one of these trigonomet-
ric ratios for a given A ABC determines the values of the remaining five trigono-
metric ratios.

Question: If angle A is acute and sin A = k, give the values of the other five

trigonometric ratios in terms of k.

From the triangle congruence theorems applied to right triangles, all side

lengths and all angle measures for a given right triangle AABC are determined if the

given information about AABC includes either the lengths of two sides (by SAS or

SsA, or by the Pythagorean Theorem), or the length of one side and the measure of
one of the acute angles (by ASA or AAS). Determining these lengths and angle
measures is called solving the triangle. The following example is a very simple illus-
tration of this point. More substantial applications of this procedure are discussed
in Section 9.1.3.

Suppose that AABC is a right triangle with ZC as the right angle, and suppose that
AC = 10 ft and BC = 13 ft. Solve the triangle. That is, find the measures of the other
sides and angles of the triangle.

By the Pythagorean Theorem,

AB = VAC2 + BC2
= V269 ft « 16.4 ft.

Now any of the trigonometric ratios can be used to determine an angle. We choose
to use the tangent.

BC
tan ZA =

——;
= 1.3, so mZA ~ tan 1 1.3 ~ 52.4°.

A L

From this, mZ B ~ 90° — 52.4° = 37.6°. I

Similarity and the trigonometric ratios

The answers to the question above demonstrate that the value of any one of the six

trigonometric ratios determines the values of the other five for a given right trian-

gle. However, to apply these ratios to solve any right triangle, we need the follow-

ing theorem. It lets us use the measure of the angle as opposed to the angle itself as

the argument for the sine and other trigonometric ratios. Although it is a conse-

quence of the Fundamental Property of Similarity mentioned in Section 8.2.1, it can

also be proved without appealing to that result.
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Theorem 9.3 (Right Triangle Similarity Principle): Let AABC be a right triangle with its right
angle at C. Then any ratio of two side lengths of AABC determines (1) all other
ratios of two corresponding side lengths and (2) both of the corresponding acute

angles for any triangle A A'B'C' that is similar to AABC.

Proof:
(1) We noted above that the value of any one of the six trigonometric ratios for

any given triangle determines the values of the other five for that triangle.
(2) Suppose that AABC ~ A A' B'C'. Also suppose that the ratio f§ is known.

Because these triangles are similar, there is a constant k such that

A'C' — k' AC A'B' = k-AB B'C' = k-BC.

^
B'C' k • BC BC

Consequently, tan A = =

f^Xc
=

AC
= tan A

This determines mZA and mZA', and ZB and ZB' are their complements. (If
another ratio of sides were given, we would have used a different ratio in place of
the tangent ratio.) _|

Theorem 9.3 enables us to define the sine of the measure of the acute angle A
to equal the ratio defined above for any angle with that measure.

Now we connect the measures of arcs to the measures of angles. Recall the
usual procedure for measuring an angle with a protractor. We place the protractor

so that its center point is at the vertex C of the angle ZACB and so that the ray CA
is along the straightedge of the protractor, as shown in Figure 3.

We then read the measure of the angle in degrees from the marks on the arc A'B' on

the protractor. Thus, we assign the degree measure to ZACB not by a measurement

at C, but by a measurement of the length of an arc with center C at some distance from
C. Also, note from Figure 3 that the trigonometric ratios for the angle ZACB can be

computed for the right triangle A D'CB'. What we need to show is that the ratio of
the length of the legB'D' to the length of the arc A'B' is independent of the size of
our protractor. The following result, which is a consequence of Theorems 8.16 and

8.17, provides one way to obtain the numerical correspondence between acute angles
and their measures. It is an analogue to Theorem 9.1.

Theorem 9.4 (Arc-to-Chord Similarity Principle): Suppose two arcs have the same measure, §1 *

r f i

and chords with lengths c1 and c2 . If the arcs have lengths L A and L2 , then — = —.

Proof: By Theorem 8.16, two arcs have the same measure if and only if they are simi-
lar. Suppose arcs A 1 B1 and A 2 B2 are similar in circles of radii and r2 , respectively,
as shown in Figure 4. Then j is the magnitude of the similarity transformation map-

ping circle Ox onto circle 02 . So the ratio of the lengths of the chords,
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From the definition of arc measure, the central angles Ox and 02 of arcs A X BX and
A 2 B2 have the same measure. Call that measure 9. By Theorem 9.2, the length of
———~ —-—~~~ length of A , Si
A X B X

= rx 9 and the length ofA 2 B2
= r20. Consequently, 9 = =

length of a 2b2
' $AS Similarity, AA x Ox B x

~ A A 202B2 . Thus \ = \, and the
theorem follows.

Figure 5

In the historical evolution of trigonometry, in order to obtain measures of angles
and arcs, and lengths of sides of figures, Hipparchus and Ptolemy computed tables of
the chord lengths for a circle of fixed radius for central angles having measures

between 0° and 180°. Hipparchus computed these values for multiples of 7.5°. We do
not know the radius of the circle he used. By the time of Ptolemy, the Greeks were

using a sexagesimal (based on 60) numeration system, so Ptolemy used a circle with
radius 60. He was able to calculate these measures for multiples of 0.5°. 2

Here is an example of how Ptolemy’s table of chords relates to today’s values of
sines. Suppose an arc has measure 82.5° in a circle of radius 60 and we want to know
the length L of its chord. Then the triangle formed by a radius of the circle to an end-

point of the arc and to the midpoint of the chord of that arc (Figure 5) has a central angle
L

with measure 41.25°. So -^ = sin 41.25°. From this we see that L = 120 sin 41.25°. In
60

general, the chord lengths in these ancient tables for a given arc measure are 120 times
the values of sines of half that arc measure.

Trigonometric ratios of obtuse angles
So far, we have defined the trigonometric ratios for the acute angles of a right trian-

gle. To solve all triangles, trigonometric ratios of obtuse angles are also needed.
The usual method for making the transition for trigonometric ratios from acute

to obtuse angles is to begin by placing the acute angle A on rectangular coordinate

axes, as shown in Figure 6a. In this position, we see that cos A = - and sin A =

where x, y, and r are the lengths of sides of the right triangle. Also, most significantly,
x and y are the coordinates of the point B.

2 See Asger Aaboe, Episodes from the Early History ofMathematics, p. 112ff.
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Next we consider an obtuse angle with one side in common with the acute angle (Figure
6b) and the other side and point B now in the second quadrant. Here again
Zd = Z CAB. Now we define sin A =

y
- and cos A = f . This definition is clearly con-

sistent with the definition of sine and cosine for acute angles. Notice, however, that the

leg AC' of the right triangle AABC' in Figure 6b has length — * (since x is negative).
Sometimes this length is thought of as a directed length so that it can be negative. Con-

sequently, for obtuse angles, the cosine ratio is negative while the sine ratio is positive.
The remaining four trigonometric ratios are now defined for both acute and

obtuse angles by

y x v r
tan A = —

, cot A = —, sec A = —, and esc A = —.

x y x y

Because x is negative while y and r are positive for an obtuse angle A, the ratios
tan A, cot A, and sec A are negative while esc A is positive.

To obtain sin A and cos A when A is a right angle, we can adapt either Figure
6a or Figure 6b to the situation where x = 0 and y > 0. Then B is on the positive ray
of the y-axis, and Z CAB is a right angle. Since y = r, sin A = 1, cos A = 0, tan A

is undefined, and so on.

The solution of oblique triangles
In Section 9.1.3, we discuss several examples in which we solve triangles that are not

right triangles. The important tools in these solutions are the trigonometric ratios
and two theorems, the Law of Cosines and the Law of Sines.

Proof: See Problem 6. J

Theorem 9,6 (Law of Sines): For any AABC,

sin A

a

sin B

b

sin C

c

Proof: See Problem 7. _J

The Law of Cosines enables the third side of a triangle to be determined given
two sides and an included angle. In this regard, it generalizes the Pythagorean The-
orem to all triangles. It also makes it possible to determine any angle of a triangle
given the three sides. Thus it enables a triangle to be solved given SAS or SSS. By
applying the Law of Sines a second side of a triangle can be found given two angles
and a side, and also a second angle can be found given two sides and an angle. So it

enables a triangle to be solved given AAS, ASA, or SSA.
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Care must be exercised in the last case, since triangles are not necessarily con-

gruent with SSA. For example, in Figure 7, if the angle A and the sides c and a are

given and if a is less than c, then the angle C as well as the side length b = AC are

not uniquely determined. This is usually called the ambiguous case for SSA.

Figure 7 B

However, if a > c, then angles C and B are uniquely determined. This is the case of

SsA congruence discussed in Section 7.4.1.

9.1.2 Problems
1

1 . Show that the Pythagorean Theorem is a special case of
the Law of Cosines.

2. Prove: In AABC, angle C is obtuse if and only if
a

2 + b2 < c
2

.

3. a. Explain why the constant K in the Law of Sines

K = —— = -A_ =

°

sin A sin B sin C

is the diameter of the circumcircle of AABC. (Hint : If S

is the circumscribed circle of the triangle AABC, con-

struct a second triangle AA' B' C ’ in which A = A' ,AB'
is a diameter of S, and Z B'AC' = ABAC)

b. Use the result of part a to conclude that if AABC is inscribed
in a circle of diameter 1, then a = sin A, b = sin B, and
c = sinC.

4. Explain why the following is an equivalent definition of the
sine of an angle: The sine of an angle between 0° and 180° is

equal to the length of the chord of the arc subtended by inscrib-

ing the angle ( ZACB in Figure 8) in a circle of diameter 1.

(This definition is very closely related to the definition Hip-
parchus and Ptolemy used to construct the first sine tables.)

Figure 8
A

5. Show that Ptolemy’s procedure gives tables like sine tables.
Let AABC be a right triangle inscribed in a circle with diam-
eter AB = 120. Prove: If L2A is the length of the chord (from
his table of chords) corresponding to the central angle with

measure 2A, then sin A = j^.
6 . Prove the Law of Cosines using the following procedure.
Place the triangle AABC from Figure 9 so that C is at (0,0)
and side CB lies along the positive x-axis. Identify the coor-

dinates of the vertices A and B in terms of the side lengths a, b
and the sine and cosine of C. Then apply the distance formula
to compute the square c

2 of the length of the side AB and

simplify the result.

Figure 9

7. a. Use Figure 10. Prove:^

Figure 10

C
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b. Explain how one can go from the result of part a to the
full statement of the Law of Sines.

b. For what values of a < b is there exactly one triangle sat-

isfying these conditions?

c. When is there no triangle satisfying these conditions?8. Suppose sides a and b and mZA of AABC are given.
a. Prove that there is exactly one triangle satisfying these

conditions if a > b.

ANSWER TO QUESTION:

Vl - k 1

k

9.1.3 Extended analysis: indirect measurement problems
The need to determine distances, angles, and arcs that could not be measured directly
led to the study of trigonometry in ancient Egypt and Babylonia. The Rhind Papyrus,
a scroll of mathematical problems written in Egypt about four thousand years ago,
includes several problems (Problems 56-60) that deal with measurements of angles
and distances related to the pyramids. Babylonian astronomers recorded the motions
of the planets on the celestial sphere, an imaginary sphere centered at Earth whose
surface they believed contained all the stars and planets.

Although these ancient measurements were recorded with meticulous care

and detail, they were observational rather than analytical. The development of
tables by Hipparchus and Ptolemy and the development of the basic theorems of

plane and spherical trigonometry took place between the second century b.c. and
the second century a.d. This made it possible to use trigonometry to calculate indi-
rect measurements.

Triangulation
Ferdinand Magellan’s circumnavigation of the earth (1519-1522) provided the first
direct proof that the earth is roughly spherical. It prompted questions such as whether
the earth was actually an oblate sphere flattened at the poles, and stimulated interest
in the development of accurate maps of continents and oceans on the earth’s surface.
As a result, a number of geodetic surveys were conducted based on the method oftri-
angulation. This method begins with a baseline segment of known length joining two

points A and B on the earth’s surface that are a known distance apart. For a given vis-
ible distant landmark, A' in Figure 11, ZA'AB and ZA'BA are measured, and the
Law of Sines is used to compute the distances AA' and BA'. This process can be

repeated for another visible landmark B' to compute the distances AB' and BB' as

well as the length A' B' of a new baselineA' B', and so on.

Figure 11 A

B

For relatively small regions of the earth’s surface, the points in this triangulation grid
are assumed to lie in a plane, but for larger regions the tools of spherical trgonometry are



Unit 9.1 I Angie Measure and the Trigonometric Ratios 441

needed. Using the triangulation method, Abbe Jean Picard (1620-1682) started with
a baseline consisting of a 7-mile stretch of road from Paris to Fontainebleau, and com-

pleted a detailed survey of a region extending to a section of the French coastline. This

survey was completed for all of France by Giovanni Cassini (1625-1712), an Italian
astronomer and cartographer, his son Jacques (1677-1756), his grandson Cesar Fran-
cois (1714-1784), and his great grandson Jean Dominique (1748-1848). In the course

of these successes in cartography, the Cassinis persuaded King Louis XV to authorize
two expeditions to Peru and Lapland that used the triangulation method to determine
that the earth is indeed an oblate sphere as Newton had suspected.

Problems in indirect measurement are usually the first types of applications of

trigonometry encountered in school. The Pythagorean Theorem, the trigonometric
ratios for acute and obtuse angles, and the Law of Sines and Law of Cosines are all
that is needed. Consider the following sequence of four related and progressively
more complicated indirect measurement problems.

Problem 1: We want to determine the height h of a certain flagpole QP (see
Figure 12) and we cannot measure its height by climbing it. Instead, we mea-

sure ZPAQ, the angle of elevation to the top of the flagpole from a point A on

level ground 350 feet from the base of the pole, and find that it is 20°. Find the

height h of the flagpole.

Figure 12 lD

a = 20°
d = 350 ft

h

,
.

^ ""1“ Q

Question 1: Solve Problem 1. Then generalize your solution by solving the problem
when the length from the base of the flagpole is d and the angle of elevation is a.

Problem 2: Suppose that the flagpole is located on the other side of a stream so

that it is not possible to measure directly the distance from the observation point
A to the base Q of the flagpole. Assume that the ground around point A is level
and at the same level as the base Q of the flagpole. Move back from A along OA
to point B and measure the angle of elevation at B, and the length m of the base-
linqAB (see Figure 13). Find the height h of the flagpole in terms of the distance

m, the angle of elevation a at A, and the angle of elevation (3 at B.

Question 2: Solve Problem 2.
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Problem 2 assumes that the measured baselineA/? is collinear with a line to the base
of the flagpole. But in some situations the easiest baseline to measure may be

perpendicular to a line to the base of the flagpole. Problem 3 addresses this case.

Problem 3: Suppose that the flagpole is located on the other side of a stream.

You measure the angle a of elevation of P, the top of the flagpole from a point
A. Then you walk along the stream bank to a second point B at a distance b from
A along a line perpendicular to the line joining A to the flagpole base Q, and
measure the angle (3 = mZABQ, as shown in Figure 14. Assume that the

ground on your side of the stream is level and at the same level as the base Q
of the flagpole. Find the height h of the flagpole.
Figure 14 p

Question 3: Solve Problem 3.

Each of the Problems 1-3 involves finding the height of a flagpole by knowing
the length of a baseline and the angle of inclination of the top of the flagpole from
one end of that baseline. The following problem generalizes these separate cases. It
asks for the height of a flagpole from the length of any baseline and the angles to the

top and bottom of the flagpole from each end of that baseline. This problem is more

challenging than the right triangle Problems 1-3. Its solution requires a multistep
analysis of more than one oblique triangle, and consequently involves the Law of
Sines and the Law of Cosines.

Problem 4: Suppose that there is a baseline AB of known length b, but that the
baseline is not necessarily in the plane perpendicular to the flagpole at its base.
The points P, Q, A, and B are all visible from one another, but do not lie in the same

plane (Figure 15). Find a formula for the height h of the flagpole in terms of angles
measured at the observation points A and B and the length b of the baseline.

Figure 15
i

h

ft
"

V

Q

Solution For simplicity, we identify the various angles that can be measured at the observation

points A and B. Let u = mZABP,t = mZPAB,v = mZABQ, s = mZQAB, and
r = mZPAQ. Using the Law of Sines on AAPB and AAQB allows us to find AP and

AQ. Then using the Law of Cosines on APAQ allows us to find PQ. The details are

left to you as Problem 4a.
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9.1.3 Problems
1

1. a. Generalize Problem 1 in this section to a situation

where a (vertical) flagpole is on a hill: Find the height
h in terms of the distance d to the base of the pole and

the angles a and y (Figure 16), where y is the angle
between AP and the vertical.

Figure 16

P

b. Show that the formula you found for h in part a holds also

for the case of a flagpole down in a valley (y > §), and in

fact for any case where a + y < tt.

c. Derive the result of Question 1 as a special case of this for-
mula.

2. Generalize Problem 2 in this section to a situation where
the base of the flagpole is on a hill above the level with the
observation point A, and the line segment BAQ makes an

angle e with the horizontal.

3. Generalize Problem 3 in this section to a situation where

A BAQ and ZAQP are not necessarily right angles. Specif-
ically, assume that /3 = mZABQ, y = mZBAQ , and
s = mZAQP are known, as well as the length b — AB.

4. a. Complete the derivation of the formula for the height
of the flagpole in Problem 4 in this section,

b. The measure w = mZPBQ is not needed to solve Prob-

lem 4, even though this angle could be measured from

point B. (Note that this angle is not in general the sum of

angles u = mZABP and v = mZABQ, since A might
not lie in the plane of triangle PBQ .) Show that w is in fact

determined from the values r, s, t, u, v, and b.

5. Suppose we want to know the height h of a flagpole on a

hill that we can see from a building. We measure the angle of
elevation to the bottom from a low floor and an angle of

depression to the top from a higher floor of the building, and
measure the baseline distance b between these two floors, as

shown in Figure 17. Is this information sufficient to determine
the height of the flagpole or how far away it is? If it is, find these.
If not, why not?

6 . Consider the triangle with sides 13,14, and 15.

a. Find the measures of the three angles in the triangle using
the Law of Cosines.

Figure 17

b. Find the sine of the largest angle in this triangle and use the
Law of Sines to find the measures of the other angles.

7. Belt problems. Suppose that a belt is stretched tightly over

two pulleys Px and P2 of radii rx and r2 and whose centers are

d units apart, as in Figure 18.

Figure 18

Find a formula for the total length L of the belt in terms of d ,

rx , and r2 in each case.

a. d = 6, and rx
= r2

= 3

b. rx
= r2 and d = rx + r2

c. rx
= 12, r2

= 3, and d = 18

d. rx > r2 , and d > rx + r2

8. A Law of Cosines for Quadrilaterals: If we know two sides

and the included angle of a triangle, then SAS triangle con-

gruence tells us that the triangle is fully determined and the

Law of Cosines tells us how to find the third side.

a. Prove that if we know three sides and the two included

angles of a plane quadrilateral, then the quadrilateral is

fully determined, and hence that there is a SASAS quadri-
lateral congruence theorem.

b. Find a formula for the fourth side of a quadrilateral in
terms of the other sides a, b, and c and the included angles
A and B.
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ANSWERS TO QUESTIONS:

1. For the particular case given, tan(20°) = =>/? =

350tan(20°) ~ 127.40 ft. For the general case, the height h is

a function of d and a given by h(d, a) = dtan(a), where

0 < a < f and d > 0.

2. Let d = AQ. Then 'j = tan a and = tan /3, from which
m tan a tan /3

^
tanor—tan/3 '

3. Let d = AQ. Then, from the diagram, d — b tan /3 and
h = d tan a, so h = b tan a tan /3.

| Unit 9,2 The Trigonometric Functions and Their Connections

In Unit 9.1, we defined the six trigonometric ratios, sine, cosine, tangent, cosecant,
secant, and cotangent for all angles with measures between 0 and tt radians (or 0°
and 180°). As the problems of Section 9.1.3 demonstrate, these ratios together
with the Laws of Sines and Cosines are powerful tools for solving a variety of indi-
rect measurement problems in plane trigonometry. Another class of applications
of plane trigonometry involves the analysis and modeling of periodic phenomena.
For this class of applications, the trigonometric ratios are useful but not sufficient.
These problems require that we extend the six trigonometric ratios to define func-
tions for all real arguments. These real functions and their complex counterparts
have a variety of remarkable algebraic, geometric, and analytic properties that are

powerful tools for representing and analyzing periodic phenomena. We define
these functions in Section 9.2.1 and discuss some of their applications in Section
9.2.2 and Unit 9.3.

9.2.1 The trigonometric functions

Some sources distinguish between the trigonometric functions and the circular func-
tions, reserving the former term for functions of angles (or of their measures) with
the domains we discussed in Unit 9.1. The circular functions refer to the sine, cosine,
and other derived functions defined over all the real numbers for which they have

meaning. However, in advanced mathematics, these (circular) functions and their
extensions that include complex number domains are called the trigonometric func-
tions and that is the wording we use here.

Angles, directed angles, and their measures

Recall that an angle in a plane is defined as the union of two rays, its sides, with a

common initial point, its vertex.

In contrast, a directed angle is an ordered pair of rays with the same endpoint
(its vertex). One side of the directed angle is prescribed as the initial side, the other
side as the terminal side. The angle notation ZA CB is also used for d irected angles,
sometimes with the understanding that ray CA is the initial side and CB is the ter-

minal side. Some authors use a special symbol (e.g., 4) to distinguish angles from
directed angles, but we do not.

Angles and directed angles differ significantly in the measures allowed for
them. We have discussed angle measure in some detail in Section 8.2.5, so we turn

now to directed angles. Whereas an (undirected) angle is usually considered to

have a unique measure (and has two measures only when reflex angles are being



Unit 9.2 I The Trigonometric Functions and Their Connections 445

Figure 19 considered), a directed angle has infinitely many measures. These measures are the

possible magnitudes of the rotations mapping the initial side of the angle onto its
terminal side. If the rotation is counterclockwise, the directed angle is positive.
If the rotation is clockwise, the directed angle is negative, and if the initial and ter-

minal sides coincide, then the directed angle is a zero angle. Thus if an angle
formed by two rays has undirected measure m, then a directed angle formed by the
same rays may have any of the measures (m ± 360n)° or (— m ± 360n)° for any
integer n, depending on which side of the directed angle is chosen to be the initial
side. For example, if mZACB = 30° in Figure 19, then the directed ZACB has

possible magnitude of (30 ± 360)°, while the directed angle ZBCA has possible
magnitudes of (-30 ± 360)°.

The motivation behind the multiple measures for a directed angle is to provide
a means of indicating turns that are more than one revolution, and to indicate the
direction of such turns. Another way to describe the magnitude and direction of such
turns is to consider directed arcs.

Recall that a central angle of a circle K is an angle whose vertex is at the
center of that circle. If ZACB is a central angle of circle K, and A and B are

points on the circle, then A, B, and the points on arc AB in the interior of the

angle constitute the arc subtended by ZACB. Similarly, a directed central angle of
a circle K is a directed ZACB whose vertex is at the center of that circle. If A and
B are on the circle, we think of the circle not only as containing the path of a point
from A to B as the initial side of ZACB is rotated to its terminal side, but we

allow the path to wind around the circle more than once. This path on K traced

by the point A as it is rotated to the point B by the rotation corresponding to

directed ZACB is called the directed arc AB with central angle ZACB. For exam-

pie, in the coordinate plane R2
, if C = (0,0), A = (2,0), and B = (0, 2), and if the

magnitude of the directed angle ZACB is 450°, then the directed arc AB is the

path that starts at (2, 0) and proceeds around the circle of radius 2 centered at

the origin for 1.25 revolutions counterclockwise and ends at the point (0, 2). The

length of the directed arc AB is 1.25 times the circumference of the circle, so it is
1.25 • 277 • 2 = 577.

For a given initial side of a directed central angle in a given circle, radian mea-

sure sets up a one-to-one correspondence between the set of directed angles and
the set R of real numbers. Degree measure for directed angles is directly related
to radian measure by the radian-degree conversion formula

measure of directed angle in radians = ^ • (measure of directed angle in degrees),
because 277 radians = 360°.

The unit circle and wrapping function definitions of the sine

and cosine functions

We begin our discussion of the trigonometric functions by recalling two ways in which

they are often defined—with the unit circle and the wrapping function.
Let t be a real number, and let ZAOP be the directed angle of radian measure

t with its vertex at the origin in the xy-plane, its initial side on the positive x-axis, and

its terminal side intersecting the unit circle x
2 + y

2
— 1 at the point P = (x, y). Then

we define cos t = x and sin t = y, as shown in Figure 20. Another way of conceptu-
alizing this definition is to realize that the directed angle is itself measured by the

magnitude of a rotation mapping the initial side onto its terminal side. So an equiv-
alent definition is to define cos t and sin t to be the first and second coordinates of the

image of (1,0) under a rotation of t radians.
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Figure 20

Figure 21

A major advantage of using the unit circle is that, when —it < m < AOP < it,

due to Theorem 9.2, mZAOP in radians is numerically equal to the length of the arc

of the circle subtended by ZAOP. This way of defining the trigonometric functions
is usually referred to as the unit circle definition.

In the late 1940s, a wrapping function definition of the trigonometric functions,
was proposed. It is also based on the unit circle but in an interestingly different way.

The wrapping function definition can be described dynamically as follows: Begin
with a unit circle and the line x = 1, as shown in Figure 21. Imagine wrapping this
line around the circle in two directions. The ray above the x-axis is wrapped coun-

terclockwise around the circle. Many points on the line map onto the same point of
the circle. To find the image of a point on the line, we match the distance of this point
above the x-axis with the length of an arc of the unit circle as measured from coun-

terclockwise (1, 0). For instance, the point (l, f) on the line is f above the x-axis.
Since the circumference of the unit circle is 2tt, f is a quarter of the circumference.
So its image will be a quarter-way around the circle, at the point (0,1). In analogous
fashion, the image of (l, f) on the line is the point (4^, ~y The ray below the x-axis

is mapped clockwise around the circle. So the image of (l, — f) on the line is the

point (0, -1) on the circle. In general, the images of all points of the form

(1, k + 2/m), where n is an integer, map onto the same point of the circle.
With this conception, cos x and sin x are defined as the first and second coor-

dinates of the image of (1, x). This definition is far removed from triangles, but it has
some advantages. It gets us straight to thinking in terms of radians rather than degrees.
The periodicity of the sine and cosine functions is an immediate consequence (it also
is an immediate consequence of the definition in terms of arcs and rotations). And,
by identifying the real number x with the length x, the trigonometric functions are

seen as functions of real numbers, enabling them to be treated as real functions.
There are, however, a number of pedagogical disadvantages of the wrapping

function approach. The lack of connection with triangle trigonometry leads some

students to think these are different sines and cosines than those they have seen

before. The lack of experience with arc length makes it difficult for some students to

identify values of the functions. And the lack of experience with the idea of wrapping
makes the definition difficult to apply.

Both the unit circle and wrapping function definitions clearly establish the sine and
cosine functions as real functions that are periodic with a period of 2tt. By way of con-

trast, the sine and cosine trigonometric ratios are defined only for acute and obtuse angles.
The unit circle and wrapping function definitions of the sine and cosine for

0 < t < f and f < t < 77 can be shown to be consistent with the ratio definitions of
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these functions, as follows: Refer to Figure 20. There t = mZPOA. If 0 < t < f,
then from the ratio definitions sin t =

-gp
= PB = y and cos t = opgr OB = x. For

obtuse angles, sin t and cos t are defined as the ratios ~

r
and f , respectively (see Section

9.1.1). Here r = 1, so again we have sin t = y and cos t = x as in both the unit cir-

cle and wrapping function definitions.
The familiar graphs (Figure 22) of the sine and cosine functions—sine waves of

infinite extent—are only possible when the domain of these functions is the set R.

Figure 22

Once cos t and sin t have been defined for all real numbers t, the other four

trigonometric functions are defined either as their reciprocals or their quotients.

sin t cos t 1 1
tan? =

, cotr =
—:—, sec t =

, and csct =
——,

cos t sm t cos t sm t

for all real numbers t for which the denominators are not zero. As an immediate

consequence of being the reciprocals of the sine and cosine functions, the secant and
cosecant functions are periodic of period 2tt. The tangent and cotangent functions are

also periodic, but their period is it (see Problem 1).

Obtaining values of the trigonometric functions

We could obtain the values of trigonometric functions from the values of the trigono-
metric ratios in the interval [o, f ]. But in practice, this is difficult to do. We would have

to obtain certain values of the functions (those for f, f, f, and f) from theorems of

geometry, employ a variety of trigonometric identities to obtain values for the sums,

differences, and multiples of these numbers, and interpolate between values to deter-
mine other values to the desired accuracy. This is how Ptolemy constructed his tables
of lengths of chords, which preceded later tables of sines. Problem 6 in Section 9.3.1
illustrates how trigonometric identities can be used to obtain exact values of sin f~k
and cos ^ for any integer k > 2, values which are critical in this process.

An easier way to obtain all values to any desired accuracy is by the represen-
tation of these functions as power series by using the Taylor series expansion. Recall
from calculus that, for a given real function / with derivatives of all orders on its

domain, the Taylor series centered at point a in the domain of / is

a ) + • • • + —(x — a) n + • • •.
n\

/(*) ~ £ nl ix - aT
n = 0

= /(«) + / ( } (fl)0 - a) + ———(x2 !

When a = 0, the Taylor series is called the Maclaurin series for f.
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From calculus, the Maclaurin series expansion of many functions can be com-

puted rather easily. Principal among these are the Maclaurin series for the cosine
and sine functions and for the exponential function defined by exp(x) = e

x
.

y
2 2n oo y.2n

cosW = 1 - - + ••• + (-l)"pY + - = S ( “ 1)'W
3 „2/2 + l

sin(x) = x — — + ■■■ + ( 1) M
~r~

—-

v ' 3! v '
(2n + 1)!

OO

+ •••= E(-i)"
x

2/7 + 1

exp(x) l+x + — + — + ••• + — +
2! 3! n\

»=o (2n + 1)!
00 x”

2„,71 = 0 U -

By using a convergence test such as the Ratio Test or some other convergence test,
it can be shown that all three of these series converge for all real x. In fact, these
series converge to their corresponding function values for all real x.

In fact, these series converse absolutely for all real x. Recall that a power series
oo oo

^ cL nx
n

converges absolutely if the corresponding series ^ |a„||x|" converges. Also
72=0 72=0

recall that if a power series is absolutely convergent, it is necessarily convergent, but
00

(-i)"
that the converse is not true in general. For example, the power series ^ x"

72 = 1

converges when x = 1 (it becomes an alternating series with terms decreasing to 0)
OO

but it does not converge absolutely because the series ^^=l+^+|+
72 = 1

" ‘ +
n

harmonic series, diverges).

Extending the domain of the trigonometric functions to include

complex numbers

It is unfortunate that nearly all modern calculus texts fail to include any discussion
of complex numbers. There are many fruitful connections between real and com-

plex functions that are relatively easy to develop. Here is one important example.
Suppose that we replace the real variable x in the power series representations of
sin x, cos x and e

x by a complex variable z. Then, because |z| is a real number for any
complex number z, and because each of these series converges absolutely for all real

numbers, the power series for sin z, cos z and e
z

converge absolutely for all complex
z. Just as for real series, absolute convergence implies convergence, so the corre-

sponding complex power series formulas can be regarded as definitions of sin z, cos z

and e
z for all complex numbers z,

cos(z) = i-| + -- + (-ir^—
J2n

+ "' „?0 ( ir (2«)!’
, 2/2+1

sin(z)

exp(z) = e

Z
“

3!
+ + (-ir

(2n + 1)!
+ ■••= 2(-i)”

, 2/2 + 1

72 = 0 [fin + 1)!’
2 3

. z z
1 + Z + — + — +

2! 3!
+ ±

t + -'-= Shn\ "o n\

These are complex extensions of the real cosine, sine, and exponential functions.
That is, their values agree with the values of these real functions when z is a real
number. As complex functions, the sine and cosine functions are still periodic with

period 2tt, and interestingly enough, the exponential function is periodic with period
2-777 (see Problem 6).
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Euler’s Formula

One of the most remarkable consequences of the extension of the sine, cosine, and

exponential functions to the complex numbers is the following result, which relates

trigonometric and exponential functions.

Theorem 9.7 (Euler’s Formula): For any real number 9,

cos 6 + i sin 9.

Proof: For any real number 6 and any positive integer k,

(<id)Ak
= d4k

, {id)4k+1
= w4k+\ {w)4k+2

= -e4k+2
, {w)4k+3

= -w4k+3
.

Therefore,

{id)

1

2 {id) 3 {id) 4 {id) 5

e
ld

= 1 + id + + ~~ + ^-77- + —+
2 !

„
d2 d4

1 _

2!
+

4!

cos d + i sin d

3! 4! 5!

(-1 ) kd2k

+ —r
~ +

(2k)\
. d3 d5

+ l{e -v
+

v~
\kn2k+l(-1 fd2

+ +
{2k + 1)!

J

The most famous consequence of Euler’s Formula relates the important mathe-
matical numbers e, tt, i, 1, and 0.

Corollary: e
m

= —1, or, equivalently, e
l7T + 1 = 0.

9.2.1 Problems

1 . Explain why the tangent and cotangent functions have

period tt while the sine and cosine functions have period 2-77.

2 . The identities in this problem are known as the Pythagorean
identities.

a. Explain why sin2 A + cos
2 A = 1 for any acute or obtuse

angle A using the trigonometric ratio definition of sine and

cosine.

b. Explain why sin2
x + cos

2
x = 1 for any x using the unit

circle definitions of the sine and cosine functions.

c. Divide both sides of the identity in part b by appropriate
expressions to obtain two more identities similar to that one.

3 . The identities sin(-x) = — sinx and cos(—x) = cos x are

not meaningful for the trigonometric ratio definition of sine
and cosine. Derive these identities from one of the other def-
initions of sine and cosine.

4 . a. In the wrapping function, name two points on the line

x = 1 whose image is ( — ).
b. What specific values of sines and cosines are obtained from

the information in part a?

5. Figure 23 suggests how four of the trigonometric functions

got their names. O is a circle of radius 1 and t is the measure

of the acute angle POQ. Each of the six trigonometric func-
tions of t has length equal to the length of a segment on the

figure. Find the segment for each function.

1

6 . Prove that the exponential function defined on C, exp(z),
is periodic with period 2iri.

7 . Prove the corollary to Theorem 9.7.

8. By applying Theorem 9.7 to the exponential e' (0+<^, derive
the familiar formulas for sin(d + $) and cos{d + 4>).
9 . Use Theorem 9.7 to deduce formulas for sin x and cos x in
terms of e and x. {Hint: Replace 6 by —6 to deduce a corollary
to the theorem.)
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Figure 24

I Trigonometry

9.2.2 Modeling with trigonometric functions

Many phenomena, including sound, electromagnetic and water waves, mechanical vibra-

tions, seasonal, biological and economic cycles, tides, and the motion of celestial bodies
and orbiting spacecraft, are driven by motions that are periodic or approximately peri-
odic. Manufactured objects such as electric generators and motors, internal combus-
tion engines, and axles of cars and trucks all rotate while in use, so are described by
periodic functions. The rotation of an alternating current generator produces a current

with voltage, or AC. It is the reason why the complex exponential function (Problem 6
of Section 9.2.1) is so important in electrical engineering. The trigonometric functions
are perhaps the most familiar examples of periodic functions.

Modeling periodic phenomena
Recall that a function / is periodic if and only if there exists a positive number p such
that /(x + p) = /(x) for all x. The smallest such number p (if there is a smallest

number) is the period of the function.
From the definitions of cos x and sin x in terms of rotations, cos(x + 2tt) =

cos x for all x. Furthermore, the cosine function is decreasing on the interval [0, tt]
and increasing on the interval [jt, 2tt], so there is no number p less than 277 for which

cos(x + p) = cos x for all x. This implies that 277 is the period of the cosine function.

Question: Show that if c > 0, the function/defined by/(x) = sin(cx) for all real
numbers x is periodic with period

The length of daylight
The following example illustrates how trigonometric functions can model periodic phe-
nomena. The earth tilts on its axis at a fairly constant angle of y — 23.5° to the per-
pendicular to the plane of its orbit around the sun. As a result of this tilt, the length of
the daily period of daylight in the northern hemisphere varies throughout the year
from the longest period of daylight near the summer solstice (—June 21) to the short-
est period of daylight near the winter solstice (—December 21) (see Figure 24).

Vernal Equinox
(« Mar 21)

Autumnal Equinox
(~ Sept 21)
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Figure 25

If the north pole N is the upper end point of the earth’s axis, then Figure 25a
describes the position of Earth at the summer solstice. Imagine the Sun at the right
(over 11,600 Earth diameters away!), so the shaded part is night. The equator and the
circle for latitude a are shown. From this diagram, we see that the period of daylight
on the longest day of the year varies with the latitude. For instance, at the equator
half the circle of latitude is in daylight, so half the day is in daylight. At the latitude
a drawn, about § of the day would be in daylight. Figure 25b shows a cross-section
viewed from the plane of the Equator; the Sun is then 23.5° above the horizontal.

I EXAMPLE 1 Find the length of the longest day as a function of the latitude a in degrees.

Figure 26

Solution We need only right-triangle trigonometry. Refer to Figure 25. Let d be the distance
from the plane of the circle of latitude a to the center of Earth. Then sin a — and
also tan y =

2- Solving each equation for d and equating the solutions, we find that
the distance r and Earth’s radius R are related by

r = R sin a tan y.

If we slice through the earth at latitude a and show a view of the resulting circle from

Figure 25, we obtain Figure 26. The radius of that circle is R cos a.

circle for latitude a

In Figure 26, sin /3 =

R - ôsa
= tan a tan y, from which /3

that R, the earth’s radius, cancels out.)
sin : (tan a tan y). (Notice

The portion of the day that is daylight at this latitude equals the portion of the
2/3 + 180 °

arc of the circle that is blue. From Figure 26, that portion is 360o . Since there are
2)3 + 180°

24 hours in a day, the length D of the longest day in hours is given by D = 24 360 ,

Since y ~ 23.5°, tan y ~ tan 23.5° ~ 0.435, and /3 ~ sin-1 (0.435 tan a).
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Evaluating D at various latitudes a, we have the following:

Latitude 0 Hours in Longest Day

0° 12 h 12.00 h

10° 12 h 35 min « 12.58 h

20° 13 h 12 min = 13.20 h

30° 13 h 56 min « 13.93 h
oo 14h51 min « 14.85 h

U\ oo 16 h 10 min ~ 16.17 h

60° 18 h 31 min ~ 18.52 h

66.5° 24 h

Do these values of D obtained theoretically agree with actual longest days at

the various latitudes? Table 1 lists data drawn from the World Almanac and Book of
Facts 2000 for 40° North latitude on the 21st day of each month of the year 2000. We
have purposely picked the 21st days of months because they provide (within a minute
or so) the shortest and longest days of the year and the solstices.

Table 1 40° North Latitude Actual Data

Month Jan. Feb. Mar. April May June

Day of Yr 21 52 81 112 142 173

Sunrise 7:17 6:46 6:02 5:13 4:40 4:31

Sunset 17:05 17:42 18:13 18:35 19:14 19:32

Day length (hours) 9.83 10.93 12.18 13.53 14.57 15.02

Month July Aug. Sept. Oct. Nov. Dec.

Day of Yr 203 234 265 295 326 356

Sunrise 4:49 5:17 5:47 6:17 6:52 7:18

Sunset 19:24 18:48 17:58 17:12 16:39 1638

Day length (hours) 14.58 13.52 12.18 10.92 9.78 9.33

At a given latitude a, the length of the daily period of daylight varies from its
maximum at the summer solstice to its minimum at the winter solstice and the

period of this variation is roughly 365 days (actually, 365.2425 days—see Section

6.1.2). Our calculations produce a length of 14 hr 51 min for the longest day, but
the actual longest day is 15 hr 1 min. The difference of 10 minutes is due mainly to

the width of the Sun, which is about a half degree, or 1/720 of a circle. This is ver-

ified by the fact that on the equinoxes, the length of the day is not exactly 12 hours

(the theoretical value), but about 11 minutes longer. If we judge the length of day
from the time the center of the Sun rises to the time the center sets, then our cal-
culations are well within the accuracy of the value of y used for the tilt of Earth. The
oblateness of Earth and refraction of the atmosphere at the horizon also affect the

length of the day.
The data in the table are periodic. If you consult an almanac for the year in

which you read this page, you will find values for the days of the year that are very
close to the ones given. Furthermore, graphing the values suggests that a sine wave

will fit the data reasonably well.
Sine waves are images of the graph of y = sin x under stretches and transla-

tions. By the Graph Translation Theorem (Theorem 7.21), a translation image of the
wave that is rotation symmetric about (x0 ,y0 ) rather than (0,0) has equation
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I EXAMPLE 2

Solution

y
—

y0
= sin(x - x0 ). From the Question of this section, if we wish the period of the

sine wave to be p rather than 2tt, and still maintain that symmetry, we may write

. (x - Xq\
y

~

To = sin —-—

.

V 2tt )
Finally, if we wish the amplitude of the sine wave to be A rather than 1, we can use

the equation
y

~

To

A
/ x

sin

- x0 \
p

\ 2tt /

Let L{d) be the length of the day d of the year 2000 at 40°N latitude. Using the data in
Table 1, find an equation for a sine wave that approximates the graph of the function L.

The length of day has symmetry about the equinoxes, so we pick March 21, the 81st

day of the year, as the center of rotation symmetry. Then x0
= 81. On this day,

L(d) = 12.18, so y0
= 12.18. The amplitude A is half of the difference of the day

length (in hours) at the summer and winter solstices. Thus

A = ^(15.02 - 9.33) = 2.85.

The year 2000 was a leap year, so p = 366 days. Therefore,

L(d) - 12.18
. (d - 81 \

Z85
~ Sm

366
'

V 27T )
Consequently, L(d) = 12.18 + 2.85 sin \j^{d — 81)]. |

This model produces day length data for the 21st of each month in the year
2000 (Table 2) that are close to but not identical to the data in Table 1.

Table 2 40° North Latitude Model Values

Month Jan. Feb. Mar. April May June

Day of Yr 21 52 81 112 142 173

Day length (hours) 9.83 10.93 12.18 13.53 14.57 15.02

L(d) (hours) 9.75 10.82 12.18 13.62 14.63 15.02

Month July Aug. Sept. Oct. Nov. Dec.

Day of Yr 203 234 265 295 326 356

Day length (hours) 14.58 13.52 12.18 10.92 9.78 9.33

L(d) (hours) 14.63 13.58 12.13 10.74 9.70 9.34

Describing plane curves with angles as parameters

Many important plane curves can be described most conveniently and completely
by parametric equations in which the parameter is a suitably selected directed angle.
In such cases, the tools of trigonometry often play an important role in the develop-
ment of the description.
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Theorem 9.8(a) The circle of radius r centered at the point (h,k) has parametric equations
x = h + rcosO, y = k + rsind,

where the parameter 8 is the directed angle with vertex at (h,k) with initial side

parallel to the positive x-axis and terminal side joining {h, k ) to the point (x, y).
As 8 increases from 0 to 27i, the corresponding point (x, y ) traces out the circle
with the rectangular equation (x - h) 2 + (y - k ) 2

= r
2

once in the counter-

clockwise direction starting from the point (h + r,k).

Proof: In Problem 5, you are asked to show that any point satisfying the parametric
equations is on the circle with the indicated rectangular equation, and vice versa. _|

By stretching the circle of Theorem 9.8(a), we obtain a more general theorem

involving ellipses.

Theorem 9.8(b) The ellipse centered at (h, k) with semimajor axis of length a parallel to the x-axis, |
and semiminor axis of length b parallel to the y-axis, has parametric equations

x = h + a cos 8, y = k + b sin 0,

with 6 defined as in Theorem 9.8a. As 8 increases from 0 to 27t, (x, y) traces out
, -it , (* - h) 2 (y ~ k) 2

.

the ellipse with the rectangular equation —+ ——j
— = 1 once m the coun-

terclockwise direction starting from the point (h + a, k).

Proof: A proof is again left to you (see Problem 6). _|

The next problem is concerned with finding parametric equations involving an

angular parameter for a famous plane curve called a cycloid. The solution of this

problem makes significant use of concepts and methods from trigonometry.

I EXAMPLE 3 A wheel of radius r rolls along a straight level track. The point P on the rim of the
wheel that is in contact with the track when the wheel began to roll describes a plane
curve C as the wheel rolls. If t is the central angle in radians through which the wheel
has rolled to place the wheel in its current position P(x, y), find equations for x and

y in terms of the parameter t.

Figure 27

Solution : In Figure 27, the length of OQ is equal to the length of the circular arc QP because both

represent the distance that the point P has traveled as the central angle t increased
from 0 to t. Therefore, because the radius of the wheel is r, the x-coordinate of Q is tr

if t is measured in radians. Therefore, the x-coordinate of the point P is tr — r sin t and
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the ^-coordinate of the point P is r — r cos t. (Note that cos t < 0 for the position of
P in Figure 27.) Thus, the cycloid is described by the parametric equations

{ x = r(t — sin t)
y — r{ 1 — cos t)' ]

We could cite many other types of problems for which plane trigonometry is use-

ful. The samples that we have selected in this section and in Section 9.1.3 give some

indication of the diversity of these problems as well as the tools and concepts of

trigonometry that are used for their solution. In the applications that we have con-

sidered, there are other trigonometric concepts and tools that have not been used
such as the addition formulas, the formulas for rotation of axes, polar coordinates, and
the trigonometric form of complex numbers. Their widespread use attests to the fun-
damental importance of trigonometry.

9.2.2 Problems

1. Give the amplitude and period of the function / defined by
f(x) = 3 sin(4x) + 5.

2. Give a center of rotation symmetry for the function g with

g(x) = Asin(B(x + C)) + D.

3. Can a sine wave always be described by an equation
involving the cosine as the only trigonometric function? Why
or why not?

4. Using information from Example 1, find an equation for

L(d), the length of day d of the year 2000 on Earth at lati-
tude 30°S.

5. Prove Theorem 9.8a.

6 . Prove Theorem 9.8b.

_ „ . . , J x = a sec </> + /z
7. a. Explain why <

— ^ t $ + k
are Parametnc eclua ~

tions for the hyperbola with the rectangular equation
(* - ft)2

_

{y ~ fc)2

1
a2 b2

~ 1 •

b. Let a = b = 1 and h = k = 0. Graph this hyperbola using
a function grapher. Explain why the order of tracing out

the hyperbola is as it is.

8. Many periodic functions are not trigonometric functions.
For example, the square wave function s is defined by

s(x)
lif 2k tt < x < (2k + 1W
.... _, „,,

for any integer k.
— 1 if (2k + 1)77 < X < 2(k + 1)77

a. Sketch the graph of the square wave function on the inter-
val [ —377, 377 ]. Then use a graphing calculator or computer
to plot the same function on the same interval. Explain
any differences that you see between the resulting graph
and the graph that you sketched.

b. Use a graphing calculator or computer to graph the function

p(x) =

111
sin(x) + — sin(3x) + -sin(5x) + -sin(7x)

together with the square wave function on the interval

[-377, 377 ]. Discuss the closeness of the two graphs.

1
9. Suppose that a circle Ca of radius a is fixed with center at the

origin O and that a circle Cb inside of Ca with radius b < a and

tangent to the circle Ca at the point A — (a, 0) begins to roll in
a counterclockwise direction around the inside of Ca (Figure
28a). Then the point P = (x, y) on the circle that was initially
at A describes a curve inside of the circle Ca called a

hypocycloid (Figure 28b). We wish to find an equation for the

hypocycloid in terms of t, where t = mZAOC (in radians).

Figure 28

(a)
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Let C be the (moving) center of circle Cb , let T be the point
of tangency of the two circles, and let s = mZPCT.

a. Explain why s =

j and s — t =
a ~

b ~t.

b. Show that parametric equations for the hypocycloid are

(Hint: Use identities for sin(3t) in terms of sin t and cos(3f) in
terms of cos t .)

given by

x = (a — b) cos(t) + b co:

10. If the circle Cb in Problem 9 rolls along the outside of the
circle Ca , a point P on the circumference of Cb describes a

curve in the plane called an epicycloid. Assuming that the

point P = (x, y) is initially at the point (a, 0) and that Cb rolls

counterclockwise around Ca , show that

c. If b = f, show that these parametric equations for the

hypocycloid simplify to

y = (a — b)sin(t) + bsin(—~~t
y = (a + b) sin(r) - bsin

x = (a + b) cos(t) — b co:

x = acos
3 (t)

y — asin3 (t)

where t = mZAOC (in radians), as in Problem 9.

11. Use integration to prove that the area under one arch of
the cycloid

and that a rectangular equation for this hypocycloid is

x2/3 + y2/3 = a2/3_

x = r(t — sin?) y = r( 1 — cost)
is 3irr2 and that the length of this arch is 8r.

ANSWERS TO QUESTION:

1. For all xeR,/(x) = sin(cx) = sin(cx + 27t)
sin(c(x + p)), so y is the period of /.

sin(c(x + ^)),and~ is the smallest number p for which sin(cx)

9.2.3 The historical and conceptual evolution of trigonometry

Babylonian and Greek contributions

The Babylonians were first to introduce degree measure and a spherical coordinate

system (c. 2000 to 1600 B.C.). The rationale for the division of a circle into 360 parts
(degrees) is not known for certain. It is often theorized to be 360 because 360 is close
to the number of days of the year (and so one degree is close to the amount a star

moves in the sky each day) and to the fact that 360 has so many factors. The choice
of 360 may be related to the fact that the Babylonians used a sexagesimal (base 60)
number system and a circle is divided neatly into 6 parts by the vertices of an inscribed

regular hexagon, with the resulting chord lengths equal to the radius of the circle. It
also may be that the base system was related to the choice of the degree.

The Greeks adopted and refined both degree measure and the work with spher-
ical coordinates. Hipparchus of Nicaea (c. 180-125 b.c.) prepared the first tables of

lengths of chords subtending given circular arcs, and used these tables to calculate,
among other things, longitudes and latitudes on the celestial sphere. Greek trigonom-
etry reached a high point with Menelaus (98 a.d.). In his seminal work Sphaerica,
Menelaus introduced the concept of a spherical triangle and proved theorems about

spherical triangles analogous to those Euclid had for plane triangles.
Claudius Ptolemy (c. 100-178 a.d) wrote a comprehensive and definitive

account of Greek astronomy based on the earlier work of Hipparchus and Menelaus.
The first volume of this 13-volume treatise was largely devoted to an exposition of the
mathematics essential to his discussion of astronomy, primarily content from what is
now called plane and spherical trigonometry. Ptolemy’s books had a profound influ-
ence on subsequent developments in astronomy throughout the world until the six-
teenth century. Islamic writers referred to these books as the Almagest (the greatest),
a name that has now been generally adopted for Ptolemy’s treatise. The tables of

Hipparchus and Ptolemy (discussed in Section 9.1.2) were precursors of later tables
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of sines. Until the advent of calculators in the 1970s, tables of sines and tangents were

essential for anyone who wished to apply trigonometry.

Hindu and Arab contributions

In the ninth and tenth centuries, Hindu and Arab mathematicians further refined the

trigonometric concepts and methods developed in Ptolemy’s Almagest. In particular,
they introduced the modern sine concept from the Greek work on chords and arcs. The
historical development is quite similar to the way that Hindu-Arabic decimal notation
became the worldwide standard. Indian mathematicians defined the cosine, tangent, and

cotangent (of course, not using those names). The Muslim mathematician and
astronomer Mohammed ibn Jabir ibn Sinan Abu Abdullah al-Battani (850-929) devel-

oped the spherical Law of Cosines to calculate the measure of the arc in space between
a planet and the Sun. It was given in his astronomical treatise whose title translates as

On the science and number ofstars and their motions. He computed tables of sines, tan-

gents, and cotangents for angles from 0° to 90°. The Persian Abu'l-Wafa (940-998) first
discovered the spherical Law of Sines, and A1 Buruni (973-1048) later established the

corresponding result for plane triangles. This order of discovery may seem curious to

us now, but it should be remembered that a major impetus for the study of trigonome-
try from ancient times through the sixteenth century came from astronomy, and for

astronomy, spherical trigonometry was more critical than plane trigonometry.
Almost none of these achievements of the Indian and Islamic mathematicians

were known in the medieval West. Europe was struggling through the Dark Ages, and
it wasn’t until the 12th century that Latin translations were made of ancient mathe-
matical treatises. The Hindu mathematician Aryabhata first used the half-chord, which
he called “jyardha”, later shortened to “jya”. The Arabs translated this word as jiba,
which meant “nothing” in Arabic, and which is written (as all Arabic is written) with-
out vowels as jb. Later readers thought that jb stood for the word jaib (also written as

jb), which means “inlet or bay” but also can mean “bosom”. (With a little imagina-
tion, you can picture a half-chord and half-arc as outlining a mother’s arm as she is

cradling a child.) Robert of Chester around 1140 made a Latin translation of a treatise

by al-Khwarizmi and translated the word jaib into the Latin word sinus (which means

“inlet, bay, and bosom”). Some books say that jaib (or jayb ) had the meaning of “chord
of an arc” but that the Europeans thought it meant “fold of a garment”, for which the
Latin was again “sinus”. Some sources believe that Plato of Tivoli first introduced the
word “sinus”, around 1116-1136; others credit Gherardo of Cremona, around 1150.

European contributions

Although Fibonacci, in his Practica Geometriae of 1220, had initiated the use of plane
trigonometry, until 1450 the focus in trigonometry was on spherical trigonometry. In
the late fifteenth century, because of the need for accurate navigation and surveys of

land, plane trigonometry became very important.
Trigonometry was studied by most mathematicians of the Renaissance. By the

sixteenth century it began to be treated as a “subject” in the literature, and acquired
the status of a branch of mathematics. Georg Peurbach (1423-1461) corrected the
Latin translations of Ptolemy’s Almagest and produced more accurate trigonometric
tables. The first systematic treatment of trigonometry as a branch of geometry was

given by Regiomontanus (1436-76) in his book De Triangulis Omnimodus, in which
he gave an axiomatic development of both plane and spherical trigonometry within
Euclid’s framework. Regiomontanus’s book continues the work of Peurbach. Oth-
ers in the fifteenth and sixteenth centuries continued to work on more accurate

trigonometric tables, including George Joachim Rheticus (1514-1613), Nicolaus Coper-
nicus (1473-1543), and Bartholomaus Pitiscus (1561-1613). Rheticus had published
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chapters of Copernicus’s famous De revolutionibus orbium Coelestium. These dealt
with planar and spherical trigonometry and served as a compendium of the trigonom-
etry pertinent to the astronomy at that time.

The word “trigonometry” was introduced by Pitiscus in 1595 in his book

Trigonometria. The word “goniometry” was introduced to refer to that part of

trigonometry dealing only with angles. Pitiscus also introduced the formulas for the
sine and cosine of the sum and difference of two angles, which up to then had been
calculated on the basis of tables. But although mathematicians had the formulas,
they didn’t have the language of algebra to work with them.

Francois Viete (1540-1603) brought the algebra of trigonometry into being
with several treatises he wrote in the late 16th century. He also extended the tables
of Rheticus and added to the trigonometric identities that had been established by
Ptolemy. In 1615 his versions of formulas for sin(«A) as functions of sin A and
cos A were published posthumously.

As functions became central to algebra, many new trigonometric formulas were

developed. Important relationships were established in the seventeenth and eigh-
teenth centuries between the trigonometric functions and powers and multiples of

angles, series, continued fractions, polar coordinates, and other ideas. The names asso-

ciated with these developments are quite familiar. Isaac Newton (1642-1727) used

polar coordinates in connections with tangents, curvature, and rectification of curves.

He derived a formula for the radius of curvature using polar coordinates and trigono-
metric ratios, and he connected the trigonometric functions to infinite series.

Leonhard Euler (1707-1783) wrote a textbook, lntroductio in analysin infini-
torum, in 1748, which has been compared to the Elements , doing for analysis what
Euclid did for geometry. In this textbook, Euler popularized the definition of the

trigonometric functions as ratios and derived their series expansions using binomial
series and a limiting argument. We have noted earlier that Euler produced the for-
mula e

lx
= cos x + i sin x, unifying the power function with the trigonometric func-

tions and the imaginary number i. Euler is responsible for expanding much of the

theory of trigonometry in the later part of the 18th century. He analyzed all the

trigonometric functions, systematically listed all the usual formulas of goniometry,
emphasized the periodicity of the trigonometric functions, etc. He connected

trigonometry with coordinate geometry and calculus. He expanded the distance func-
tion in mathematical astronomy as a series involving trigonometric ratios. He looked
back at the spherical trigonometry of Menelaus and showed how the various theo-
rems could be derived algebraically one from the other.

In 1798-1799, Sylvestre-Frangois Lacroix (1765-1843) published an influential
textbook on trigonometry called Traite elementaire de trigonometric rectiligne et

spherique et application de I’algebre a la geometrie. This textbook went through many
editions and was translated into many languages. Trigonometry books in the United
States in the early twentieth century were similar to this one. For most of the twen-

tieth century, however, plane and spherical trigonometry were separated and only
plane trigonometry was taught in schools.

9.2.3 Problems
1

1. a. If A and B are points on a circle O of radius 1, prove
that \AB = sin \{ZAOB). (This equation shows how

a table of chords in a circle can determine a table of

sines.)

b. Does the formula of part a work if ZAOB is measured by
its major rather than its minor arc? Why or why not?

2. Ptolemy was the first to solve the following problem. Given
two stars in the sky whose longitude and latitude on the celes-
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tial sphere are known, find the angle between them. Ptolemy
sliced the celestial sphere by a plane through the two stars and

the center of the earth, obtaining a great circle. If C and D rep-
resent the two stars, and the diameter of the circle is AB, so

that A, B, C, and D are in order on the circle (see Figure 29),
then Ptolemy was able to prove, using similar triangles, that
AB • CD + AD • BC = BD - AC. Derive his theorem. (Hint:
Choose point E on AC so that ZABE = ZEBC. Then find
two pairs of similar triangles.)

Figure 29

3. Earth-Moon distance. Aristarchus of Samos (c. 310-230

B.c.) used trigonometry to estimate the distance from Earth
to the Sun. His procedure was to measure the angle ZMES
between the Moon and the Sun at the moment when the

moon was a half moon. (To exhibit the geometric setting,
Figure 30 is not drawn to scale.) At that moment, ZSME was

a right angle. It was difficult for Hipparchus (or for anyone
else for that matter!) to determine when the Moon is exactly
half full from observation on Earth. He estimated the angle
ZMES to be about 87°. Because Hipparchus did not know

the distance from Earth to the Moon, he expressed his esti-

mate of the Earth-Sun distance as a multiple of the Earth-
Moon distance.

a. Based on the estimate of 87° that Hipparchus made for
Z MES and an Earth-Moon distance of 238,800 miles, find
the corresponding estimate of the distance from Earth to

the Sun in miles.

b. The actual average distance from Earth to the Sun is about
93 million miles. What is the corresponding degree mea-

sure of the angle ZMES1

c. Explain why small errors in the measurement of ZMES
result in relatively large errors in measurement of the
Earth-Sun distance.

4. Circumference of Earth. Eratosthenes (275-194 B.c.) of

Cyrene (a city in what is now Libya) was generally regarded
as second only to Archimedes among mathematicians of his

era. Among his many accomplishments, he was the first to

measure the size of Earth on the basis of Earth observations.

His procedure can be described as follows. At noon of the

summer solstice (June 21), it was known that the Sun’s rays
struck the bottom of a deep well in the Egyptian town of

Syene (now Aswan), due south of Alexandria. At the same

time, Eratosthenes observed that the Sun made an angle of

7.2° to the vertical in Alexandria. Taking Earth to be a sphere,
Eratosthenes concluded that the circumference of Earth was

50 times the distance between Alexandria and Syene.
a. Explain this conclusion.

b. Given that the surface distance from Alexandria to Syene
is about 500 miles, what is the corresponding circumfer-
ence and radius of Earth?

c. Suppose Eratosthenes was off by .2° in his observations.
What then would be possibilities for his estimate for Earth’s
circumference?

Figure 30

j Unit 9.3 Properties of the Sine and Cosine Functions

The trigonometric functions are among the most interesting functions in all of math-
ematics. An analysis of them using the ideas of Section 3.2.1 reveals a host of special
properties. In this unit we separate those special properties into three types: algebraic,
by which we mean the trigonometric identities that relate the values of these func-

tions; geometric (or graphical), including examination of their graphs and their rela-

tionships to physical phenomena; and analytical, those properties that relate these
functions and their derivatives and the consequent applications.



460 Chapter 9 I Trigonometry

9.3.1 Algebraic properties of the trigonometric functions

Most courses in trigonometry place considerable emphasis on deriving and manipu-
lating trigonometric identities. There are the defining identities that relate the basic
values of the six trigonometric functions. For all values of t for which the denomi-
nators do not equal 0,

sin t cos t 1 1
tant =

, cotf = ——, seer =
, and esc t =

.

cos t sin r cos r sm t

You have also seen the Pythagorean identities. For all t,

sin2
r + cos

2 r = 1, 1 + tan2
r = sec

2
r, and 1 + cot2

r = csc
2

r.

In Section 9.2.2, we discussed several examples in which the trigonometric functions
are used to model periodic phenomena and to describe and analyze motion prob-
lems and geometric curves. Other applications of the trigonometric functions to the

analysis of mechanical vibrations are discussed in Section 9.3.2. Trigonometric iden-
tities are at the heart of all such applications. The trigonometric identities govern
and direct the use of the trigonometric functions in the same way that algebraic
properties such as the commutative and distributive properties govern and direct
the use of numbers.

The possible trigonometric identities are too numerous to list. In this section
we content ourselves with a derivation of the most basic of the identities. Then in the
Problems we ask you to use these to derive some of the other important identities.

A formula for rotation images
The definition of cos t and sin t as the x-coordinate and the y-coordinate of the image
of (1,0) under a rotation centered at the origin of magnitude t makes it natural that

trigonometric functions would be involved in formulas for rotation images in R2
.

Here is a proof of a theorem found in Section 7.2.2.

Theorem 9.9 (Rotation Image Formula): Let R& be the rotation with center (0, 0) and magni- J
tude <f. Then

R^x, y) = (xcosf —

y sin <j>, x sin </> + ycosf).

Proof: Because/^(l, 0) = (cos sin <f>), it follows that

R^x, 0) = (x cos </>, x sin <f), for all real numbers x.

Also, R^0, y) = (— y sin f>, y cos f>), for all real numbers y (see Problem 1). The
vector c = (x, y) is the sum of the vectors a = (x, 0), and b = (0, y), and the

points (0,0), (x, 0), (x, y), and (0, y) are successive vertices of a rectangle (see
Figure 31). When the three vectors a, b, and c are rotated, the image of c is the
sum of the images of a and b, since the image of a rectangle under a rotation is
a congruent rectangle.

From the formulas, above,

R^a) = R^x, 0) = (x cos f>, x sin f)

^(b) = R${0,y) = (~y sin 4>, y cos <fi).

and
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Figure 31

i^(c) = R^x, y) = (xcos cf) -

y sin </>, x sin </> + ycosf),
which completes the proof. _|

The product of the complex numbers x + iy and cos f + i sin <f> is

(x cos 4> —

y sin f) + i{x sin f + y cos </>). This once again shows that we can think
of multiplying x + iy by the complex number cosf + isinf as equivalent to

applying R$ to the point (x, y).

Formulas for cos(x ± y) and sin(x ±y)
In Theorem 9.9, we used </> to identify the argument of the trigonometric functions
because x and y are so identified with coordinates of points in R2

. Now we use the
Rotation Image Formula to derive identities involving the sum and difference of

arguments. The letters f and 9 are sometimes used for these arguments, but more

often these formulas are remembered using the letters x and y, as we show here. The

symbol =F, when used in conjunction with ±, means that there are two sentences being
written as one, with the top signs (— and +) being used for one identity, and the bot-
tom signs (+ and —) being used for the other.

Theorem 9.10 (Sum and Difference Formulas): For all real x and y, for which the expressions are

defined

a. sin(x ± y) — sinxcosy ± cosxsiny
b. cos(x ± y) = cosxcosy T sinxsiny

tan x±tan y
c. tanfx ± y) =

“

lTtanxtany

Proof:
a. and b. (simultaneously!):Think of (cos(x + y), sin(x + y)) as the image of

(1,0) under Rx+y . Then separate out the two rotations and apply the Rotation

Image Theorem.

(cos(x + y),sin(x + y)) = R V+V(1,0) (def. of cos and sin)
= Rx

° R
y ( 1,0) (angle addition)

= R v (cos y, sin y)
= (cos x cos y

- sin x sin y, sin x cos y + cos x sin y)
Equating the components of the first and last ordered pairs provides formulas for
both cos(x + y) and sin(x + y). The corresponding formulas for cos(x — y)
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and sin(x - y) follow from those for cos(x + y) and sin(x + y) because for
all x, cos(-x) = cos x and sin(-x) = —sinx.

c. tan(x ± y) — ^"(1^ v) • Now use the formulas found in parts (a) and (b) and
divide each by cos x cos y. See Problems 9a and 12.

The proof of parts a. and b. shows how intimately rotations, sines, and cosines
are related. Four identities are deduced in a few lines. There is even a more elegant
form of the addition half of these identities. Since Rx+y

= Rx
° R

y ,

cos(x + y) —sin(x + y) COS X -sinx cos y -sin y

sin(x + y) cos(x + y) sin x cos X sin y cos y

cos x cos y
— sin x sin y —sin x cos y + cos x sin y

sin x cos y
— cos x sin y cos x cos y

— sin x sin y

The sum and difference formulas are significant because from them so many other
formulas can be derived. By letting x = y, the double-angle formulas for cos 2x and
sin 2x follow. From the double-angle formulas, formulas for cos 3x, sin 3x, cos 4x, sin 4x,
etc., can be derived. Also, from the double-angle formulas, formulas for cos(f) and sin (f )
can be deduced. By adding or subtracting the formulas for cos(x + y) and cos(x - y)
and other pairs of sums and/or differences, the product-to-sum identities can be obtained.
Before logarithms were discovered, the product-to-sum identities were used by mathe-
maticians to perform difficult multiplications. These ideas are explored in the Problems.

9.3.1 Problems

1. Explain why, for all real numbers y, the image of (0, y)
under a rotation of magnitude </> around the origin is

,y) = (~y sin cos</>).
2. Use the Pythagorean identities and the Sum Formulas to

derive the following double-angle formulas.

a. cos(2x) = cos
2
x — sin2

x

b. cos(2x) = 1 - 2sin2
x

c. cos(2x) = 2 cos
2
x - 1

d. sin(2x) = 2 sinx cos x

3. Use the identities in Problem 2 to derive the following half-

angle formulas.

a. Prove: For all x, |cos(§)| = \Jl +

y
§
-.

b. Find and prove a formula for |sin(§ )| in terms of cos x.

c. Your formulas and proofs for parts a and b should be sim-
ilar. Explain why there is no similar formula and proof for
a formula for |sin(f)| in terms of sin x.

4. Use the Sum Formulas to find multiple-angle formulas.

a. Find a formula for cos(3x) in terms of cos x and sin x, and

verify your formula with a specific value of x.

b. Find a formula for cos(3x) in terms of cos x.

c. Find a formula for sin(3x) in terms of sin x and cos x, and

verify your formula with a specific value of x.

d. Find a formula for cos(4x) in terms of cos x and sin x.

e. Find a formula for cos(4x) in terms of cos x.

f. Find a formula for sin(4x) in terms of sin x and cos x.

g. Prove that cos (nx) can be expressed as a polynomial of

degree n in cos x.

5. a. Derive an expression for in terms of cos x.

b. Generalize part a in some way.
6 . Use the fact that sinff) — = cos(f) and identities in
Problem 3 to determine the following sines and cosines.

C. Sin l / 2 , 1 2

d. Do you think that the pattern established in parts a-c per-
sists? Why or why not?

7. In 1593, Viete proved that

2_ /I /T 1 /l K 1 ll 1 /f
77

_

V2 V 2
+

2 V2 V 2
+

2 V 2
+

2 V 2
*

’ ’

He found this formula by computing areas of regular poly-
gons with 4, 8,16,..., 2" sides inscribed in a circle of radius 1.
This problem asks you to carry out the steps of this derivation.

a. Find the area of a regular polygon of 2

1

2 sides inscribed in
a circle of radius 1.

b. Find the area of a regular polygon of 2 3

4

sides inscribed in a

circle of radius 1, and show that this area can be written in

the form
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c.

d.

Show that as the number of sides is doubled from n to 2n,
an area equal to n(sinf)(l - cosf) is added.

Find the area of a regular polygons of 24 sides inscribed in
a circle of radius 1, and show that this area can be written in

the form

HVI
e. Based on a pattern in parts a-d, make a conjecture for the

area of a regular polygon of n = 2 k sides inscribed in a cir-
cle of radius 1.

f. Show how your conjecture leads to Viete’s formula.

8. Use the Sum and Difference Formulas to find the product-
to-sum formulas. Before the invention of logarithms, these

formulas were used to perform complicated multiplications.
a. Prove that cos x cos y = ^(cos(x + y) + cos(x — y)).
b. Assume you have a table of cosines (use a calculator for this)

that enables you to find inverse cosines as well. Multiply 95632

by 61807 in the following way. Determine x = cos~'(.95632)
and y = cos

-1 (.61807) with your “table”. Find cos(x + y)
and find cos(x — y), again using your table. Divide by 2 and

put the decimal point in the proper place.
c. Prove that sin x sin y = |(cos(x — y) — cos(x + y)) and

perform the same multiplication as in part b using that identity.

9. a. Prove that tan(x ± y) =

1Ttanxtany .

b. By dividing the formula for sin(2x) by the formula for

cos(2x) in Problem 2, prove that tan(2x) =
■

c. Deduce a formula for tan(3x) in terms of tan x.

d. Deduce a formula for tan(f) in terms of cos x.

e. Deduce a formula for tan(f) in terms of sinx and cosx

that contains no radicals.

10. a. Deduce a formula for cot(2x) in terms of cot x.

b. Deduce a formula for cot(f) in terms of sinx and cosx

that contains no radicals.

11. It can be proved that if x is a nonzero rational number, then
cos x is irrational. 3 Use this result in the following problems.
a. Prove that v is irrational.

b. Prove that sin x, tan x, cot x, sec x, and esc x are irrational

whenever x is a nonzero rational number for which the

function is defined. (Hint : Use formulas for cos 2x.)
c. Prove that nonzero values of sin-1

x, cos
-1

x, and tan-1
x are

irrational whenever x is a rational number in their domains.

12. Use a formula for tan(x — y) (see Problem 9a) to deduce
a formula for the tangent of the acute angle formed by two non-

vertical and nonperpendicular lines with slopes m x and ra2 .

9 . 3.2 Geometric properties of the sine and cosine functions

We know that, by definition, the sine and cosine functions are periodic with period 2u.
That is, if p = 2 tt, then

sin(x + p) = sin(x) and cos(x + p) = cos(x), for all real numbers x,

and no smaller positive value of p has this property. More generally, for each posi-
tive number c, the functions

x—»sin(cx) and x—>cos(cx)
have period p = In some applications, the period p is called the wave length. We
also say that these functions have frequency / = ^. Thus, for example, the real func-
tion x —> sin(7rx) has period 2 and frequency \ (see Figure 32), while x —» cos(2x)
has period tt and frequency - (see Figure 33).

y = sin(7rx) y = cos(2x)

3 For a proof, see Ivan Niven, Irrational Number, Carus Monograph No. 11 (Washington, DC: Mathemat-
ical Association of America and John Wiley, 1956), 17.
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Sum of multiples of a sine and a cosine function with the same period
Combinations of sine and cosine functions often have interesting but predictable
graphical features, as the examples in this section illustrate. It is best if you have a

graphing utility as you read this section, so that you can construct the graphs shown
here while you read.

I EXAMPLE 1 a. Graph the function / defined by

f(x) = -3cos(2x) + 4sin(2x)
on the window —27t < x < 277 , —6 < y < 6 .

b. Analyze why the graph looks the way that it does.

Solution

— 2tt < x < 2tt, x-scale f= 1

-6 < y < 6, y-scale = 1

a. Your graph should look like the graph of a positive multiple of the sine or cosine
function that has been shifted along the x-axis (see Figure 34). The values of
the function appear to range from -5 to 5 and the period should appear to be
about 77, which is the same as the period of the given sine and cosine terms.

b. It seems that /(x) is expressible in the form /(x) = Acos(c[x — £]) or

/(x) = Asin(c[x + Z?]) for appropriate constants A and B. Either of these
forms of /(x) would explain the apparent nature of the graph of /(x) shown in

Figure 34. To obtain the Acos(c[x — B ]) form, we multiply and divide the

given expression for /(x) by 5 = \/(—3) 2 + 4 2 to obtain

(—3 4
f(x) = — 3cos(2x) + 4sin(2x) = 5( ~^-cos(2x) + — sin(2x)

We have chosen the multiplier so that the coefficients, — § and f are coordinates
of a point ( — f, f) on the unit circle. Consequently,

there is an angle 9 such that

cos 9 =

3

5
and

4
sin 9 = —.

(This angle has measure approximately 2.214 radians or 126.9°.) Therefore, we

can express f(x) in the form

/(x) = 5(cos 9 cos(2x) + sin0sin(2x))
= 5 cos(2x — 9)

= 5 cos 2 * —

2

This form of /(x) shows that the graph of /(x) is a cosine curve with an ampli-
tude of 5, period 77, that is shifted to the right by \.

Example 1 can be generalized into a theorem, whose proof we leave to you.

Theorem 9.11 Every function / of the form

/(x) = acos(cx) + bsin(cx),
where a , b, and c are real numbers, can also be expressed in the form

/(x) — Acos[c(x — B)],
where A = Vu2 + b2

, cos (Be) =

j, and sin (Be) =
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I EXAMPLE 2

Solution

Figure 35

—

7T < X < 77, x-scale = 1

-6 < y < 6, y-scale = 1

Figure 36

-77 < X < 77, x-scale = 1

-6 < y < 6, y-scale = 1

Either of the forms /(x) = Acos[c(x - 5)] or f(x) = Asin[c(x + 5)] is
called a phase-amplitude form of /(x) because the constant A represents the

amplitude and B the horizontal shift or phase shift from the standard position of the

corresponding sine or cosine function. As you will see later, the phase-amplitude
form of a function is quite useful in analyzing vibrational phenomena.

Sums of multiples of two sine and/or cosine functions with the same

amplitude and different periods
When multiples of sine and cosine functions have different periods, adding them may
result in a function whose graph is not a pure sine wave. Still, a simple equation for
the sum can be obtained and its graph analyzed.

a. Graph the function g defined by g(x) = 2cos(8x) — 2 cos(lOx) on the window

— 77 < x < 77,
— 6 < y < 6.

b. Analyze why the graph looks the way that it does.

a. Your graph should look like that of a sine or cosine function with a small period
that has been “pinched” along its length near x = -77, x = 0 and x = 77 (see
Figure 35). The graph appears to be symmetric to the y-axis.

If you graph this function over a larger interval, for x such as

—477 < x < 477, you may find that the graph breaks up badly due to the pixel
limitations of your calculator screen, but you should still see that the pinching
effect persists in intervals of apparent length 2tt.

b. Note that the period of the first term is yp
= f while that of the second term is

= f. Also note that

g(x) = 2cos(8x) — 2cos(10x)
= 2cos(9x — x) — 2cos(9x + x).

This is in the form of the identity of Problem 8c in Section 9.3.1. From that

identity,

g(x) = 4 sin(9x) sin x.

This expression for g(x) reveals why its graph has its unusual appearance. The

4sin(9x) term is periodic with period and amplitude 4. It is multiplied by
the factor sinx, which has period 277 , and has values ranging from -1 to 1.

Thus, the graph of the h{x) = sin x factor provides an outline for the graph of

g. This is seen in Figure 36.

The most critical features of the function g in Example 2 are that the coeffi-
cients of the two terms are equal and the frequencies of the two terms are close in size.
Thus their difference is much smaller than their sum. The fact that the two functions

being added are cosine functions is not critical. (See Problem 7 following this section.)

An application to the analysis of mechanical vibrations.

The analysis of mechanical vibrations is important to a diversity of real-world phe-
nomena, from situations as large as the design of machinery and earthquake-resistant
structures to the analysis of atomic and molecular vibrations, among others. As with

many applications of mathematics, there is a simple physical model that is used as a

basis for mathematical models of the application. For example, in probabilistic or
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Figure 37

support

statistical applications, the physical model of drawing cards from a deck or balls from
an urn is a simple but useful model. For problems in mechanical vibrations, the spring-
mass system pictured in Figure 37 is useful.

When the mass at the base of the spring (shown in Figure 37 as a sphere) is dis-
turbed in the vertical direction at a certain time t = 0, by positioning it above or below
the equilibrium position and/or by imparting an initial velocity upward or downward,
the mass will oscillate in the vertical direction for t > 0. If x(t) is the directed distance
of the center of the mass from its equilibrium position at time t > 0, then x(t) depends
not only on the initial position x0

= jc( 0) and the initial velocity v0
= x'(0) given to the

mass but also on the mass m and the physical characteristics of the spring.
Experience suggests that the spring oscillates and, in the idealized absence of

friction, would oscillate forever. But it is a wonderful surprise that the height of the
mass is given by a sine or cosine function. Fiere is why.

Within their elastic limits, stretching and compressing physical springs typically sat-

isfy Hooke’s Law: The magnitude |F| ofthe force F that is required to stretch or compress
a spring a distance D is proportional to D; that is, |F| = kDfor some positive constant k.
The constant k is called the spring constant for the spring. Springs with large spring con-

stants are stiff; those with small spring constants stretch and compress more easily.
Suppose that a spring-mass system consists of a mass m suspended from a spring

with spring constant k. If the internal friction of the spring and other forces acting on

the spring are assumed to be negligible, then as a consequence of Newton’s Second
Law of Motion ma = F; that is,

(mass) (acceleration) = force.

Because acceleration is the second derivative of position, and force is proportional
to the second derivative, the function x(t) describing the position of the mass at time
t must satisfy the differential equation

(1) m-
d2x(t)

dt 2 —kx(t ) for all r > 0

and the initial conditions:

(2) oXiloV
'

(initial position)

(3)
dx{0)

dt
=v° (initial velocity).

Equations (1), (2), and (3) are sometimes called the equations of motion for the

spring-mass system.

I EXAMPLE 3 Suppose that suspending a 6-lb weight from a certain spring stretches it 6 in. At time
t = 0, the weight is moved 4 in. above its equilibrium position and given an initial

velocity of 2 ft per second upward. Find the equations of motion of this spring-mass
system.

Solution In the ft-lb-sec system, mass is measured in slugs, and mass m in slugs of an object
is related to its weight w in pounds by w = 32m. Also, because the spring is
stretched 6 in. = \ ft, the spring constant k is given by 6 lb = k • \ ft or k = 12 lb

per ft. Therefore, the directed distance x(t) of the weight above the equilibrium
position satisfies the equation = — 12x{t), which simplifies to

d2x(t)
dt2(1 ') —64x(t) for all t > 0.
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I EXAMPLE 4

Solution

By adding the information about the initial position and velocity, we obtain (2')
and (3) of the equations of motion.

1
= — ft (initial position)

= 2 ft per sec (initial velocity)
I

It is possible to find the motion function x(t) from the equations of motion of the

spring-mass system in Example 3. This requires, quite obviously, use of the formulas for
differentiation of the sine and cosine functions derived in calculus. Recall that if

f(t) = sinf, then f'(t) = = cost, and if f(t) = cos= -sint.
From this, we can check that some specific functions satisfy the equations of motion.

(2') x(0)

(3')
dx(0)

dt

Question 1 : Verify that each of the functions

T
Xx(t) = cos and x2 (t) = sin

satisfy equation (1) of the equations of motion. More generally, show that if a and
b are any real numbers, the function

x3 (t) = a cos

satisfies equation (1).

t ) + b sin I A /—t
m

for all t > 0

Question 2: Show that if a = x0 and b = v0\/f in the function x3 of Question 1,
which satisfies equation (1) of the equations of motion, the resulting function
also satisfies equations (2) and (3).

Consider the spring-mass system described in Example 3.

a. Use the results of Question 2 to find the motion function x(t) from the equa-
tions of motion of the system.

b. Write x(t) in phase-amplitude form and use it to describe the graphical char-
acteristics of the motion function x(t) of the system.

c. Use a graphing utility to confirm the conclusions from part (b).
a. x(t) = cos *0 (vfO + voVc s ^n (Vf ? )- Here k = —V2 l

jt
and m = slugs.

Thus

x(t)
1 1

— cos(8f) + — sin(8f).

b. To write x(t) in the phase-amplitude form A cos[8(r — B)], note that

A= JW^4) = b cos(8B) = j-= f; sin < 8B ) =

J
= |

12 12

and so 85 « .6435 radians or 36.8°. Therefore, B ~ .08 radians or 4.61°. There-

fore, a phase-amplitude form of x(t) is

x{t) ^-cos[8(r - .08)],
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Figure 38 which shows that the amplitude of the oscillation of the mass is ^ ft or 5 in.
from the equilibrium position.

c. In the window 0 < t < f, — 1 < x < 1, the graph of x(t) looks like the graph
in Figure 38. This graph shows that the mass, which is initially 4 in. above its

equilibrium, continues upward for another inch because the initial velocity is

upward, before beginning its downward movement toward its equilibrium. The

frequency of the motion is ^ seconds or 1.27 seconds, so the motion pictured in

Figure 38 takes place in a little more than 2.5 seconds.

In the preceding discussion, it was assumed that no outside forces and no damp-
ing forces were acting on the spring-mass system. If an outside force is acting on the

system, then the resulting motion would obviously be affected. For example, sup-
pose that an outside force is acting on the spring-mass system in Example 1 so that
it is itself vibrating according to the function

fit) = ^sin(27it).

(This might be accomplished by moving the support up and down with an amplitude
of \ ft starting at t = 0.) Then it can be shown that the motion function x(t) of the
mass would be a function of the form

x(t) = Acos[8(f — B )] + Csin[27rf],
where A, B, and C are constants determined by the initial conditions, the mass m

and the spring constant k. This is the sort of function that we considered in Exam-

pies 3 and 4. Consequently, a motion of the sort displayed in Example 3 may
result. In the analysis of mechanical vibrations, such motions are called beats.
Most of us have experienced beats in sound vibrations. For example, the sound
that we hear from an electric motor running at a constant speed might have a

periodically varying amplitude because the support on which the motor is
mounted is vibrating at frequency close to the frequency of the sound produced
by the motor itself.

9.3.2 Problems
1

1 . Show that the function / with f(t) = -3cos(21) +

4sin(2t) in Example 1 can also be expressed as f(t) =

A sin[c(t + B)].
2. Prove Theorem 9.11.

3. Prove the analogue to Theorem 9.11 suggested by Prob-
lem 1 of this set.

4. Graph the function g with g(x) = sinx + cosx, and

explain why the graph has the shape it has.

5 . Graph h{x) = 7cosx — 24sinx and explain why the

graph has the period and amplitude it has.

6 . a. Graph/(x) = sinx — cosx and explain why its graph
looks the way it does.

b. Repeat part a for the function g(x) = (sinx — cosx)e *.

7. Suppose that q and c2 are real numbers such that

q > c2 > 0 such that q + c2 is much larger than q
— c2 .

Prove: If a is any nonzero real number and if /(x) has any of
the following forms,

a[cos(qx) ± cos(c2x)]
a[sin(qx) ± cos(c2x)]
a[cos(qx) ± sin(c2x)]
fl[sin(qx) ± sin(c2x)]

then / has a graph somewhat like that of the function in

Example 2 in this section.
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answers to questions

1 . if *(o = cos(VlO’ then x '(0 = - vl sin(v^0’ and

x"(0 - cos(V^ ? )’ sh°ws that equation (1) holds. If

40 = sin ( VmO’ then x '(t) = VI cos(v^f),andx"(0 =

— sin(\/It), so equation (1) again follows. If 40 =

acos(Vlf) + hsin(vlt),thenx'(0 = Vl sin{V^ { ) +

b Vl cos(VlO’ sox"(0 = “ a
m

cos(VlO -h^ sin(Vlt)’
and again equation (1) holds.

2 . x3 (0 = x0 cos(Vlt) + sin(V^), so x3 (0) =

X0 c°s(vl' d ) + ^ovf sin(Vl‘ 0 ) = X0 -l + 0 = XQ , so

equation (2) is satisfied, = -jc0VI sin(Vl ‘ °) +

^oVx* Vl cos ( Vi ' °) = ^o- So equation (3) is satisfied.

9.3.3 Analytical properties of the sine and cosine functions

The formulas that you learned in calculus for the derivatives of the sine and cosine

functions, for x in radians,

-

7-(shut) = cosx and ( cosjc) = —sinx,
ax ax

and the corresponding second derivative formulas

d2
. . . . .

d2

—r(stnx) = — snut and —r(cosjt) = — cos*,
ax dx

are remarkable in their simplicity and yet powerful in a variety of applications in

pure and applied mathematics.
In calculus, these formulas are often derived analytically by applying the limit

definition of the derivative, the addition formulas for the sine and cosine, and the

special limit:

lim -—- =1 6 in radians (see Problem 3).

Although these derivations are straightforward, they give little insight into the nature

of these functions as tools for modeling periodic behavior.
We now show that analytic properties of the sine and cosine functions embodied

in the differentiation formulas can be understood dynamically by using the sine and
cosine functions as models of periodic behavior. Specifically, we will explain these for-
mulas in terms of a mathematical model for uniform circular motion in a plane.

Uniform circular motion of an object in a plane
A uniform circular motion model is appropriate for physical situations such as (a) the
motion of a communications satellite in a circular orbit around earth, or (b) motion
of an object that you are spinning rapidly in a circle by holding one end of a string
with the other end tied to the object. A precise description of uniform circular motion
of an object requires statements about its path, its velocity, and its speed.

(P) Path of the object: The object travels in a path T that is a directed circle (i.e., a

circle with a specified direction) with a radius r and with a

center at a point O in that plane.

(V) Velocity and speed
of the object: The speed 5 of the object along the path is constant, and the

velocity vector of the object at any point P of the path is tan-

gent to the path T at P and points in the direction of the path.
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We need to say more than this to describe the situations (a) and (b) mentioned
above. For instance, if the string in situation (b) would break, the object would fly off
in a direction tangent to the circle at the point P where the object is located when the

string breaks. Your hand must exert (centripetal) force to keep the object moving
along the circular path T. This force F is exerted on the object in the direction from
the object to your hand and follows Newton’s law F = ma. With this example in

mind, we can add the following statement to the description of uniform motion.

(A) Acceleration of
the object: The object is accelerated toward the center of the circular

path T and the magnitude of the acceleration is constant. (The
centripetal force on the object accounts for the acceleration.)

We assume that all forces other than the centripetal force are negligible relative
to the centripetal force.

Mathematical models of uniform circular motion

Now we create a mathematical model for uniform circular motion. First, we need a

convenient location and description for the directed path T. Since T is to travel along
a circle of radius R, suppose that we locate that circle in the xy-plane with its center

at the origin. Then the path T is located on the circle

x
2 + y

2
= R2

.

However, this equation is not a suitable description of the path. Motion means that
the position P of the object depends on time. The equation x

2 + y
2

= R2 does not

allow us to determine the position of the object at a given time.
What we need is a description of the path in which the time t is a parameter and

that gives the location of the point P along the circular path at any time t. This can

be done with an equation for the position vector r(t) joining O to P at time t,

r(t) = g(t) i + h(t)j,
where i = (1, 0) and j = (0,1) are the standard unit vectors, and g(t) and h(t) are

real functions defined for all real numbers t. Any such path has a natural direction—

the direction of increasing t values—and a natural initial point—the point that cor-

responds to t = 0.
We now identify conditions on the functions g(t) and h{t) that correspond to

the path, velocity, and acceleration requirements (P),(V), and ( A ) above for uniform
circular motion on a circle of radius R centered at the origin O. Recall that velocity
is defined as the derivative of position with respect to time, and the derivative of

velocity with respect to time is acceleration. Thus, since the position vector r joining
O to P (Figure 39) is given by the vector function

r(t) = g(r)i + h(t)j,

Figure 39 P = (g(t), h{t))^.—

/ \(0
/ Y

k . \
]

1 0 i I
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the velocity vector v at P is

v(t) = g'{t)i + h'{t)j.
The speed s(t) at time t is the magnitude of the velocity vector. That is,

s(t) = |v(t| = Vg'(t) 2 + h'(tf.
The acceleration vector a is given by

a(t) = + h"(t)j.
To assure that this path is on the circle of radius R centered at the origin as

required in condition (P), we need to require that g(t) and h(t) satisfy the two con-

ditions shown here as (P*).

(P*) i. g(t)2 + h(t) 2
= R 2 for all t, and

ii. for all (x, y) with x
2 + y

2
= R 2

, there is a t such that x = g(r)andy = h{t).

According to the velocity condition (V), the speed of the object must be con-

stant for uniform circular motion. Consequently, g(t) and h(t) must also satisfy the

velocity condition (V*).
(V*) The functions g(r) and h{t) are differentiable and there is a constant K such

thatg'(r) 2 + h'(t) 2
= K 2 for all t.

Condition (V) for uniform circular motion also requires that the velocity vec-

tor v(t) at any point P along the circular path T must be perpendicular to the posi-
tion vector v(t) at P. (The tangent to a circle is perpendicular to the radius at its

endpoint on the circle.) In Problem 4, you are asked to verify that r(t) = g(r)i + h(t)j
andv(t) = g'(t) i + h'{t)j are perpendicular vectors if and only if the following con-

dition is satisfied,

g(t)g'(t) + h{t)h'{t) — 0 for all t\

that is, if their dot product is zero. However, this condition is automatically satisfied
for differentiable functions g(t) and h{t) that satisfy condition (P) because

g(t) 2 + h{t) 2
= R 2 for all t => 0 = ^(^2 ) = 2g(t)g'(t) + 2h(t)h'(t) for all t.

Consequently, conditions (P*) and (V*) together assure that the requirements (P) and

(V) for uniform circular motion on a circle of radius R are satisfied.

Finally, we consider condition (A) on the motion. This requires that the accel-
eration of the object is directed toward the center of the circular path and that it has
a constant magnitude. Because the acceleration is directed toward the center of the

circle, its direction is opposite to that of the position vector r(t) = g(t) i + h(t)\.
Because its magnitude is constant, it is simply a negative multiple of the position vec-

tor. Consequently, requirement (A) for uniform circular motion is met if the functions

g(t) and h{t) satisfy the following condition.

(A*) There is a positive constant M such that a(t) = — Afr(t); that is,

g"{t) = - Mg(t) and h"{t) = —Mh(t) for all t.

In summary, if we can find a pair of twice differentiable functions g(t) and h{t)
that satisfy conditions (P*), (V*), and (A*), then the vector function

r(t) = g(0 i + h(t)j

provides a mathematical model for uniform circular motion.
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Notice that the requirements

g(t) 2 + h(t) 2
= R 2 and g'(t ) 2 + h'(t) 2

= K 2 for all t

in (P*) and (V*) bear a strong resemblance to the Pythagorean identity
cos

2
x + sin2

x = 1, and that the requirement

g"(t) = —Mg(t) and h"(t) = —Mh(t) for all t

is reminiscent of the derivative formulas

d2
. . . . d2

.

—r(sinx) = —sinx —r(cosx) = —cosx x in radians.
ax dx

These similarities suggest that vector function

r(t) = R(cosr)i + R(sint)j

might satisfy all the conditions (P*), (V*), and (A*). This is the case.

Theorem 9.12(a) The vector function

r(t) = Rcos(i)i + Rsin(f)j

describes uniform circular motion for an object P on a circle of radius R centered
at the origin O with a constant speed R and a constant magnitude of acceleration R.

Proof: Condition (P*) can be verified for this position function as follows:

i. V(Rcosr ) 2 + (Rsint) 2
= VR 2 (cos2

f + siipT) = R,

ii. If (x, y ) satisfies x
2 + y

2
= R2

, then (|, |) is a point on the unit circle and so

| = cos t,j = sin t for some t with 0 < t < 2tt. Since

-y-fsinx) = cosx and — (cosx) = —sinx,
dx dx

and

—y(sinx) = -sinx and
dx

da
_

dx2 (cosx) = —cosx,

conditions (V*) and (A*) are also satisfied by

r(t) = R(cosi)i + R(smt)},
with the constant K equal to R and the constant M equal to 1. Thus, this posi-
tion function is a model for uniform circular motion on a circle of radius R pro-
vided that the speed of the object is also R and provided that the acceleration
vector and the position vector have equal magnitudes.

A good mathematical model of uniform circular motion on a circle of radius R
should not require the speed of the object to be numerically equal to the radius of the

path. That might be the case for a particular motion, but we need a model with more

flexibility—one that allows us to specify the speed of the object as well as the radius
of its circular path. That can be accomplished by introducing a parameter k into our

model, as in the following generalization of the preceding theorem and proof. The

proof is left to you as Problem 1.
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Theorem 9.12(b) Suppose that k is a nonzero real number. Then the vector function

rk(t) = Rcos{kt)\ + Rsm{kt)\
describes uniform circular motion for an object P on a circle of radius R centered at

the origin O with a constant speed kR and a constant magnitude of acceleration k2 R.

Applying the models for uniform circular motion

We now return to one of the problems that motivated this discussion.

EXAMPLE 1 Determine the speed that must be attained by a launch vehicle to place a communi-
cations satellite in a circular orbit above the equator at a distance of 5000 miles above
the center of Earth.

Solution Assume that Earth is a sphere of radius 3960 miles and that the satellite’s orbit is
near enough to the earth so that the acceleration due to Earth’s gravity is essentially
the same as that on Earth’s surface, namely,

g = 32.2—« 79000—y
sec hr

Also assume that other forces acting on the satellite, such as atmospheric drag and
the gravitational attraction of the moon and other celestial bodies, are negligible com-

pared to the gravitational attraction of the earth. (These assumptions limit the radius
R of the orbit to the range from roughly 4100 to about 20,000 miles.)

By Theorem 9.12(b), we can model the uniform circular motion of the satellite
so that its position at time t is given by

r(t) = 5000 cos(/d)i + 5000 sin (kt)\.

The velocity v(t) of the satellite at time t is the derivative of r(t).

v(t) = -5000/: sin (kt)i + 5000/: cos {kt)\

Its speed s(t) at time t is the magnitude of the velocity vector, so s(t) = 5000/:, a constant.

We call the constant speed 5. Its acceleration at time t, a{t) is the derivative of velocity.

a(t) = —5000/r cos(kt)i — 5000/:2 sin(Z:f)j

The acceleration has magnitude l a(t)| = 5000/c2
=

5000
Since the satellite’s acceleration must equal the acceleration due to gravity g,

~ 79000 ^y-,5000 hr2

from which s ~ V5000 • 79000 « 19,900^, and k « 3.98

The period p of the orbit is the period of the position vector, so p =

y ~

1.58 hours. _]

Are there other mathematical models for uniform circular motion on a circle
of radius R that differ significantly from the model given in Theorem 9.12(b)? The



474 Chapter 9 I Trigonometry

answer is no. Under reasonable differentiability restrictions on the pair of functions

g and h, the converse of Theorem 9.12(a) can be proved. That is, if g and h satisfy the
three conditions

g{t)

1

2 + h(t)2
= 1, jt

g(t) = —h(t), and jh{t) = g(t),

then g(t) - cos t and h{t) = sinf. Thus, not only are the sine and cosine functions
useful for modeling uniform circular motion, but the mathematical model of uniform
circular motion also explains why the sine and cosine functions have the first and
second derivatives that they do.

9.3,3 Problems
1

1. Prove Theorem 9.12(b).

2. Explain why the model in Theorem 9.12(b) has the fol-

lowing property: Once the radius R and the speed 5 of the
motion are specified, the constant k and the magnitude of the
acceleration are determined.

3. a. Use a geometric argument based on Figure 40 to verify
the limit formula

sin#
lim = 1, where 9 is m radians.
e^o 9

b. Apply the limit definition of the derivative

df{x) f{x + h) - f{x)
—j

— = lim
ax h^o h

to derive the formula ^(sinx) = cosx, where x is in

radians.

4. Verify that r(t) = g(f)i + h(t)j and v(t) = g'(t) i + h'(t)j are

Figure 40

orthogonal vectors if and only if the following condition is
satisfied:

g(t)g'(t) + h(t)h'(t) = 0 for all t.

5. Compute the orbital insertion speed and altitude to estab-
lish a stationary orbit above the equator for a communica-
tions satellite.

Chapter Projects
g

1. Trigonometry and musical instruments. Read “The
Mathematics of Musical Instruments”, by Rachel W. Hall and
Kresimir Josic, The American Mathematical Monthly 108:
347-357 (April 2001). Write a summary of this article that
could be used for presentation to a class.

2. Regiomontanus’s problem. Imagine you are looking at

a vertical sign that is above your eye level, as shown in

Figure 41.

Assume that the vertical dimension € of the sign and the

height h of its bottom above eye level are known. Let r be the dis-
tance of your eye from the projection of the sign on the ground.
We want to know the best place from which to read the sign.
For best viewing of the sign we would want to make the mea-

sure of the angle d2
— 9 x as large as possible. The sign then level

Figure 41
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occupies the greatest portion of your field of vision. Conse-

quently, this problem can be formulated as follows: Given
fixed values of € and h, find the value of r that maximizes

$2 — # 1 -

a. Show that the maximum viewing angle occurs when the

distance r = \/h{h + €).
b. Interpret the result in part a by showing that the maximum

viewing angle occurs when a line of sight from the eye ele-

vated at a 45° angle points at the “middle” of the sign,
where here the “middle” is the geometric mean of the

height of the bottom of the sign and the height of the top
of the sign above eye level, as shown in Figure 42.

Figure 42

c. Interpret the result in another way by showing that the

maximum viewing angle occurs when the viewing point P

is the point of tangency with eye level of a circle in a plane
perpendicular to the ground and to the sign, tangent to the

ground, and which contains the top and bottom of the sign
(see Figure 43).

Figure 43

3. Constructing a table of sines and cosines. Assume

you have a calculator that has no keys for the trignometric
functions but can calculate sums, products, differences, quo-

tients, and square roots. Construct an approximate table of

sines and cosines for angle measures from 0° to 90° in incre-

ments of 1° with the following steps.

a. From the known values of these functions for 30° and 45°,
using the identities in Section 9.3.1, obtain exact values for

sin 15n° and cos 15n° for n = 1,4, and 5. Then record dec-

imal approximations to these values.

b. Prove that sin 18° =
v^~ 1

.

c. Use the values from parts a and b and the identities in

Section 9.3.1 and its problems to obtain decimal approxi-
mations to sin 3n° and cos 3n° for 1 < n < 29.

d. Interpolate from the values you found in part c to obtain

decimal approximations for all the other integer degree
measures from 0° to 90°.

e. Compare the values you obtained in part d with the values

given by a calculator. Where you are farthest off, use the

half-angle formulas and more interpolation to obtain bet-
ter estimates.

4. Remarkable equalities. Values of the trigonometric func-

tions are related to each other in many and wondrous ways.
Here are eight identities and four relationships among specific
values. Deduce as many as you can.

a. For any x, sinx + sin(2x) + sin(3x) + ••• + sin(nx) =

sin|(n + l)x* *sin|(«x)
sin|x

b. For any x, cosx + cos(2x) + cos(3x) + • • • + cos(nx) =

cos|(n + l)x-sin|(nx)
sin|x

c. For any x, sinx + sin(3x) +
• / _ s . . . . sin2 (nx)

sm(5x) + ••• + sm((2n - l)x) =

--7.

d. For any x, cosx + cos(3x) +

cos(5x) + ••• + cos((2n - l)x) =

-^77.

In identities e-h, A, B , and C are angles in any triangle ABC.

e. sin A + sin B + sinC = 4 cos i A • cos^B • cos^C
f. cos A + cos B + cos C = 1 + 4 sin \ A • sin \ B • sin \ C

g. tan A + tan B + tan C = tan A • tan B • tan C

h. cot^A + cot^B + cot^C = cot^A • cot^B • cot^C
i. sin 20° • sin 40° • sin 60° • sin 80° = ^
j. cos 20° • cos 40° • cos 60° • cos 80° = ^
k. sin 6° • sin 42° • sin 66° • sin 78° = ^
1. sin 12° • sin 24° • sin 48° • sin 96° =

jg
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5. Modeling with trigonometric functions. In Section

9.2.2, the length of a day in the year 2000 at 40°N latitude over

a year is approximated by a trigonometric function. Find data

for your location for at least one day in each month of the cur-

rent year for each of these three times: sunrise, sunset, and the

length of a day. (Note: For sunrise and sunset, you may need

to interpolate from values given in an almanac to take into

account the longitude of your location.) Model each of these

times with a trigonometric function and compare the values

given by your model with the actual data for your location.
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Figure 1

AREA
AND VOLUME

In two-dimensional space, area measures the space covered or enclosed by a figure.
The calculation of area of land is one of the oldest problems that we know of in math-

ematics, originating in part from problems of fair apportionment of land inherited

by children from their parents.
The problem of calculating such areas immediately becomes difficult. Bound-

aries of land are often not straight; they may include parts of rivers or edges of foothills
or swamps. The land itself may include small bodies of water. The land may be hilly.
One method of finding the area of irregular pieces of land is not very far from the

approach taken in calculus. If the land is not too large, it is photographed from above,
thus making it flat. A grid of congruent squares with known dimensions is placed
over the photo (Figure la). The number of squares entirely inside the boundary plus
half the number crossed by the boundary provides an estimate for the area. If a more

precise estimate is desired, then smaller squares are used (Figure lb).

This approach is quite similar to the approach we take in Unit 10.1 to develop
and discuss the area of plane figures. It applies also to the calculation of the surface
area of common three-dimensional figures. That is, we can trace everything ulti-

mately back to the areas of squares because, as we will show, we can rearrange the

parts of any polygonal region to form a square.
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In Unit 10.2 we discuss volume. The volume of a 3-dimensional figure is a mea-

sure of the space occupied or enclosed by it. The approach that is used for area would

suggest that the volume of a polyhedron can be determined by rearranging its parts
to form a cube. It turns out that, although we can and do measure volume in cubic

units, we cannot reduce all three-dimensional polyhedra to cubes the way that we

can reduce all two-dimensional polygons to squares. Nonetheless, we can still obtain
formulas for the volume of the three-dimensional figures commonly studied in school.

Thus, despite important similarities, area and volume possess significant differ-
ences that make them interesting to study and compare.

Unit 10.1 Area

Many students leave their study of mathematics associating area with formulas (rather
than size) and thinking that they need to have the formula for the area of a figure
before they can obtain its area. In this unit, we show many ways of arriving at the area

of a figure, and many ways in which area formulas are related. We begin at the log-
ical beginning, with a definition of area.

In comparison with distance as linear measure, area can be conceived of as sur-

face measure—one that gives the plane or surface “content” of a figure. And, like dis-

tance, the calculation of area is subject to the context in which it is applied. In

geometry we calculate area using formulas based on the sides and angles of figures.
In calculus, we define area as the limit of a sum and calculate it as a definite integral.
Where did these methods come from? What assumptions do we make when we apply
them? These are some of the questions we address in this unit.

10 . 1.1 What is area?

Suppose we want to calculate the area of a plane region F and we do not know any
formulas for calculating the area of F. How could we proceed? One possible method
is to compare F with a region whose area we do know. If we can superimpose that

region on F, we can be confident both have the same area.

Another method we could use is to choose a region and designate it as “the
unit of area”. Then we calculate the area of F by decomposing it into nonoverlap-
ping units that completely cover the region. This decomposition method presupposes
that we can decompose F into a finite number of nonoverlapping units. We then add
the areas of these units to obtain the area of F. This is the approach we follow.

Area is a property of 2-dimensional figures. The basic regions of elementary
geometry for which we calculate area fall into two types: those bounded by line seg-
ments and those bounded by curves. Of course, we can combine these regions to

obtain regions with both characteristics. Our treatment of area will extend to all
these figures, but we begin with the first type, that is, polygonal regions. Because

polygonal regions can be decomposed into triangular regions, our definition of an

area function needs to cover only triangular regions at first.

Specifically, a triangular region is the set of all points interior to or on the sides
of a triangle. The area of a polygon is then found by adding up the areas of its con-

stituent triangular regions. Before we do this, however, we need to choose a unit of
area. We choose the square as the unit of area for several reasons. It has congruent
edges, so its area calculation is the same no matter which edge you choose, unlike the

triangle whose area calculation depends on what side is its base. Also, it turns out (as
we show in Section 10.1.5) that any union of triangular regions can be decomposed
and rearranged into a single square. And because we customarily measure in square
units , we can transfer the theory based on the square as a unit of area directly to prac-
tical problems.
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Definition Let F be the union of a finite collection of triangular regions in E 2
. An area func-

tion a is a function that assigns to each such F a positive real number a(F) such
that:

1. If Fx = F2 , then

oc(Fi) = a(F2 ). (Congruence property)
2. If the triangular regions making up F1 and F2 have no interior points in

common, then

ol{Fx U F2 ) = ct(Fi) + a(F2 ). (Additive property)
3. If F is a square region with side x, then

a(F) — x
2

. (Area of square)

Some books replace (3) by the area ol{F) = ab of a rectangular region with

adjacent sides a and b. We could also replace (3) by the area a(F) = \x 2 of an isosce-
les right triangle with leg x (i.e., half a square), which puts the entire definition in

terms of triangular regions. We begin with the area of a square because area is typ-
ically measured in square units and because we can derive these other formulas quite
easily from it, as you will see.

Part (2) of this definition rests on a tacit assumption: that if a region is split into

triangular regions in two different ways, then both the areas calculated are the same.

That assumption relies on a further assumption, that the pieces of a triangular region
can be rearranged into a square, and if there is more than one rearrangement into

squares, then all such squares have the same size. 1 You might think of this in the fol-

lowing way: Suppose you calculate the area of a triangle using the familiar formula

A - \bh, that is, area = half the product of a length of a side and the altitude to that
side. Will you get the same area if you pick another side of the same triangle? The
answer is yes, but this is not something that a complete mathematical theory could take
for granted. In Section 10.1.2, we return to this question.

The theory of area technically requires that we always refer to the areas of

regions because area is defined in terms of unions of sets. But in practice, we speak
of the area of a square or triangle, not the area of a square region or triangular region.
There is nothing mathematically wrong with this. We are merely referring to a region
by the boundary of that region. Moreover, it is natural to speak of the area of a poly-
gon or other simple closed curve when we think of how much space it encloses, and
to speak of the area of the corresponding plane region when we think of how much

space the region covers.

From squares to polygons and beyond
We have mentioned that some books begin by assuming that the area of a rectangle
is length times width. They then proceed in the following sequence:

area of rectangle => area of right triangle => area of any triangle => area of trapezoid.
In contrast, we begin with the more basic area formula for a square and go as far as

area calculations using calculus. Along the way we stop to gaze at the landscape and
deduce some broadly applicable theorems not found in all high school books. Our

development is described schematically in Table 1.

Tor a detailed treatment, see Geometry: A Metric Approach with Models, by Richard S. Millman and

George D. Parker (New York: Springer-Verlag, 1981).
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Table 1

Area of square => Area of rectangle => Riemann sums

(def. of area function) (Theorem 10.1)
II

Area of right triangle

(Section 10.1.4)

=> SASA formula => ASA A formula

(Corollary)
II

Area of triangle

(Theorem 10.8) (Theorem 10.9)

Area of quadrilateral => Area of circumscribed => Hero’s formula
with 1 diagonals (Theorem 10.3) polygon (Theorem 10.6) (Theorem 10.7)
(Theorem 10.4) 4 II

Area of trapezoid Area of circle

(Theorem 10.5) (Theorem 10.10)
II II

Trapezoidal rule Area of ellipse

From squares to rectangles
The proof of Theorem 10.1 shows how the formula for the area of a rectangle follows
from the definition of an area function. The proof is short and involves only ele-

mentary algebra, yet it uses all three parts of the definition.

Theorem 10.1 The area of a rectangle is the product of the lengths of two adjacent sides.

Proof: Without loss of generality, let ABCD be the rectangle and let AB = b and
BC = h. Extend BA by a line segment of length h to the point E, and extend BC

by a segment of length b to the point F. BE and BF have length (h + b) and are

the sides of a square EBFG, as shown in Figure 2.

Figure 2 F b I G

b

C

h

B b A h E

b

D

Rectangles ABCD and DHGI are congruent. By the congruence property
(1) of the definition of area function, they have the same area. By property (3)
of the definition of area function, a(EBFG) = (h + b) 2

, a(EADH) = h2
, and

a(DCFI) = b2
. J

Question: Complete the proof, indicating where the additive property (2) of the
area function is used.

In the statement of Theorem 10.1, the word “side” refers to a segment. But
often we use that word to refer to the segment’s length. For instance, we speak of a
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rectangle with sides a and b. The dual use of a word to refer either to a segment or

its length is found throughout geometry, for example, with “radius”, “diameter”, “leg”,
“hypotenuse”, “diagonal”, etc.

Since a rectangle with dimensions a and b can be formed from two congruent
right triangles with legs a and b, a formula for the area of a right triangle follows

immediately from Theorem 10.1.

Corollary: The area of a right triangle is \ the product of its legs.

Figure 3 Other measures of two-dimensional regions
Area is not the only measure of two-dimensional regions. For example, the width of
a two-dimensional region in a particular direction is the length of the longest seg-
ment joining two points of the region parallel to that direction. For instance, since the

longest segments joining two points on a rectangle are its diagonals, the longest width

of a rectangle with dimensions £ and w is Vf?2 + w
2

, in the direction of either diag-
onal (Figure 3). A circle with radius r has constant width 2r and is one of many fig-
ures with constant width. Three such figures are displayed in Figures 4a-c.

Figure 4b Figure 4c

And of course there is perimeter. The perimeter p{R) of any polygonal region R
is the sum of the lengths of its sides. This defines a function p that students often con-

fuse with area. One reason for the confusion is that the units of the function are ignored
in the mathematical definition, so that the ranges of the area and perimeter functions are

identical. However, the units are never the same: The unit of perimeter is a 1-dimensional
unit segment and the unit of area is the 2-dimensional unit square. A second reason for
the confusion is that the numbers used for dimensions of rectangles and triangles in
schoolbooks are often small integers, and for these integers the numerical values of
area and perimeter are of the same general size. A third reason for the confusion may
be that these topics are taught without reference to physical examples. With examples,
the difference is significant: A lake’s area indicates how much room there is for fishing,
while its perimeter gives the amount of shoreline; a room’s area tells how much floor-

ing is needed, while its perimeter gives the amount of baseboard; and so on.

The following theorem establishes that area does not determine perimeter even

in simple figures. The figure of Theorem 10.1 suggests a geometric proof for Theorem
10.2 that we encourage you to produce. Here we provide an elegant algebraic proof.
The key to the proof of Theorem 10.2 is to let x be the amount by which a side differs
from \ the perimeter p. When the rectangle is a square, \p is the length of the each side.
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Theorem 10.2 Of all rectangles with a given perimeter, the square has the greatest area.

Proof: Let the rectangle have perimeter p, length €, width w, and area A. By the
definition of perimeter, p = 2€ + 2w, so f = i + w. We know then that € is some

number between 0 and f. So we can let € = f + x. Then f — x. So

A = tw = (f + x)(f — x) = ^ — x
2

. Since x
2 is always nonnegative, the area A

is maximized when x = 0: that is, when i = w and the rectangle is a square. _J

Area formulas quickly deduced

From the area formula for a right triangle (Corollary to Theorem 10.1), we can deduce
the familiar area formula for any triangle.

Theorem 10.3 The area of a triangle is \ the product of a side and the altitude to that side.

Proof: Let the triangle be ABC, let b = AC, and let h — the length of the altitude
BD from B to AC. We wish to show that a(AABC) = \hb. There are three cases.

Case 1: If D = A or D = C (Figure 5a), then AABC is a right triangle and its
area is \ hb from the Corollary to Theorem 10.1.

Figure 5a Figure 5b Figure 5c

Case 2: If D lies on AC (Figure 5b), then, using the Corollary to Theorem 10.1.

1 1
a(AABC) = -h'AD + - h-DC

= ih(AD + DC) = | hb.

(from the additive property
of the area function)

Case 3: If D lies outside of AC, say on CA as shown (Figure 5c), then, again
from the additive property of the area function,

a(AABC) + -h‘AD = -h-DC

Thus

a(AABC) = ~h • DC - |h-AD

1
h(DC - AD)

= ~hb.
2

If D lies outside of AC on AC, the proof is similar to that in (3). J
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From either the formula for the area of a rectangle or for the area of a triangle,
a formula for the area of any quadrilateral with perpendicular diagonals can be
obtained. This formula is useful because it applies to all kites and thus to all rhombi
and squares.

Theorem 10.4 If a quadrilateral has perpendicular diagonals of lengths d x and d2 , then its area

IS 2 d]. •

1

Proof; Let ABCD be a quadrilateral with perpendicular diagonals AC and BD inter-

secting at E , as shown in Figure 6a. From the additive property of the area func-

tion, and from Theorem 10.3,

u(ABCD) = a{AADB) + a(ACDB) = AE-BD + EC-BD = AC-BD .

Figure 6

(a) (b )

If the diagonals do not intersect, then the quadrilateral is not convex. Extend the

diagonals as needed to again intersect at E (Figure 6b).
Now

So

a(AABC) = a(ABCD) + a(AADC).

AC-BE = a(ABCD) + AC-DE

AC'BE - AC-DE = a(ABCD)

AC-BD = a(ABCD).
J

From the formula for the area of a triangle, we can obtain a formula for the
area of any trapezoid. By the shortness of its proof, it could be considered a corol-

lary to Theorem 10.3. Its importance leads us to call it a theorem.

Theorem 10.5 The area of a trapezoid with bases b x and b2 and height h is \h{bx + b2 ).
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Proof: Refer to Figure 7. Suppose AD and BC are bases of trapezoid ABCD , h is
the distance between AD andBC,bx

= AD, and b2
= BC. Then

a(ABCD) = a(AABD) + a(ADBC) by property (2) of the area function

1
,

=

2
b ' h +

2
blh

= \h{bx + b2 ). Jj

The trapezoid area formula is significant because it applies to all parallelograms,
rhombi, rectangles, and squares, and in calculus is used to develop the Trapezoidal Rule
that approximates areas under curves. (In calculus, the bases are typically vertical, so

some students at first do not recognize that the figures are trapezoids.)
In Section 8.3.2, in two ways we extended a theorem about a line intersecting a side

of a triangle. One way was by increasing the number of parallel lines; the second was by
increasing the number of rays from one vertex. Theorem 10.5 and the next theorem

roughly arise applying the same types of generalization to the area formula A = \ hb for a

triangle. The proof of Theorem 10.5 uses triangles with the same height between parallel
lines. The proof of Theorem 10.6 uses triangles with the same height emanating from the
same vertex. Recall that a polygon is circumscribed about a circle, or, equivalently, a cir-
cle is inscribed in a polygon, if and only if each of the polygon’s sides is tangent to the circle.

Theorem 10.6 The area of a polygon with perimeter p circumscribed about a circle with radius r |
is \rp.

Figure 8 a2

Proof: The proof is straightforward. Let A 1 A2A 3 ... A n be a polygon circumscribed
about circle O with radius r (see Figure 8). The polygonal region A X A 2 A 3 ...A„ is
the union of the triangular regions OA1 A 2 , OA2A 3 ,..., OAn A x . Each triangular
region has height r because a radius of a circle is perpendicular to any tangent to the
circle at the point of tangency. So

ot{Ai A 2A 3 ■.. A n ) = a(
K OA l A 2 ) + a{OA2A 3 ) + ••• + a(OAn A l )

= ^r(AiA2 ) + -r(A 2 A 3 ) + ••• + ^r{AnAf)

= + A 2A 3 + ••• + A n Af)
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Theorem 10.6 applies to all regular polygons, and also to any triangle, since a cir-
cle can be inscribed in any of these figures. The application to triangles, discussed in
the next section, is particularly productive.

10.1.1 Problems
1

1. a. Estimate the area of the region in Figure la given that
each square is 1 unit on a side.

b. Estimate the area of the region in Figure lb given that each

square is \ unit on a side.

2. In the proof of Theorem 10.1, if the original rectangle
ABCD has dimensions 7" and 10", what are the dimensions
of the two squares HEAD and FIDC1 Explain how the area

of the rectangle can be derived from the areas of these two

squares.

3. Figure 9 suggests a proof of the triangle area formula

A = \bh from the area formula for a rectangle for the case

where the angles including the base of the triangle are both
acute.

Figure 9

B

a. Provide the proof.
b. Draw the corresponding figure for the case in which a base

angle is obtuse and prove the theorem for this case.

4. A rectangle has dimensions x and y, with x ^ y.

a. What is its minimal width?

b. What is its maximal width?

c. If this rectangle is the frame of a door, what is the radius
of the largest circular table top that can be passed through
the door? (Ignore the thickness of the table top.)

5. Let € and m be parallel lines containing the vertices A and
C of the rectangle ABCD and not containing any other points
of the rectangle. Prove that the distance between € and m is

greatest when either line is perpendicular to AC.

6 . Let AABC be equilateral. Consider the region bounded

by the circular arc BC with center A, the circular arc AC
with center B, and the circular arc AB with center C. Prove
that this region has constant width. (The union of the three

arcs BC, AC, and AB is known as a Reuleaux triangle and

is shown in Figure 4b of this section.)
7. Provide a proof for the situation of Figure 6a ofTheorem 10.4
that avoids Theorem 10.3 by separating the quadrilateral into
four right triangles.
8 . Let ABCD be a trapezoid with AB 11 CD. The segment
joining the midpoints of the other sides AD and BC is a

median of the trapezoid ABCD. Prove that the area of a

trapezoid is the product of its height and the length of the
median perpendicular to that height.
9 . What is the area of an isosceles trapezoid with sides of

length 20,25,25, and 28?

10. An isosceles trapezoid has bases of length 9 and 15 and
it can be circumscribed about a circle. Can its area be deter-
mined? If so, find the area. If not, tell why the area cannot

be determined.

11. Let ABCD be an isosceles trapezoid with bases AB and
CD and AB < CD (Figure 10). Let E be the intersection of
AC and BD.

Figure 10

A B

a. Prove: a(ABEC) = a(AAED).
b. Prove: a(AABE) < a(AEDC).
12. A rhombus has diagonals of lengths a and b. Show three

different ways of finding its area.

13. Let ABCD be a parallelogram and let E be a point on

AC. Let the parallel to AD through E intersect AB at H and

CD at /. Let the parallel to AB through E intersect AD at F
and BC at G. Prove that parallelograms HEGB and FDIE

have equal area. (This is a theorem that Euclid exploited in
his development of area.)
14. Let E,F,G, and H be the midpoints of the sides

AB, BC, CD, and DA of convex quadrilateral ABCD. Prove
that a(EFGH) = \a(ABCD).
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15. a. An area formula for a parallelogram, A = hb, is often
found by finding a rectangle with equal area, as in

Figure 11a. Explain this argument.

Figure 11a

D b C

b. The argument of part a does not work for parallelograms
like those in Figure lib. Write a proof that

a(ABCD) = hb for the situation in Figure lib.

(b)
16. A regular n-sided polygon is inscribed in a unit circle.

a. Prove that its perimeter is 2n sin .

b. Prove that its area is f sin ~.

c. Modify the formulas of parts a and b if the circle has radius r.

17. Deduce formulas similar to those found in Problem 16
for a regular n-gon that is circumscribed about a circle.

ANSWER TO QUESTION

By properties (1) and (2) of the definition of area function, a(EBFG) = a(EADH) + a(ABCD) + a(DHGI) + a(FCDI) =

a(EADH) + 2a(ABCD) + a(FCDI). Now use property (3) and substitute (h + b) 2
= h2 + 2a(ABCD) + b2

. Consequently,
h2 + 2hb + b 2

= h2 + 2a(ABCD) + b2
. Solving the equation for a(ABCD), we obtain a(ABCD) = bh.

10.1.2 Area formulas for triangles
In Section 10.1.1, we deduced the familiar area formula A = \ bh for a triangle. How-

ever, in practice one may not know the length of any altitude of a triangle. We also
arrived at a second formula, A = \rp, giving the area of a triangle in terms of its

perimeter p and the radius r of its inscribed circle (its incircle). But the radius of the
incircle is also unlikely to be known. More likely to be known are the sides and angles
of the triangle. So we search for an area formula using only sides and angles.

Since congruent triangles have the same area, in theory we should be able to

determine the area of a triangle given all three sides (SSS), two sides and an included

angle (SAS), or two angles and the included side (ASA). Euclid was aware of this fact,
but he knew of no such formulas. The first of these formulas, for the area of a trian-

gle given its sides, was discovered by Archimedes about a half century after Euclid

lived, but it is known today as Hero’s Formula , after Hero the Elder of Alexandria,
the same mathematician mentioned in Section 8.1.2 in connection with optics. It

appeared in Hero’s book Geodesy and was proved in two other books, Dioptra and
Metrica. The proof is quite long. To help in understanding it, we split it into two parts
and call the first part a lemma. 2

Figure 12

A

Lemma: Let D, E, and F be the points of tangency of the inscribed circle G of
AABC and its sides AB, BC, and AC, as shown in Figure 12. Let r be the radius
of circle G and s be half the perimeter of AABC. Then

1. a(AABC) = sr

2. AD = AF = s - BC
BE = BD = s - AC
CF = CE = s - AB.

2 A lemma is a statement that is used in a proof of a theorem that immediately follows the lemma. The
lemma is itself proved, but usually is not important enough to be labeled a theorem.
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Proof: Let p be the perimeter of AABC. By Theorem 10.6 of Section 10.1.1,

1
a(AABC) = r-~p = rs.

Then

p = 2s = AD + DB + BE + EC + CF + FA.

AD = AF because they are tangents from a point to the circle. (AADG =AAFG

by HL Congruence.) Similarly, BE = BD and CF = CE. So

2^ = 2AD + 2BE + 2CF.

Dividing both sides by 2,

5 = AD + BE + CF.

Now we can deduce any one of the three results by solving this equation for the
desired distance. For instance,

AD = s - BE - CF

= s - BE - CE
= s - BC.

The other two parts follow in the same manner.

The quantity 5 in the lemma is half the perimeter of AABC, so it is known as

the semiperimeter of AABC. Notice that if the sides of AABC are named in the tra-

ditional manner as a, b, and c, then AD = s —

a, BE = s — b, and CF — s — c.

These lengths play major roles in Hero’s Formula for the area of any triangle.

Theorem 10.7 (Hero’s Formula): The area of a triangle with sides a, b, and c and semiperimeter |
sis V^(5 - a)(s - b)(s — c ).

Proof 1 (synthetic): Let ABC be the triangle and let the inscribed circle for the tri-

angle have center G and be tangent to ABC at points D, E, and F (Figure 13). Let
r = GD = GE = GF. Because of part (1) of the lemma,

(1) a(AABC) = sr = (BE + EC + AD)r.
Now extend CB beyond B to H so that BH = AD.

Substituting into (1),
a(AABC) = (BE + EC + BH)r

= CH • r

(2) a(AABC) = CH-EG.

The goal now is to get some ratios involving CH and EG, and Hero does this

through similar triangles. Let L be the intersection of the perpendiculars to CG at G
and CB at B. Z CGL and Z CBL are right angles, so the midpoint of LC (not drawn)
is equidistant from L, B,G, and C. This means that quadrilateral LBGC is inscribed
in a semicircle, and so its opposite angles CGB and CLB are supplementary. But also,
Z CGB and ZAGD are supplementary (because the quadrilaterals ADGF, CFGE,
and BEGD are kites and their symmetry diagonals bisect the central angles). Conse-

quently, mZCLB = mZAGD, and since these are acute angles in right triangles,
(3) A CBL ~ AADG.
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Figure 13 A

From (3) and recalling that BH = AD and DG = EG,

CB AD BH
^ BL~ DG~ EG'

From the left and right ratios in (4), = §§. With K being the intersection of GL

and BC, A GKE ~ ALKB, so that

CB BE BK

BH
~

EG
~

KE'

Adding §77 to the left and §§ to the right ratios in (5),

CH
_

BE
^ BH

_

EK

With some multiplication by 1 and recognizing a geometric mean,

CH2 BE‘EC
_

BE-EC
^ CH • BH

~

EK • EC
_

EG2 '

Again use the left and right ratios.

(8) CH2
• EG2

= CH'BH'BE’EC

= CH-AD-BE-CF
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Now use part (2) of the lemma to rewrite the right side of (8) in terms of

a, b, and c, and notice that CH = 5. Rewrite the left side using (2) of this proof,

(9) a{ AABC) 2
= CH-AD-BE-CF
= s(s - a)(s — b)(s - c ).

(10) So u(AABC) = \/s(s - a)(s - b)(s - c ). _|

Hero’s proof of the formula bearing his name is extraordinary because the result
is algebraically quite complex and Hero had none of today’s algebraic notation at

his disposal. We have presented it to show that Hero’s formula is geometrically deriv-
able from the other area formulas, and also to exemplify the range of synthetic geom-
etry proofs.

A shorter proof uses the Law of Cosines and quite a bit of algebraic manipulation.

Figure 14 Proof2 (analytic): The triangle AABC must have at least one acute angle. Let it
be Z A. Let D be the foot of the altitude from B to AC (Figure 14). Let h = BD.
We know a(AABC) = \bh. So we will search for a formula for h in terms of the
sides a, b, and c. By the Law of Cosines,

a
2

= b2 + c
2

— 2be cos A.

Now AD = c cos A. Consequently,
a

2
= b2 + c

2
— 2b- AD.

We solve this for AD.

AD =

b2 + c
2

— a
2

2b

Using the Pythagorean Theorem, we can find an expression for h.

AD 2
= c

+ c — a

2b

2 \ 2 4b2
c^ — (b2 + c~

4b2

, 2\2

Factor the difference of squares in the numerator of the last expression, rearrange
the factors as differences of squares, and factor again to obtain

2 _

(2be + b2 + c
2

- a
2 ){2bc - b2

- c
2 + a

2 )
4b2

[(b 2 + 2be + c
2 ) — a

2 ][a 2
— ( b2

— 2be + c
2 )]

4b2

(b + c + a){b + c — a) (a + b — c)(a — b + c)
_

4b2
'

Now we introduce the semiperimeter 5. If 5 = \ (a + b + c), then

b + c + a = 2s

b + c — a = 2{s — a )
a + b — c = 2(s — c )
a — b + c = 2(5 — b).

[These expressions are the equivalent of part (2) of the lemma before Theorem 10.7.]
By substitution,

[2s][2(s - a)][2(s - b)][2(s - c)] 4s(s - a)(s - b)(s - c)hr = -z =
.

4b2 b2
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So

2'\/s(s — a)(s — b)(s — c )
h =

b
i

Thus, a(AABC) = — bh — Vs{s — a)(s - b)(s — c ). J

Both Hero’s Formula and the formula A — \rp for the area of a triangle are

symmetric, in that the three sides of the triangle each play the same role. They show
that the area of a triangle does not depend on a particular side being singled out as

special, and that regardless of which side might be called a base, the area of the tri-

angle would be the same. This guarantees that, once a unit has been picked, the area

of a triangle is unique.

Formulas when SAS or ASA is known

Hero’s Formula produces the area of a triangle given SSS. There is a simple formula
for the area of a triangle given SAS. This formula is often not encountered by stu-

dents because area is studied before trigonometry.

Theorem 10.8

Figure 15

B

I (SAS Area Formula): For all triangles ABC,

1
a{AABC) = — ab sin C.

Proof: In AABC, let h be the altitude to side b (Figure 15). Then ~

a
= sin C. Solving for

h and substituting into the area formula a (AABC) = \bh yields this theorem. _J

Corollary: The area of the parallelogram with adjacent sides a and b and
included angle <p is ab sin cf>.

The SAS area formula is not symmetric. Depending on which side lengths are

known, we could have any of the following variants: a(AABC) = fahsinC =

\bc sin A = \ ac sin B. We use these variants to develop a formula for the area of a tri-

angle given two angles and an included side.

Theorem 10.9 (ASA Area Formula): For all triangles ABC,

a(AABC) =

1 7 sin HH sin C

2
U

sin(5 + C)
’

Proof: Our goal is to obtain a formula with one side a and the included angles B and

C. From Theorem 10.8,

. \ ab sin C
a(AABC) = lac sin B’~.

^ be sin A

= \ a
2 sin B •

sin C
sin A •
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Since for all x (measured in degrees), sin x = sin(180° - jc), and since mZA +

mZB + raZC = 180°, sin A = sin (B + C). Substitution of sin (B + C)forsinA
in (2) yields the desired formula. _]

We have now shown five formulas for the area of a triangle. Are there others?
Of course there are. A formula is possible using any segments or angles whose lengths
and measures determine a unique triangle. Problem 16 shows a formula involving the
radius of the circumcircle of a triangle. New formulas may be derived by reworking
existing formulas. For instance, each line in the proof of Theorem 10.9 yields a dif-
ferent formula for the area of a triangle. The existence of so many ways of calculat-

ing the area of a triangle is useful not only because it enables calculation from a

variety of given information, but also because the areas of other figures are often cal-
culated by adding areas of triangles.

10.1.2 Problems

1. In the proof of the lemma in this section, demonstrate that
BE = s - AC.

2. Modify Hero’s Formula to yield a formula for the area of
a triangle in terms of its sides a, b, and c, and its perimeter p.

3. Refer to the synthetic proof of Hero’s Formula.

a. To arrive at step (3), the statement is made that because
LBGC is inscribed in a semicircle, its opposite angles are

supplementary. Why is this true?

b. Why is A GKE ~ ALKB1

c. Where is the geometric mean in step (7)?
4. a. Use Hero’s Formula to find the area of a 3-4-5 right

triangle.
b. Find the area of the triangle with sides 13,14, and 15.

c. Use your answer to part b to determine the lengths of the
three altitudes of the triangle with sides 13,14, and 15.

d. Your answers to parts a and b should be integers. Find
another triangle whose sides are consecutive integers and
whose area is an integer.

5. Use Hero’s Formula to prove that if T is a similarity trans-

formation with magnitude k, then, for any triangle ABC,
a(T(AABC)) = k2

• a(AABC).
6 . Identify all the cyclic quadrilaterals shown in Figure 13 and

explain why they are cyclic.
7. Brahmagupta’s Formula. The following area formula for

cyclic quadrilaterals was known to the Indian mathematician

Brahmagupta (c. 598-c. 665) and is named after him. Let Q be
a cyclic quadrilateral. Then

a(Q) = “\/(s — a)(s — b)(s — c)(s — d ),
where the semiperimeter 5 = ^ +b+

2
c+d

.

a. Use a geometric construction program to construct a

dynamic confirmation of Brahmagupta’s Formula for any
circle C and any convex quadrilateral Q inscribed in C.

1
b. Prove that Brahmagupta’s Formula does not hold for all

quadrilaterals.
c. Explain why Hero’s Formula is a special case of Brah-

magupta’s Formula. J

8 . If a circle can be inscribed in a cyclic quadrilateral (i.e., all
sides of the cyclic quadrilateral are tangent to the circle), then
the quadrilateral is called cyclic-inscribable. The area of a

cyclic-inscribable quadrilateral with sides w, x, y, and z is

Vwxyz. Find a cyclic-inscribable cyclic quadrilateral and
show that the formula works for it.

9. Deduce the Law of Sines (Theorem 9.6) using Theorem
10 . 8 .

10. Suppose the area and length of one side of a triangle are

fixed. Determine the conditions under which the sum of the

lengths of the other two sides is smallest.

11 . Suppose the length of one side and the sum of the lengths
of the other two sides of a triangle are known. Determine the
conditions under which the area is maximized.

12. Prove: Of all triangles with a given perimeter, the equi-
lateral triangle has the greatest area.

13. Use the result of Problem 11 to prove: Of all polygons with
a given perimeter, the one with greatest area is equilateral.
14. Find the area of a parallelogram with adjacent sides a

and b and new-included angle </>.
15. a. Find the area of the triangle with consecutive vertices

(0, 0), (a, b), and (c, d).
b. Three parallelograms have three vertices (not necessarily

consecutive) at (a, b ), (0, 0), and (c, d). Find the fourth
vertex and area of each parallelogram.

16. Let R be the radius of the circumcircle of AABC. Find
and write a proof that a(AABC) = jf. (See, for example,
Nathan Altschiller-Court, College Geometry. An Introduction
to the Modern Geometry of the Triangle and the Circle, 2nd
edition. New York: Barnes and Noble, 1952.)

’A proof of Brahmagupta’s Formula can be found in Howard Eves, An Introduction to the History of
Mathematics with Cultural Connections, sixth edition (New York: Saunders College Publishing, 1983).
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Figure 16

Figure 17

10.1.3 Extended analysis: the line through a given point minimizing area

We devote this section to the analysis of the following problem, based on a problem
found in a high school precalculus text.

Of all lines through the point (5, 2), find the line that cuts off the triangle of
smallest area in the first quadrant (Figure 16).

Doing the analysis yourself
You can get a rough feeling about this problem situation by sketching some differ-
ent lines through the point (5, 2). Notice that a very steep line (Figure 17a) will cut

off a large area. Similarly, a very flat line (Figure 17c) will also cut off a large area.

(See Problem 1.) It makes sense that there is a line somewhere in the middle range
of steepness that cuts off the smallest area.

Before reading beyond this page, do as much as you can of the following.
a. Solve this problem using any method, and justify your solution.

b. Generalize your solution so that, starting with any point in the first quadrant,
you could quickly find the line through that point cutting off minimum area.

c. Generalize your solution so that it would apply to a situation where the axes

are not perpendicular.
d. Give an alternate approach to the problem that is fully geometrical. (Here a

geometrical approach is an approach that does not rely on coordinates to

identify the point.)
e. Suggest ways your result could be generalized even further, perhaps in the form

of conjectures that you cannot yet see how to prove or disprove.
In typical school work, this sort of problem ends at (a). Yet there is a surpris-

ing mathematical richness in this situation that remains hidden if we limit ourselves

to (a). The purpose of this section is to analyze this problem from an advanced stand-

point, generalizing it and extending it along the lines of (a) to (e). Reading the rest

of this section will make far more sense if you have at least tried (a)-(e).
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Figure 18

The generalizations necessary to do parts (b) and (c) are aided by paramete-
rization. We parameterize all the lines through the point (5, 2) by choosing one of
the parameters of a line as a variable. The interaction of variables, constants, and

parameters is a primary feature of the analysis. The generalizations are also aided by
finding minimal values. To prove that a particular line through (5, 2) cuts off the
smallest area, we use a simple method. We show geometrically that rotating the line
a small amount produces a line that cuts off greater area.

Parameterizing the lines

There are several ways to parameterize the lines through (5, 2). Three ways are sug-
gested by Figures 18a, 18b, and 18c.

In Figure 18a, the lines are parameterized by their intercepts a and b. But notice
that a and b are not independent. The fact that the line passes though (5, 2)
means that a and b are related by

Question 1: Why is (1) true?

The parameterization of Figure 18b, using slope, is discussed in Problem 2. The

parameterization using the angle 9, suggested in Figure 18c, is the subject of Problem 1.
We show an analysis using Figure 18a.

Representing the area

Using the given parameters in Figure 18a, the area of the triangle is \ ab. From the result
in (1) we can express a in terms of b. Hence we can represent the area of the triangle in
terms of the single parameter b.

(2) area = m =

W^2)
The problem is now reduced to finding the minimum value of the function /. One way
to do this is to graph / and look for its minimum value (see Figure 19). From the

graph it seems that the minimum of the function occurs when b — 4.

Figure 19

o
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Alternatively, the function (2) can be analyzed using calculus. (See Problem 3.)
Doing this verifies the graphical analysis. The minimum occurs precisely when b = 4.

We now have an answer to the original problem (a). The line cutting off mini-
mal area has y-intercept b — 4. The area it cuts off is /(4) = 20. Figure 20 is a dia-

gram to scale.

Figure 20

We have shown that the answer to the original problem is that the line through
(5, 2) cutting off the least area has x-intercept 10 and y-intercept 4. This answer is

correct, but as it stands it has limited usefulness. For example, given another point,
say (3, 7), in the first quadrant and asked to find the line through this point cutting
off minimum area, you would have to start the analysis over. At this point, if you
have not done part (b) of the original problem, try to do so.

Interpreting the initial result

You may have noticed that there is a simple relationship between the numbers 10
and 4 and the given point (5, 2). We can express this relationship in a general way
using the slope.

(3) Of all lines through the point (/?, q ) in the first quadrant, the slope of the line
that cuts off the triangle of smallest area is —

At this point (3) is only a conjecture. Flowever, we can verify this conjecture
readily using calculus. The relationships in (1) and (2) based on the specific point
(5, 2) can be rewritten in terms of a general point (p, q) as

(4)

and

(5)

q
a — p

area = g(b)
pb2

2 (b - q)

The area function g in (5) can be differentiated with respect to b as easily as the
function / in (2). The function g has zero derivative when b = 2q. At this point
a = 2p, and the area is 2pq. Further, the slope of the line is — -

p
. This analysis shows

immediately that conjecture (3) is correct.

Without calculus (by finding graphically the minimum point of a function, as we

did in Figure 19), you could not verify (3) directly. However, you could try a few
other points and see if the conjecture holds for these points. (It will.) This would

strengthen faith in the conjecture, but not prove it. Fortunately, there is a way to

prove the conjecture geometrically without using calculus. Before showing this way,
we proceed to part (c) of the original problem.
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Generalization to angles other than right angles
In (c) you are asked to generalize further by looking at a point in any angle, not nec-

essarily a right angle. You should try this problem if you have not done so already.
Here is a way to formulate (c) as a more general problem, which has been posed

by Polya.

(6) Given a point P in the interior of an angle, what line through this point
forms the triangle with minimum area?

In Figure 21, we have replaced the perpendicular axes with axes meeting to

form ZACB. The line segment FG shown through P cuts off a region in this angle,
forming A CFG. Problem (6) asks what line € through P minimizes the area of
A CFG.

Figure 21

To proceed we need to identify in some way the location of the point P in
the interior of ZACB. One way to do this is to use the parameters d (= DP) and h

(= the distance from P to the side CB of the angle), where DPIICB, and EPIICA.
We also need to parameterize the line €. Using x (= EG) and y (the distance

from F to DP) as parameters leads to a very simple analysis. The triangles DFP
and EPG are similar. (Why?) Therefore, ^ =

y, so the parameters x and y are not

independent.

(V) y
dh

x

a(hFCG) = dh + \dy + \hx. Using (7), we can represent the area as a function of

the parameter x.

(8 ) «(AFCG) = g(x) = h[ d + + ix

In the function defined by (8), d and h are constants. The variable is x, and

varying x varies the position of the line i through P. (This is what it means for the line
€ to be parameterized by x.) A simple analysis using calculus shows that (8) has a

minimum when x = d. At this value, y = h.
We now know that the answer to (6) is that the line minimizing area has x — d

and y = h. But this is a cumbersome description. Still, if we are alert we can see that
the triangles DFP and EPG are not only similar, but congruent. (Why?) This means

that the point P is the midpoint of the line minimizing area! Our analysis has led to
a fairly general statement.



496 Chapter 10 Area and Volume

(9 ) Given a point P inside ZACB, the line through P that forms the trian-

gle FCG of minimal area, with F on CA and G on CB , is the line such
that P is the midpoint of FG.

The “midpoint” condition of (9) represents a significant result that, as you will see, is
even more general than its formulation here.

Notice that as we generalized this problem, we moved from a result (3), which
is described in terms of numbers (coordinates and slopes), to a result (9), which is
described in purely geometrical terms. In other words, although the initial formula-
tion and proofs used analytic concepts such as functions and graphs (and calculus),
what we discovered is a result about geometry.

Seeing this as purely a geometry problem
Now we complete step (d) of the original problem by looking for a geometric proof
of (9). Consider Figure 21. Our goal is to prove: Ofall line segments through P, the

particular segmen t that has P as its midpoint cuts off the minimal area.

Let F be another line through P that connects points on two sides of the angle.
The two possible locations for F are as shown in Figures 22a and 22b. We try to

prove that F cuts off more area than €. The method that we use is a general and pow-
erful technique for constructing proofs of results about optimization. Here is the

major step:

(10) The two shaded triangles are congruent.

Question 2: Why is (10) true?

From (10), we see that the area enclosed by line F is greater than the area

enclosed by line €. In fact, it is greater by exactly the area of region R.

Figure 22

( a) (b)

Summary of what we have done

In summary, we have constructed an extended analysis of the original high school prob-
lem following the steps of (a) to (d). The analysis resulted in significant generaliza-
tions. In particular, we generalized beyond particular numbers (the point (5, 2)), to a

general point (p, q). We also generalized beyond particular shapes (a right angle) to any
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angle. The analysis progressed away from the original mathematical subject area of
the problem (coordinate systems, graphs, and functions) to one more natural for the

problem at hand. Finally, the more general analysis is no more difficult to carry out

than the original very specific one.

The last feature is especially noteworthy. Although (9) is a very general result,
the geometric proofs illustrated in Figures 22a and 22b are easier than the earlier

analysis in terms of graphs and functions.
What about step (e) of the original problem? As an example, based on (9) we

might conjecture that the line € through a point P inside a parabola that cuts off the
smallest area is the line bisected by P. (See Project 1 at the end of this chapter.)

What to look for in advance in general solutions

There is an important further perspective on what we have done in our analysis. In
briefest terms, we have shown that the question asked in Figure 23a is answered by
the particular line described in Figure 23b.

Figures 23a, b

(a) Which line i gives the (b) € contains the segment
smallest area of the triangle? bisected by point P.

Let us call the line described in Figure 23b a “special” line. It is special in the
sense that it has a simple geometric characterization in terms of the given point P. In

Figures 23c through 23i, we indicate seven other conditions on lines through P.

Figures 23c-f

(e) € has intercepts that are

double the sides of the rectangle.
(f) € creates the triangle

with the smallest perimeter.
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Figures 23g-i

(g) € contains the shortest

segment through P.

In short, Figure 23a-23i give geometric ways of characterizing special lines through
a point. We can think of the “solution” to our original problem as being, possibly, one

of these characterizations. Thinking in this way gets us away from focusing on numbers

only and prompts us to look for more intrinsic features of our solutions.
Our analysis showed that Figures 23a and 23b are equivalent. This is the sub-

stance of result (9). What about the other “special” lines of Figure 23? It turns out

that the five characterizations in Figures 23a to 23e are all equivalent: If a line has one

of these properties, it has them all. (See Problem 7.)
In some cases, when people are asked to use intuition to guess what line gives

minimum area, they come up with the properties described in Figures 23f through
23i. These are reasonable guesses, but further analysis shows them to be not correct.

Figures 23f and 23g describe two other minimal properties, this time not minimal

area, as in (a), but of minimal length. We might conjecture that one or the other of
these lines is the same as the line giving minimal area. But this is not the case. (See
Problems 7 and 12.)

10.1.3 Problems
1

1. Use Figure 24. Figure 24

a. Prove that there is no upper limit to

the area cut off by line € through
point (5, 2) as the angle 6 increases
toward §.

b. Prove that there is no upper limit to the
area cut off by line £ through point
(5,2) as the angle 6 decreases toward 0.

c. Give a rough sketch of the graph of a

function that represents the area of

A OAB as a function of 6.
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Figure 25

2. A nonvertical line in R2 is associated with three basic para-
meters: its slope m, its ^-intercept b, and its x-intercept a. (See
Figure 25.)
a. Show that any two of these parameters suffice to specify

any nonvertical line.

b. Show that any one of these parameters suffices to specify
any nonvertical line through the particular point (5, 2).

c. Represent the area of the triangle cut off by a line through
(5, 2) in terms of the slope m of the line.

d. Represent the area of the triangle cut off by a line through
(5, 2) in terms of the y-intercept b of the line.

e. Represent the area of the triangle cut off by a line through
(5, 2) in terms of the x-intercept a of the line.

3. a. Give the details of the calculus proof that the function

f: b —»
2 ( 6 - 2 ) of Figure 19 obtains its minimum at b = 4.

b. Give the details of the calculus proof that the more general
p\p-

function f:b—> 2 {b-q) obtains its minimum at b — 2q.

c. Use polynomial division to find an equation for the oblique
asymptote of the graph of the function f: b —>

2{b- 2 ) •

d. Answer the question of part c for the more general func-
tion of part b.

4. We solved the problem that opens this section using the

intercepts a and b to parameterize the lines through the point
(5, 2). A somewhat simpler analysis results by parameterizing
the lines in terms of the lengths u and v shown in Figure 26.

Carry out this analysis. That is, show how u and v are related,
express the area in terms of v alone, find the minimum of this

function, and answer the original problem of this section.

Figure 26

5. We have given a simple characterization of the segment
through a point P that cuts off minimal area in the first quadrant:
It is the segment bisected by P. Show that the other character-
izations of the minimal area in Figures 23a to 23e are equivalent.
6. Suppose the point (p, q) in relationship (3) of this section
is in the 2nd quadrant. Which, if any, of relationships (3) to (5)
in this section are no longer true?

7. Show that the properties described in Figures 23g to 23i
do not solve the original problem.
8 . The function that we have minimized in Problem 4 involves
the expression 10 + § v + -p. This is the sum of a constant and
a variable and its reciprocal, with constant factors. Such expres-
sions appear often in max-min problems. For example, such a

function appears in (8). This problem asks that you show that
there is a general answer to all such problems:
a. Consider a function /(x) = Ax + f, where A > 0 and

B > 0 are constants. Find the minimum value of such a func-

tion, and find where it achieves this minimum. (Use calculus.)
b. Show that the minimum value of Ax + f occurs at the

value of x where the graph of y = Ax intersects the graph
°f y = f •

c. By analyzing the graphs in part b, give a noncalculus argu-
ment for part a. (Hint: Show that where the graphs inter-

sect, the slopes are opposites of each other. Use that and

the concavity of the graph of y = f to show that moving in

either direction from the intersection will increase the

value of the sum.)
d. Use the Arithmetic-Geometric Mean Inequality (^ > \[ab

for all real a and b) to do parts a and b.
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*9. In this section, we verified that the line through point P

cutting off minimum area has the midpoint property. But we

had already conjectured the midpoint property. Show how
the method we used can also be used in a more powerful way
to actually derive the midpoint property. (Hint : Use the prin-
ciple that if a line £ does cut off minimal area, then the “incre-
ments” of area, one positive and one negative, created by
rotating this line a small amount about point P are approxi-
mately equal.)
10. A line £ passing through point P — (1,1) makes an angle
6 with the horizontal. (See Figure 27.) Let A(6) be the
shaded area below £ in the square.

Figure 27

a. Sketch a graph of y = A(d) as 6 ranges from 0 to 2tt.

b. Find a formula for A(6) and graph this function. (There
may need to be several formulas, depending on which sides
of the square the line £ intersects.)

* 11. In this section, we extended the initial problem about a

point in a right angle to a problem about a point in any angle.
In this problem you are asked to generalize the initial prob-
lem further. Prove or disprove the following results.

a. Given a point P inside a convex polygon C, there is at least
one line £ through P whose portion inside C is bisected by
P. Call such a line “P-centered”.

b. Each line through P divides C into two convex polygons,
and we can plot the area of one of them as we rotate the
line through 360° (keeping it pivoted at P ). This area func-
tion has a local minimum or local maximum for a certain
line € if € is P-centered.

12. Given a point (m, n) in the first quadrant,
a. Use calculus to show that the shortest line segment in the

quadrant through (m, n) has slope ^) 3
.

(Hint Parameterize the lines by the angle they make with
the x-axis.)

b. Relate this problem to the problem of finding the shortest
ladder that will touch the wall, the floor, and a box of

height n and width m placed against the wall.

c. Relate this problem to the problem of finding the longest
ladder that will fit around a corner where two hallways of
widths m and n meet.

*d. Use a geometric argument to derive the property stated

in part a.

13. Let P be a fixed point in the interior of a parabola. Let

€ be a line containing P and intersecting the parabola at points
A and B. What position of £ minimizes the area of the region
bounded by £ and the parabola? (Hint Because all parabolas
are similar, answering the question for one parabola essen-

tially answers the question for all parabolas.)
*14. Investigate the situation of the line £ through a fixed

point P in the first quadrant outlining, with the axes, the tri-

angle of minimal perimeter. (See Figure 23f.)

ANSWERS TO QUESTIONS

1. Each side of the equation is the slope determined by (5, 2) and one of the intercepts.
2. In each case the midpoint P determines a pair of congruent sides, a pair of angles are vertical angles, and another pair of

angles are alternate interior angles formed by two parallel lines. So the triangles are congruent by ASA congruence.

10 . 1.4 From polygons to regions bounded by curves

The area function defined in Section 10.1.1 applies only to regions that are unions of
a finite number of triangular regions. This means that it does not immediately apply
to circles or other regions that have curves as boundaries. However, from ancient

times, mathematicians have extended the definition of an area function a from polyg-
onal regions to curved regions by squeezing the curved region in between smaller
and larger unions of triangular regions. This squeezing was first formally done by
the Greek mathematician Eudoxus of Cnidus around 400 B.c. Eudoxus’s strategy is
called the “method of exhaustion” because the difference between the areas of the
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smaller and larger unions is exhausted in the sense that it approaches zero. It is akin
to the way the rational numbers are extended to the real numbers via nested inter-
vals. We add the following to our definition of area to enable the method of exhaus-
tion to be applied to the common geometric figures with curved boundaries.

Definition (of area function, continued):

4. Let C be a region in E 2
. Let v, be a sequence of unions of triangular

regions in E2 with no interior points in common, such that each s,- is a sub-
set of C. Let St be a sequence of unions of triangular regions in E2 such
that C is a subset of each S). If the least upper bound of the a(si ) equals
the greatest lower bound of the a(Si ), then this bound is a(C).

Approaching the area of a circle from above and below

We use property (4) to obtain the area of a circle. Figure 28a shows inscribed and cir-
cumscribed squares in a circle. The area of the circle is between the areas of the squares.
If the radius of the circle is r, then Figure 28a shows that the area must be between 2r

2

and 4r\ Figure 28b uses inscribed and circumscribed octagons, whose areas are 2 V2r
2

and 8(V2 — l)r 2
, that is, between approximately 2.8284r2 and 3.3137r 2

.

Figure 28

The calculations in Table 2 confirm that these areas continue to get closer to each
other as the number of sides of the polygons is doubled again and again. In Table 2,
st is a regular inscribed polygon with 2' sides (a 2'-gon) in a circle of radius 1, where
i > 2, and S, is the corresponding circumscribed polygon. Thus each polygon in both

sequences has twice the number of sides of the preceding term of that sequence.
Because each inscribed polygon can be thought of as connecting the points of tan-

gency of the circumscribed polygon, for all i, a(si) < c^S,).

Table 2 Areas of Inscribed and Circumscribed 2'-gons

i 2' «(s,) «(S/) a(S ;) - a(s,)

2 4 2r
2 4r

2 2r
2

3 8 2.82842711.... r
2 3.31370849.. . r

2 .4852813... r
2

4 16 3.06146745.... r
2 3.18259787.. .r

2 .1211304... r
2

5 32 3.12144515..,. r
2 3.15172490.. . r

2 .0302797 ... r
2

6 64 3.13654849.... r
2 3.14411838.. .r

2 .0075698 ... r
2

7 128 3.14033115..,. r
2 3.14222363....r2 .0018924... r

2
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Figure 29 In Figure 29 we show parts of regular inscribed and circumscribed 2'-gons and
2' +1

-gons. PR is a side of a regular inscribed 2'-gon and PQ and QR are halves of sides
of a regular circumscribed 2'-gon. PT and TR are sides of a regular inscribed 2' +1

-gon,
while PS, UR, and SU are two halves and a full side of a regular circumscribed 2 ,+1

-gon.
The figure guides us to see that, as the number of sides is doubled, a(si+1 ) > a(Sj)
because a(MPTR) is added to the area, while a(Si+1 ) < a(5,-) because a(ASQU) is
taken away. Thus we have, for each i,

Ufa) < a(si+1 ) < a(Si+1 ) < «(£,).
So the closed intervals /, = [«($,-), a(5,)] form a nested sequence.

Figure 29 also shows us how the lengths of the intervals I, go to zero as i increases.
The length of /, is a (S',) — the difference between the areas of the circumscribed
and inscribed 2'-gons. From Figure 29, which shows only q of the circle,

«($) - a{Si ) = 2'(«(APQR))
and

«(SM ) ~ a(si+ 1 ) = 2‘*\a(ATUR))
= 2\a(\TUR) + a(ATSP)).

Consequently,

a(5i+1 ) - a(si+1 ) a(ATUR) + a{ATSP)
Msj - a( Si ) a(APQR)

'

The two regions identified in the numerator of the fraction on the right side
are parts of the denominator. We leave it to you to show that their sum is less than
half the area of trapezoid PSUR, and thus the value of the fraction is less than \. This
means that, as i increases, the length of /, is decreasing faster than a geometric
sequence with common ratio \ . (In fact, the right column of Table 2 shows that the

ratio is nearer \.) Thus that difference goes to zero. By the completeness property of
the real numbers, there is a unique real number between all the a fa) and all the ct(S§.
This number is the area of the circle.

77 and 77r
2

But how do we know that the area of a circle with radius r is 7rr
2 ? This is perhaps the

easiest part of the entire argument. We define tt in its usual way, as the ratio of the cir-
cumference C of the circle to its diameter. That is, 77 = §. From this, C = 77d = 2777.

Theorem 10.10 The area of a circle with radius r is 7tt
2

.

Proof: When a regular 2”-gon circumscribes a circle of radius r, the circle is inscribed
in the polygon. By Theorem 10.6, the area of this polygon is given by A = \rp. As
n increases, the perimeter p is getting closer and closer to the perimeter of the
inscribed 2"-gon, and in between these perimeters is the circumference of the cir-
cle. So the area of the circle is between two areas, each of which is approaching the
value | rC, that is, \r • 2irr, which is rrr

2
. J

Thus the area formula for a circle is an extension of the area formula for poly-
gons that can be circumscribed about a circle. The number 77 enters the formula
because 77 is defined in terms of the “perimeter” of the circle, that is, in terms of the
circumference.
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Figure 30 The connection between circumference and area, as mentioned in the proof of
Theorem 10.10, was first made by Archimedes using the method of exhaustion. In

doing so, Archimedes also was able to find a rather good approximation to tt. Here
is what he did. Instead of starting with inscribed and circumscribed squares as we did,
he began with the triangle at the center of the circle that is \ of a circumscribed reg-
ular hexagon (see Figure 30). He successively bisected the central angle, compared
ratios, took away parts of irrational square roots, and arrived at the conclusion that
the circumference of a circle is less than times the diameter.

Then Archimedes considered inscribed regular polygons of 6,12, 24, 48, and 96
sides. He found the perimeter of each polygon and concluded that the circumference of

a circle is more than 3 H times the diameter. In this way, Archimedes pro-
7 T jq

vided the first good numerical approximation t0 7r: 3yp < tt < 3^.

A brief history of tt

Since the time of Archimedes, the calculation of better and better numerical approx-
imations to tt has occupied the attention of mathematicians throughout the world. At
least two entire books are devoted to this history— Beckmann’s A History ofPi, and

Berggren and the Borweins Pi:A Source Book. We give only the briefest of histories
of this calculation.

At first, the theory developed very slowly. The best approximation before 1600
that is known to us was by Viete, who in 1576 found a value of tt correct to 9 decimal

places (in today’s notation—decimal fractions were not invented until 1585!). Viete
used Archimedes’ method with polygons of 6 • 2 16

, or 393,216 sides. With decimals,
using Archimedes’ method with polygons of 2 62 sides, Ludolph van Ceulen in 1610 was

able to obtain a value of tt correct to 35 decimal places, having spent most of his life
on the calculations required for this task.

The first use of the Greek letter tt to represent the ratio of a circle’s circum-
ference to its diameter seems to have been in the textbook Synopsis Palmariorium

Mathesios, written by William Jones in 1706. He chose tt because it was the first let-
ter of the Greek word “perimetrog”, meaning “surrounding perimeter”.

After van Ceulen, most mathematicians started using methods of analysis and
infinite series to approximate tt. By 1844, Zacharias Dase, a German of prodigious
calculating ability, computed tt to 200 decimal places. And in 1873, with 15 years of

work, William Shanks computed tt to 707 places, of which the first 527 were correct.

This was the most accurate calculation before the days of machine calculation.
Shanks’s error was found in 1948 by mathematicians using a desk calculator. The

next year, one of the very earliest computers, ENIAC, calculated tt to 2,037 decimal places.
By 1967, tt had been calculated to 500,000 places. Two million places were calculated by
Kazunori Miyoshi and Kazuhiko Nakayama in 1981 using the trigonometric identity

tt = 32 tan-1
- 4 tan-1 f—|—^) - 16tan_1 f—J—\VlOy \239 / \515 /

Within five years, the billion-place standard was reached by David Bailey and
Jonathan and Peter Borwein using a formula discovered by Ramanujan in 1910. By
the year 2000, more than 51 billion decimal places of tt were known.

The Riemann integral
In the 17th century, mathematicians refined the method of exhaustion in their devel-

opment of calculus. If a curve can be described by a formula, calculus often enables
the lengthy calculations of the method of exhaustion to be replaced by the relatively
simple calculation of definite integrals.
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In calculus, the area property (4) shows one way to obtain the area between
the graph of a sufficiently well-behaved function (e.g., continuous or monotone)
y = f{x), the x-axis, and the lines x = a and x = b. Each st is the total area of a

union of rectangles whose total area is a lower Riemann sum, and each St is a union
of rectangles whose area is an upper Riemann sum. In Figure 31, the area of the
shaded region is a lower Riemann sum while the total area of the shaded and
unshaded rectangles is an upper Riemann sum.

If we increase the number of partitions into which the interval PQ is decom-

posed, the difference between the sum of the areas of the outside rectangles and the
sum of the areas of the inside rectangles becomes smaller and smaller, so that by tak-

ing a sufficiently large number of partitions, we can make this difference as small as

we please. Since the area under the curve lies between these two sums, it is the limit
toward which the sum of the outside or inside rectangles tends as the number of par-
titions is definitely increased, and the determination of this limit is accomplished by
what we know from calculus as integration. In other words, the common bound on

these sums for a monotone increasing function y = f(x) is the desired area, the value
of the definite integral f f(x) dx.

Figure 31

10.1.4 Problems

1. a. Find the exact areas of regular circumscribed and

inscribed hexagons about a circle of radius r (Figure 32).

Figure 32

b. If a side of a regular n-gon inscribed in a circle of radius 1

has length x, determine the length of a side of a regular
2n-gon inscribed in the same circle in terms of x.

*c. Use parts a and b and a calculator or computer to calculate
the perimeter of regular polygons of 12,24,48,96, and 192
sides inscribed in a circle of diameter 1. (Because of the

1
unwieldy number system used at the time, Archimedes
could go only so far as 96 sides.)

2. The area of a sector. A sector is the region bounded by
two radii OA and OB and arc AB of circle O (Figure 33).
Assume that the area of a sector is proportional to the mea-

sure of the arc. Use this assumption to deduce the formula
A = ^ for the area of a sector bounded by an arc of radian
measure 0 in a circle of radius r.

Figure 33
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Figure 34

3. Figure 34 shows a part of the unit circle in the first quadrant.
a. Use the result of Problem 2 to prove that sin 6 <9 < tan 6,

for 6 in radians.

b. Explain why lim ^ = lim = 1.

4. Find formulas for the area and perimeter of a Reuleaux

triangle of width w. (See Problem 6 of Section 10.1.1.)
5. The area of an ellipse. Let T be the transformation in R2

defined by T(x, y) = (ax, by).
a. Show that if JKLM is any square in R2

, and T(JKLM) =

J'K'L'M', then a(J'K'L'M') = aba(JKLM).
b. Show that the image of the unit circle under T is the ellipse

with equation (f) 2
+ (^) 2

= 1.

c. Use parts a and b to derive a formula for the area of any
ellipse in terms of its semimajor axis a and its semiminor
axis b.

6. Area under a parabola. Consider the region R bounded by
the parabola y = x

2
, the x-axis, and the line x = 10.

9 10

a. Calculate L = ^i 2 and U = ^ z
' 2

- Explain why
;=0 i=l

L < ol(R) < U.

That is, suppose the perimeters of the inscribed and circum-

scribed n-gons of a circle are known. Then the perimeter of
the circumscribed 2n-gon is the harmonic mean of these

perimeters, and the perimeter of the inscribed 2/r-gon is the

geometric mean of the perimeter of the circumscribed 2n-gon
and the inscribed n-gon. These two recursion relations enable
tt to be estimated as close as desired (given the computational
wherewithal).

Figure 35

c

In Figure 35, AB is a side of a regular n-gon inscribed in circle
O and CD is a side of the circumscribed regular n-gon to circle
O, tangent to the arc AB at its midpoint E. Then AE and BE
are sides of a regular 2n-gon inscribed in circle O. Tangents at

A and B intersect CD at F and G, respectively. Then FG is a

side of a circumscribed regular 2«-gon in circle O. From these

constructions, by definition of perimeter, p = n- AB and
P = n - CD. Also, p' — 2n • AE and P' = 2n • FG.

a. Calculate p and P if n = 2 and the radius of the circle is 0.5.

b. Find sums that provide a smaller interval containing a(R).
c. Use calculus to determine a(R) exactly.
7. Estimation of tt using perimeters. In this section, tt was

estimated using the areas of inscribed and circumscribed reg-
ular polygons. The following theorem enables the estimation

of tt by calculating successive harmonic and geometric means

of the perimeters of these polygons.

Theorem: Let p and P be the perimeters of inscribed

and circumscribed regular n-gons in a circle. Let p' and

P' be perimeters of inscribed and circumscribed regu-
lar 2n-gons in the same circle. Then

2pP
(1) P'= H(p,P)

(2) p' = VJtF = G(p,P’).

b. Use the results of part a to calculate successive perimeters
of regular inscribed and circumscribed polygons with 2 l

-

sides until tt is estimated correct to 6 decimal places.
c. Prove both parts of the theorem by justifying each of these

conclusions.

P

P

P+p

CF

FE

P+p
2P

CE

FG P'

CE

FG

2P

p AH

p'
~

AE

—, from which (1) follows by solving for P'

P'

EN

EF

vii. A ENF ~ AAHE, from which
AH

AE

EN

EF

P P
— = —, from which (2) follows by solving for p'.
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10.1.5 The problem of quadrature
In Section 10.1.1, we proceeded from the area of a square to the area of any triangle,
and then used areas of triangles to obtain area formulas for quadrilaterals with par-
allel sides (trapezoids) or perpendicular diagonals, and for polygons that can be cir-
cumscribed about a circle. In Section 10.1.4, we applied the last of these formulas to

obtain a formula for the area of a circle and applied areas of trapezoids to obtain
formulas for areas under curves.

The ancient Greeks utilized this process, but also reversed it. They were par-
ticularly interested in the problem of quadrature, that is, of constructing a square
with the same area as a given figure. The reason for the importance of quadrature is

simple: If a square can be constructed with the same area as a given region F, then

you can be certain of the area of F in square units.
In this short section, we consider the question of quadrature. Our general

scheme begins as follows. (1) Construct a square with the same area as any given
rectangle. (2) Construct a rectangle with the same area as any given triangle. Then,
using (2) and then (1), we can construct a square with the same area as any given tri-

angle. The discussion provides a review of some of the ideas in earlier sections and
also a few surprises.

Quadrature of the rectangle

Perhaps the first surprise is that we use ideas from similar triangles to construct a

square with the same area as a given rectangle.

Theorem 10,11 A square can be constructed with the same area as a given rectangle.

Proof: Suppose a rectangle has dimensions x and y as in Figure 36a. Then a square
with side 5 and the same area as the quadrilateral has area s

2
= xy, so s = Vxy.

Thus 5 is the geometric mean of x and y. A segment of length s can be constructed
from segments of lengths x and y using ideas from Section 8.3.1. Specifically, place
segments of lengths x and y on the same line next to each other, with point P in com-

mon, as shown in Figure 36b. Construct a circle whose center is the midpoint of the

new segment of length x + y and whose radius is -yT Then construct the perpen-
dicular at P. The length of the half-chord PQ from P to the circle has length Vxy
and so is the length of a side of the desired square.

Figure 36

Question: Why does PQ have length 'Vxy?
We say that Theorem 10.11 allows us to “square a rectangle”. Theorem 10.11

is exceedingly important in the theory of quadrature because it is easy to construct a

rectangle with the same area as any triangle.
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Theorem 10.12 A rectangle can be constructed with the same area as a given triangle.

Figure 37

Proof: Suppose AABC is given. Let h be the altitude to side BC. Then a( AABC) =

2 ^ ’ BC, so a rectangle with consecutive sides of lengths \h and BC has the same
area as AABC. Such a rectangle is easy to construct (Figure 37).

_l

From Theorems 10.11 and 10.12, in two steps we can construct a square with the
same area as any triangle. That is, we can “square a triangle”. But a polygonal region
may be split into two or more triangles. So the next question is: Suppose a region is
the union of two triangles. Can a single square be found whose area equals the sum

of the areas of the two triangles? The answer is an immediate and surprising conse-

quence of a well-known theorem.

Theorem 10.13 Let F be the union of two triangular regions with no interior points in common.

Then a square can be constructed with the same area as F.

Figure 38

Proof: Let the two triangular regions be Fx and F2 (Figure 38). By Theorems 10.11

and 10.12, a square region of side can be constructed with area a(Fi), and a

square region of side s2 can be constructed with area a(F2 ).

(!), the square on the hypotenuse has area equal to a^Ff) + a(F2 ), so that square
has area a(F).

The following corollary can be proved by mathematical induction. It shows
that every polygonal region can be “squared”. We leave its proof to you.

Corollary: Let F be the union of n triangular regions, no two of which have any inte-
rior points in common. Then a square can be constructed with the same area as F.
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Armed with the knowledge of all the theorems in this section, it was natural
for the Greeks to wonder if a square could be constructed with the same area as that
of a given circle. But they were unable to solve the problem of “squaring a circle”.

Not until the 19th century was the reason for their difficulty established. To

square a circle, a side s must be constructed with s
2

= -nr
2

, where r is known. That

implies that s = r^jr. The rules of ruler-and-compass construction the Greeks
had laid out enabled them only to construct finite combinations of sums, differ-

ences, products, quotients, and square roots of lengths of given segments. It follows
that every length that can be constructed is an algebraic number, a number that can

be the solution to a polynomial equation with integer coefficients. When in 1882
Ferdinand Lindemann proved that tt is a transcendental number—one that cannot

be the solution to a polynomial equation with integer coefficients—he simultane-

ously was showing that a length tt could not be constructed. This implies that Vrr
cannot be constructed either. So 5 could not be constructed, and so a circle can-

not be squared.

10.1.5 Problems

1. Trace the rectangle shown in Figure 39. Using a straight-
edge and compass, construct a square with the same area.

Figure 39

2. A triangle has vertices at (0, 0), (5, 0), and (—6, 7). When
this triangle is “squared”, what is the length of a side of the square?

1
3. A trapezoid has vertices at (0, 0), ( a , 0), (b, c ), and (d, c ).
When this trapezoid is “squared”, what is the length of a side
of the square?
4. Prove the Corollary to Theorem 10.13.

5. A reasonable way to try to square a given circle is as fol-
lows. Circumscribe a square about the circle. Inscribe a sec-

ond square in the circle. Let a third square have a side length
equal to the arithmetic mean of the sides of the inscribed and
circumscribed squares.

a. Compare the area of the third square to the area of the
circle.

b. Is this a better or worse approximation to the area of the
circle than if the areas of the first two squares are averaged?

6 . Archimedes succeeded in the quadrature of the parabola.
That is, he found a square equal to the area of a region bounded

by the parabola and a line parallel to the parabola’s directrix.

Why can a parabola be squared while a circle cannot?

ANSWER TO QUESTION

PQ is the altitude to the hypotenuse of the right triangle whose vertices are Q and the endpoints of the diameter. So PQ is the

geometric mean of the segments of the hypotenuse (Theorem 8.27).

10.1.6 Area as representing probability
If a probability experiment has n possible mutually exclusive outcomes Ox to On , and

n

these outcomes have probabilities p(01 ) to p(On ), then ^ g(0,) = 1. The probabilities
i=l

can be pictured in a histogram. Figure 40 shows a histogram for the probability of each

possible sum when 3 fair dice, each with 1 to 6 on its faces, are tossed.
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Figure 40

As the outcomes become more numerous, histograms like those in Figure 40
resemble curves. For instance, SAT scores were renormalized some years ago so

that 500 is their mean and 100 is their standard deviation. Since any multiple of 10
from 200 to 800 is a possible score, there are 61 possible scores. Rather than draw
a histogram with 61 bars, it is easier to draw a smooth (bell-shaped) curve connect-

ing the tops of the bars, as in Figure 41. The area of the curve between x = 445 and
v = 605 yields the probability that a randomly chosen test taker will score between
450 and 600, with the difference between the values of x and the scores due to the
need to take into account rounding.

Figure 41

Using probability to determine area

In the preceding example, area represents probability. A class of techniques called
Monte Carlo methods allow this idea to be turned around, for they use probability to

determine area.

Monte Carlo methods are numerical methods that involve sampling from ran-

dom numbers. They arose during World War II and owe their name to the similari-
ties that can be made between statistical simulations and games of chance which are

associated with the European gambling mecca Monte Carlo in the tiny country of
Monaco. The Monte Carlo method can be used to simulate a Bingo game, simulate

complex physical phenomena such as subnuclear processes in high-energy physics
experiments, and study the flow of traffic in a city. There are also many applications
of Monte Carlo methods in economics and computer science.

The idea of the Monte Carlo method is that a numerical problem in analytic
form can be replaced by a problem in probability so that the numerical answer to

the probability problem is the same as the numerical answer to the original problem.
The new probability problem is solved using a computer program.
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Figure 42 Approximating tt using a Monte Carlo simulation

(-1.1) y (0.1) (1,1)

(-1.0) (1.0)

-1,-1) (0,-1) (1,-1

Monte Carlo methods allow us to investigate a complex system by sampling it in a

number of random configurations, and then using the results of the sampling to

describe the system. The connection with area will become apparent as we apply the
method here to approximate tt.

In R

1

2
, we inscribe a unit circle with center at (0, 0) inside a square with vertices,

a(circle) ^
as shown in Figure 42. The ratio a(square )

= Now we use this ratio of areas to

approximate tt.

We pick a random point A = (x, y ) in such a why that the values for both x

and y are between 1 and -1, that is, such that |x| < 1 and |y| < i. The probability that
this random point lies inside the unit circle and not in the space between the circle
and the square is simply the ratio of the area of the circle to the area of the square.

P(x2 + / < 1) = f
Suppose we performed this experiment n times, and it turned out that x of those
times produced a point inside the circle. Then we could estimate the probability to

be fr . As n approaches infinity, this probability estimate becomes arbitrarily close to

f and so we can write

lim — = — or tt = 4 lim —.

n—>oo VI 4 ft—»oo Yl

Figure 43

How precise is this formula for tt? The precision (number of digits) depends on

how many times you perform the experiment. The greater x and n are, the more cor-

rect digits you are likely to get.
But this is not a particularly quick way to estimate tt. If the experiment were per-

formed 1,000,000 times, and 785,398 times the point was inside the circle, the esti-
mate for tt would be pootuioo ’ or 3.141592 exactly, which is correct only to six places.
Each deviation of 1 from the most likely but quite improbable result of 785,398 would
cause a result correct only to 5 places, and a deviation of 10, still very likely, would
mean the result was correct only to 4 places. Also, note that because tt is irrational,
the estimate—a rational number—can never be exact. When precision is needed, a

Monte Carlo experiment must be repeated so often that computers are necessary.
For these reasons, Monte Carlo methods tend to be used when exact methods

of calculation are unavailable or too unwieldy. For instance, if a function / had an

equation for which the exact definite integral from x = a to x = b could not be cal-

culated, then the graph of the function could be fit inside a rectangle with sides
x = a and x = b. By randomly selecting points in the rectangle and determining
how many are under the graph of /, the definite integral could be estimated, as

shown in Figure 43. Although this process is relatively tedious for calculating sim-

pie integrals, the Monte Carlo method is quite useful for calculating complicated
integrals in n dimensions (n > 3), where other methods are relatively slow and

expensive.

10.1.6 Problems
1

1. Write a scenario of a trip and a corresponding rate func-
tion and represent the total distance traveled as an area.

2. Determine the 16 probabilities in the histogram of Figure 40.

3. A general formula for a normal curve is y = e {2(r)

where p, is the mean and a the standard deviation. What is a

specific formula for the normal curve in Figure 41?
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4. Use the idea of Figure 42 with at least 100 random points Figure 44

to estimate tr.

5. Imagine an election that is even between two candidates.

Suppose you conducted a survey of 500 people. How likely
are your survey results to be within 2% of the actual (even)
situation? Study this question by repeatedly picking 500 ran-

dom numbers between 0 and 1 and counting how many of
the 500 are less than 0.5.

6. Prove: If a quarter has diameter equal to the distance
between sides in a square lattice of infinite extent (Figure 44),
then the probability that a quarter that is randomly thrown at

the lattice covers a lattice point is f.

Unit 10.2 Volume

Ancient mathematicians needed to calculate volume to determine how much grain
and other foodstuffs were stored in a particular location, or how much material would
be needed to build structures or make other items. The Babylonians knew formulas
for the volumes of boxes and, more generally, for the volume of a right prism with a

trapezoidal base. They (incorrectly) found the volume of a truncated cone as the

product of an altitude and half the sum of the areas of the bases. The Rhind Papyrus
(which was a handbook for scribes) shows that the Egyptians computed the volumes
of cylindrical granaries by multiplying the area of the circular base by the height.
They were able to calculate the inclination of oblique planes, and used this calcula-
tion to find the volume of a pyramid. The Chinese investigated the calculation of
volume using decomposition methods, and obtained formulas for the volumes of

spheres and pyramids. Archimedes anticipated and influenced the integration meth-
ods of calculus used today for calculating volume. He considered a solid as being
composed of a very large number of thin parallel layers. He envisioned these layers
suspended at one end of a given lever in such a way as to be in equilibrium with a fig-
ure whose volume was known. He used these methods to conjecture relationships
between the volumes of spheres, cones, and cylinders, and then supplied proofs of
the relationships.

Can we develop a theory of volume by means of decomposition as we did with
area? David Hilbert posed this question in 1900 when he encouraged mathemati-
cians to investigate whether a definition of volume was possible for polyhedra anal-

ogous to that of area for polygons. Max Dehn (1878-1952) responded in that same

year by showing that, although we can decompose two arbitrary polygonal regions of

equal area into pairs of congruent triangles, it is not possible to decompose two arbi-

trary polyhedral regions of equal volume into pairs of congruent tetrahedra. He

showed that decomposition is not always possible because figures as simple as a reg-
ular tetrahedron and a cube of equal volume (Figure 45) cannot be decomposed into

congruent tetrahedral pieces.

Figure 45

regular tetrahedron cube
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As a consequence, like the areas of figures bounded by curves, infinite processes
of some kind are needed to define volume for polyhedral regions. The volume of

any solid bounded by plane polygons may be defined as the greatest lower bound of
the sum of the volumes of nonoverlapping cubes, which together completely cover the
solid. So methods of calculating volumes are analogous to those for calculating areas

of regions bounded by curved lines.
In this unit, we investigate some figures of E 3

, exploring different methods of

calculating their volumes. We revisit some familiar formulas you probably learned in

high school. Our goal is as it was with area, to derive these formulas from basic prin-
ciples, show how they are related to each other, and illustrate them with applications.

10 . 2.1 What is volume?

We wish to define a volume function that will provide the means for obtaining the vol-
umes of common 3-dimensional figures. You may wish at this time to refer back to

the definition of area function found at the beginning of Section 10.1.1 and include
the fourth part found at the start of Section 10.1.4.

Just as we think of area either as measuring the 2-dimensional space occupied
by a region, or contained in the region’s boundary, volume can be thought of either
as a measure of the 3-dimensional space contained in a closed surface, or occupied
by a solid that has that surface as a boundary. A solid is the set of points on a closed
surface or in its interior.

Tetrahedrons

We began the study of area in Section 10.1.1 by considering the domain of the area

function a to be the set of unions of triangular regions in E 2
. This suggests that the

domain of the volume function v might start from an analogous set in E 3
. Such a set

is the set of unions of solid tetrahedrons (an alternative plural is tetrahedra). Given
four points not all in the same plane, a tetrahedron is the union of the four triangu-
lar regions (faces) determined by these points. That is, if the four given points are the

noncoplanar points A, B, C, and D,

tetrahedron ABCD = A.ABC U AABD U AACD U ABCD.

Figure 46 Such a tetrahedron is shown in Figure 46.
Tetrahedra are the spatial analogue of triangles. A triangle has three vertices,

three sides, and three angles. A tetrahedron has four vertices, four faces, and four
solid angles, one at each vertex. The solid angle at each vertex is the union of all

points on and interior to the three plane angles of the tetrahedron at that vertex.

Notice that these solid angles are not the twelve plane angles in the faces of the tetra-

hedron, nor are they the six dihedral angles that are formed by the union of the two

half-planes that intersect at an edge of the tetrahedron.
The following sets associated with a triangle all describe the same region:

1. all points that lie between points on the sides of the triangle
2. the union of the sides of the triangle with the intersection of the interiors of

any two of its angles
3. the intersection of all convex sets that contain the vertices of the triangle

The region described is the triangular region associated with the triangle.
Analogously, the following sets associated with a tetrahedron all describe the

same tetrahedral region or solid tetrahedron.

1. all points that lie between points on the faces of the tetrahedron
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2. the union of the faces of the tetrahedron with the intersection of the interiors
of any two of its solid angles

3. the intersection of all convex sets that contain the vertices of the tetrahedron

The points in the tetrahedral region but not on any faces of the tetrahedron consti-
tute the interior of the tetrahedron.

Defining properties of the volume function

In the following definition are four properties from which the volumes of solid fig-
ures can be derived. The first three of these defining properties of a volume function
are analogous to those for area. Property (4) of this definition extends volume to

figures that are not unions of a finite number of tetrahedral regions. It owes its name

in the west to Bonaventura Cavalieri (1598-1647), a Jesuit priest who was a student
of Galileo and who was the first western mathematician to realize its importance.
But the first individuals to have used this principle to obtain volume seem to have
been the Chinese mathematician Zu Chongzhi (429-500) and his son Zu Geng.

Definition Let F be the union of tetrahedral regions in E

*12

3
. A volume function v is a function

that assigns to each such F a positive real number v(F) such that:

1. If F1
= F2 , then v(F1 ) = v(F2 ). (Congruence property)

2. If the tetrahedral regions making up Fx and F2 have no interior points in

common, then v(F1 U F2 ) = v(F1 ) + v(F2 ). (Additive property)
3. If F is a cube with edge of length x, then v(F) = x

3

**

. (Volume of cube)
4. If F and a solid S lie between parallel planes a and b, and for each plane c

parallel to and between a and b, c Cl S is a region whose area is known
from the properties of the area function, and o:(c H Z7 ) = a(cf!5), then

v(F) = v(S). (Cavalieri’s Principle)

A cross section of a surface or solid is the intersection of a plane and the surface
or solid. The intersections c Pi F and c Pi S in Cavalieri’s Principle are cross sections.

To apply Cavalieri’s Principle, we think of a 3-dimensional solid as being made

up of parallel cross sections, as we do in calculus. If all the pairs of cross sections of
two solids F and S made by parallel planes have the same area, then the solids have
the same volume. You may think of a deck of cards F that has been slanted into the

position S, as in Figure 47.

Figure 47

We will apply Cavalieri’s Principle first when F and S are both unions of tetrahe-
dral regions, and later when S is a cylinder, cone, sphere, or other figure with a

curved boundary.
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Volume is not area

Figure 48

In Section 10.1.1, we began with the area formula for any square, yet we defined the
area of any polygonal region in terms of triangular regions. We could do this because
it is possible to decompose any polygonal region into triangular regions, which can

then be arranged to form a square, as we saw in Section 10.1.5. We might say that we

can “square” any polygon.
Can we approach the volume of polyhedra in an analogous way? To do so we

need to address two issues, first, the decomposition of polyhedra, and second, the pos-
sibility of comparing polyhedra with equal volume in terms of dissections.

First let us address the notion of dissection. Is it possible to decompose any poly-
hedral region into tetrahedral regions analogous to the decomposition we have seen of

polygonal regions into triangular regions?
It is easy to decompose any convex polyhedron P into tetrahedra. Triangulate all

the faces of P and select a point A in the interior of P. Then the tetrahedra with vertex

A and the three vertices of each triangle form a decomposition of P. If the polyhedron
is not convex, like the one shown in Figure 48, where segments AE, BF, and CD are

in the exterior of the polyhedron, then the situation is more complex. More than one

point in the interior must be used for the decomposition.
We next address the issue of defining volume as we did area. Recall that we defined

polygons to be equal in area if they possess dissections into corresponding congruent
polygonal pieces. Can we define polyhedra to be equal in volume if they possess an anal-

ogous property? It turns out that we cannot make such a definition because in 1900 Max
Dehn came up with a counterexample. Dehn showed that there is no way to decom-

pose a regular tetrahedron and a cube of equal volume into equal numbers of tetrahe-
dra that are congruent in pairs. We might say, as a result, that we cannot “cube” every
polyhedron.

This limitation on the decomposition of polyhedra is why we cannot construct

a theory of volumes analogous to that of area. However, Cavalieri’s Principle does
allow us to overcome this difficulty. We can find volume formulas for some solids not

by decomposing them, but by equating them, cross section by cross section, with the
volume of a known solid.

10.2.1 Problems

1. Prove that any convex solid must contain a tetrahedron.

2. A square pyramid is the union of at least how many tetra-

hedrons?

3. A cube is the union of at least how many tetrahedrons?

4. Which part(s) of the definition of volume relate to

Archimedes’ principle of displacement found in physics?
5. a. State an analogue of Cavalieri’s Principle for an area

function.

b. Use your principle from part a to prove that the transfer-

mation T : (x, y) —> (x + ky, y) preserves area. This trans-

formation is an example of a shear transformation of

magnitude k.

c. Every parallelogram with base b and height h can be placed
on a coordinate plane so that its vertices are (0,0),
( b , 0), (c, /z),and (c — b, h). What magnitude shear of part
b maps this parallelogram onto a rectangle with area bhl

1
d. Prove that with composition, the set of shears of the type

shown in part b forms a group.
6. Consider the transformation T in R

12

3

45

defined by T(x,y,z) =

(.x + ky, y, z), where k is fixed.

a. Show that T is not an isometry.
b. Use Cavalieri’s Principle to show that T preserves volume.

(T is a 3-dimensional shear transformation.)
7. Demonstrate that each of the following is a possible cross

section of a cube.

a. a single point
b. a segment
c. a triangular region
d. a rectangular region
e. a square region
f. a pentagonal region
g. a hexagonal region
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10.2.2 From cubes to polyhedra
Definitions of figures in space can be simplified by extending to E 3

some of the language
we used earlier in E 2

. Two figures a and f3 in E 3
are congruent if and only if there is a

distance-preserving transformation T with T(a) = (3. One congruence transformation
in E 3 is the translation associated with the 3-dimensional vector AB . In R 3

, if
AB — (h, k, j ), then the translation associated with the vector (h, k, j) has the for-
mula T(x, y, z) = (x + h, y + k, z + j). It is distinguished by the fact that all segments
connecting points on a preimage with their images are parallel and of equal length.

Translations make it easier to define prisms and cylinders. Let G' be the trans-

lation image of a polygonal region G in E 3
, where G' and G are not in the same plane.

The prismatic solid with bases G and G' is the set of all points on any segment con-

necting a point of G with its translation image point on G' (see Figure 49). A prism
is the boundary of this solid. The altitude or height of the prism is the (perpendicu-
lar) distance between the planes of G and G'.

Figure 49

Types of prisms
A prism is classified as square, rectangular, triangular, quadrangular, etc., as its base
is a square, rectangle, triangle, quadrilateral, etc. In a prism, its bases are congruent
(since translations are isometries) and the plane section formed by the prism’s inter-
section with any plane parallel to and between its bases is a region congruent to the
bases. Therefore, all these sections have the same area.

When the direction of the translation mapping one base to the other is per-
pendicular to the base planes, the prism is a right prism. Otherwise, it is called oblique.
Figure 50a shows an oblique prism. Figure 50b shows a right prism.

Figure 50

(a) (b)
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When a prism’s base is a parallelogram, the prism is called a parallelepiped (Figure
51a). A right parallelepiped whose bases are rectangles is called a right rectangular
parallelepiped or box (Figure 51b). A cube is a right rectangular parallelepiped whose
faces and bases are squares.

In developing the formulas for areas of polygonal regions, we first used areas

of squares to obtain a formula for the area of any rectangle. The spatial analogue is
to use volumes of cubes to obtain a formula for the volume of any box. The proof has
two parts, which we split here into a lemma and the theorem. We doubt that the

proof is original, but we have not seen it elsewhere.

Lemma: If a box has dimensions x, y, and x + y, then its volume is the prod-
uct of its dimensions.

Proof: Consider a solid cube with edge x + y. It can be split into eight parts, shown
in Figure 52.

Figure 52

FLU (the front, left, upper part) and BRD (the back, right, lower part) are cubes
with volumes x

3 and y
3

. FRD, BLD, and BRU have dimensions x, y, and y, and

FLD, BLU, and FRU have dimensions x, x, and y. These last six can be grouped
to form three congruent boxes FRD U FRU, BRU U BLU, and BLD U FLD,
each with dimensions, x, y, and x + y. The volume of each of those boxes is

!((x + y) 3
- x

3
-

y
3 ),orxy(x + y). J

The proof of the main formula is similar to the proof of the lemma. We split a

cube into pieces, some of which are smaller cubes. The rest we group together into

congruent sets of boxes. The boxes in some of these sets have dimensions of form of
the lemma, so their volumes are known. The remaining boxes have the dimensions
we want, and their volumes can now be determined by subtracting the known volumes
from the volume of the big cube.
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Theorem 10.14 The volume of a right rectangular parallelepiped (box) with dimensions x, y, and

z is xyz.

Proof: Consider a solid cube with edge x + y + z. It can be split into 27 parts, some

of which can be seen in Figure 53.

Figure 53

Of the 27 parts, 3 are cubes with volumes x
3

, y
3

, and z
3

. (Only the cube with volume
x

3
can be seen in Figure 53.) Eighteen of the others can be grouped as follows:

Three have dimensions x, y, y and three have dimensions x, x, y. These join
to form 3 boxes with dimensions x, x + T and y, so by the lemma their joint
volume is 3xy(x + y). (These are blue in Figure 53.)
Three have dimensions x, z, z and three have dimensions x, x, z. These join to

form 3 boxes with dimensions x, x + z, and z, so by the lemma their joint
volume is 3xz(x + z).
Three have dimensions y, z, z and three have dimensions y, y, z. These join to

form 3 boxes with dimensions y, y + z, and z, so by the lemma their joint
volume is 3yz(y + z).
The remaining 6 parts are boxes with dimensions x, y, and z. The volume
of each is |((x + y + z) 3

- x
3

-

y
3

-

z
3

- 3xy(x + y) - 3xz(x + z) —

3yz(y + z)), which is xyz. _J

Corollary: The volume of a right rectangular parallelepiped is the product of
the area of the base and the corresponding altitude of the parallelepiped.

From this corollary, by using Cavalieri’s Principle, we can prove the following
more general theorem.

The volume of any prism with base area B and altitude his Bh.
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Figure 54

Figure 55

Proof: Let P be a prism whose bases are in planes a and b, and let P have base area

B and altitude h. Construct a right square parallelepiped S with bases in planes a

and b that also has base area B (Figure 54). This can be done because of the corol-

lary to Theorem 10.13. S also has altitude h, so by the corollary to Theorem 10.14,
v(S) = Bh. Now let c be any plane parallel to a or b and between them. The inter-
section of c and P is congruent to the bases of P, so has area B. The intersection of
c and S is congruent to the bases of S, so also has area B. Thus, by Cavalieri’s Prin-

ciple, P and S have the same volume, and so v(P) = Bh. _J

Pyramids

Although the previous arguments have obtained the volumes of prisms, in theory we

have not yet established that prisms have a volume, for we have not shown a prismatic
solid to be a union of tetrahedral regions. For this, we need to consider pyramids.

Given a polygonal region F in a plane, a pyramidal solid is the set of points on

line segments connecting points of F (its base) with a point A (its apex or vertex) not

in that plane. A pyramid is the boundary of this solid; it is union of F and the sets of

points connecting the polygon boundary of F to A. The distance from the apex to the

plane of the base is the altitude or height of the pyramid. Like prisms, pyramids are

classified by their bases as triangular, quadrangular, pentagonal, etc. (Figure 55).
From this definition, we can see that a triangular pyramid is a tetrahedron as defined
in Section 10.2.1.

A (apex)

pentagonal pyramid
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Figure 56

The word “pyramid” originates in the Greek word for the pyramids found in

Egypt. These pyramids, and their counterparts built by the Mochica in Peru and the

Maya in Central America, are regular square pyramids. A regular pyramid is a pyra-
mid whose base F is a regular polygon and in which the segment connecting the apex
to the center of F is perpendicular to the plane of F. That is, in a regular pyramid, if
the base is horizontal, the apex is directly above the center of the base.

In Figure 56, we have dissected a cube into 6 regular square pyramids, each with

apex at the center O of the cube. Furthermore, each of them can be further dissected
into tetrahedra. For instance, the solid square pyramid OABCD is the union of the
solid tetrahedra OABP , OBCP, OCDP, and ODAP. Consequently, the volume func-
tion defined in Section 10.2.1 includes these square pyramids in its domain. Due to

the reflection symmetry of the cube through any plane that is a perpendicular bisec-
tor of an edge, these six regular square pyramids are congruent. Thus, by property (1)
of the volume function, the six of them have equal volume.

By property (3) of the volume function, the volume of the cube equals the cube
of one of its edges, which in this case equals the area of the base times twice the height
of any of the square pyramids. Since each of the six square pyramids have equal vol-

ume, the volume of one of them must equal \ • 2h • (area of base). Therefore, the vol-
ume of the square pyramid is the area of its base times \ its altitude. This is the
formula we would like to derive for any pyramid. But the preceding argument does
not apply to all pyramids, because not all square pyramids can be put together to

form a cube. To achieve a proof of the desired formula, we need to know that pyra-
mids with the same altitude and bases of equal area have equal volumes. For this, we

use a size change in space.
Two figures a and (3 in E 3

are similar if and only if there is a distance-multiplying
transformation T with T{a) = /3. One similarity transformation in E 3 is the size change
with center O and magnitude k > 0 . As in the two-dimensional case, the image of any

point P under this size change is the point P' such that P' is on ray OP and ^ = k.
Now we prove a lemma about the relationship between the area of a cross sec-

tion of a pyramid parallel to its base and the area of the base itself.

Figure 57 ^



520 Chapter 10 I Area and Volume

Lemma: Let P be a solid pyramid with altitude h and base a that has area B.

Let Q be a pyramid with the same apex as P, and such that its base (3 is a sec-

tion of P contained in a plane that is parallel to the plane of a. Let the area of
the base of Q be B' and the altitude of Q be h'. Then -§- = (^) 2

.

Proof: Let a be the polygon Pl P2 ■.. Pn and let A be the common apex of P and Q
(Figure 57). Let (3 be the polygon Q\Q2 - ■ ■ Qn > so that for each i, A, Ph and Q { are

collinear. Let £ be the line through A that is perpendicular to the plane of a at E

and to the plane of f3 at F. Then AE = h and AF = h'. Let k =

Let T be a size change in space of magnitude k, center A. Then T(E) is the

point E' on AE such that AE' = kAE. Since k = ,AE' = AF. This implies
that E' = F since F is also on AE. Since T{E) = F,T also maps the plane a

(which is perpendicular to £ at E ) onto the plane perpendicular to £ at F. But

this is the plane of (3. Therefore, every point X of the plane of a is mapped onto

the point in the plane of (3 at which AX intersects the plane. Thus T maps
P1 , P2 ,.. •, P

n to <2i, Q2 ,..., Qn , respectively. And so the base of P is mapped onto

the base of Q. These bases are similar and k is the ratio of similitude. The area of

Q\Qi ■ ■ - Qn = k2 times the area of P1 P2 ... Pn . Thus B' = k2B, and the lemma

follows. J

We now use Cavalieri’s Principle to show that the volume of a pyramid depends
only on its base area and altitude.

Theorem 10.16 If two pyramids have the same altitude and same base areas, then they have the
same volume.

Proof: Suppose P is any pyramid with a base in plane b. Any other pyramid P* with
the same height h and base area as P is congruent to a pyramid P' with height h
whose base is in the same plane as the base of P and that lies on the same side of
that plane (Figure 58).

Figure 58

h

Let a be the plane through A and A' parallel to b. Since the altitude of each pyra-
mid is h, the distance between these planes is h. Now let c be any plane parallel to

a and b and between them. If the distance between A and this plane is x, so is the
distance between A' and this plane. (Parallel planes are everywhere equidistant.)
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If B is the area of the base in plane b, then, by the lemma, the area of the intersection
of c and P has area (f B. By the same argument, the area of the intersection of
c and P' is (f)" B. Since the areas of all parallel cross sections are equal, we can con-

elude by Cavalieri’s Principle that the volumes of P and P' are equal.

From tetrahedra to pyramids
In the definitions of the area function (Section 10.1.1) and the volume function

(Section 10.2.1), triangles and tetrahedra play analogous roles. Now we shall see that

they also play the analogous roles in the derivation of formulas. That is, just as we put
triangular regions together to get formulas for the areas of some polygons, we now

put volumes of tetrahedral regions together to obtain formulas for the volumes of
some pyramids. We first show that the volume of a tetrahedron is equal to one-third
the area of its base times its altitude. We then generalize the formula to all pyramids.

Proof: Let P be the triangular pyramid whose volume we want. Let the base of P
be triangle ABC and let its apex be C'. Now we construct a triangular prism with

base AABC (see Figure 59a). Let C'X be the ray in the direction of CB and let

B' be the point on this ray such that C'B' = CB. Let C'Y be the ray in the direc-

tion of CA and let A' denote the point on this ray such that C' A' = CA. Notice

that CBB'C' and CAA'C' are parallelograms. Thus, AA' and BB' are both paral-
lei to CC' and are therefore parallel to each other. Also AA', CC', and BB '

are

congruent, so ABB’ A' is a parallelogram. Thus AABC = A A' B'C' by SSS Con-

gruence (corresponding sides are opposite sides of parallelograms).
AABC and AA' B'C' are the bases of a triangular prism Q. Let h be the dis-

tance between the planes of AABC and AA' B'C'. Then h is the altitude of both

pyramid P and prism Q and, by Theorem 10.15, the volume of Q — h • a(AABC).
Now consider the triangular pyramid P' with base A A' B'C' and with apex A

(Figure 59b). Because P and P' have the same altitude and congruent bases, their vol-
umes are equal. Note that P and P' have no interior point in common as their inte-
riors are on opposite sides of the plane containing AAB'C'. Next let P" be the

triangular pyramid with base ABC B' and apex A (Figure 59c). Let h' denote the dis-
tance of A from the plane containing A BCB'. We can also describe the pyramid P
as a pyramid with base AC'BC and apex A. But ABC'B' = AC'BC by SSS, and
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therefore these triangles have the same area. From this, using Cavalieri’s Principle,
it follows that the volume of P is equal to the volume of P". Again, P and P" have
no interior point in common as they are on opposite sides of the plane of AABC'.
Nor do P' and P" have a point in common, since they are on opposite sides of the

plane of AAB'C'.
Since the triangular prism Q is the union of P, P', and P", and no two of these

tetrahedra have an interior point in common, the volume of the prism Q is the sum of
the volumes of the tetrahedra. Thus the volume of Q is three times the volume of P,
and the theorem follows. _J

Theorem 10.18 The volume of a pyramid with base area B and altitude h is \Bh.

Figure 60

Proof: Let P\P2 ■ ■ Pn he the polygonal base of the pyramid P, and let T be its

apex and h its altitude (Figure 60). Then each of the triangles at Pt : APl P2 P3 ,

AP1 P3 P4 ,... , A P1 Pn _ 1 Pn is the base of a triangular pyramid with apex T and alti-
tude h. The pyramid P is the union of these n — 2 pyramids. No two of these pyra-
mids have an interior point in common. Therefore, the volume of P is simply the
sum of the volumes of these triangular pyramids, and the theorem follows. _]

10.2.2 Problems

1 In 1999, the human population of Earth passed 6 billion.
Could all people on Earth then fit into a cube with edges 1

mile long?

2. a. The diagonals of the faces of a box have lengths 3, 4,
and 6. What is the volume of the box?

b. Find a formula for the volume of a box whose face diago-
nals have lengths a, b, and c.

3. Prove the following theorem due to Legendre: Given a par-

allelepiped P, a rectangular parallelepiped can be constructed
that has the same volume, same height, and same base area as P.

4. A median of a tetrahedron ABCD is a segment from one

vertex (say A) of a tetrahedron to the centroid of the oppo-
site face (ABCD). (Recall that the centroid of a triangle is
the point of concurrency of the medians of the triangle.) Prove
that any plane passing through a median of a tetrahedron and

containing a second vertex of the tetrahedron bisects the vol-
ume of the tetrahedron.

5. In Figure 56, if the volume of tetrahedron OABC is V,
what is the volume of the cube?

6,. A regular octahedron is an 8-sided polyhedron whose faces
are all equilateral triangles, as shown in Figure 61. What is
the volume of a regular octahedron with edge el
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Figure 61 7. The pyramid of Khufu at Ghiza outside of Cairo is the largest
of the Egyptian pyramids. It is a square pyramid with sides
about 230 m long and had an original height of 147 m. The

height is now about 137 m due to the loss of its outer stones.

a. Estimate its original volume.

b. Estimate its current volume.

c. The pyramid contains about 2.3 X 106 stone blocks, each

weighing about 2.75 tons. What is the volume of each
block (assuming they are the same size)?

8. Is there a 3-dimensional analogue to a Reuleaux triangle
(See Problem 6, Section 10.1.1)? That is, is there a solid R that
is not a sphere such that, for any pair of parallel planes tan-

gent to R, the distance between the plane is constant? If so,
describe R. If not, explain why not.

10.2.3 From polyhedra to spheres
Cylindric solids and conic solids are generalizations of prismatic solids and pyrami-
dal solids, respectively. They arise from allowing a base to be any planar region to

which an area function applies. They provide a stepping stone in the development of
volume formulas from prisms and pyramids to spheres.

Figure 62

From prisms to cylinders
Let G be any planar region to which the area function applies. A cylindric solid is the
set of all points connecting a point of G with its translation image G' in a different

(parallel) plane. A cylinder is the boundary of this solid (Figure 62a). Thus prisms
are special kinds of cylinders.

The language of prismatic solids is used for the more general cylindric solids. G
and G' are the bases. The distance between the bases is the altitude or height of the

cylinder. If the translation connecting the bases of a cylinder is perpendicular to the

base, then a right cylinder is formed (Figure 62b). Thus right cylinders generalize
right prisms. Otherwise, the cylinder is called oblique. When the bases G and G' are

circles, then a circular cylinder is formed.

The volume of any cylinder can be found if the area of its base is known.

Theorem 10.19 The volume of a cylinder with base area B and altitude h is Bh.

Proof: Let C be a cylinder with bases Gx and G2 , height h, and let B = a(G1 ) =

a(G2 ). Because each cross section of the cylinder parallel to the base is congruent
to the base, any cross section has area B. Now let P be a prism with rectangular
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Figure 63

bases of dimensions 1 by B in the same planes as Gx and G2 . (We do not show a fig-
ure; you should draw one.) The area of each base of the prism P is B and its height
is h. The area of any cross section of P parallel to the base is also B because all

parallel cross sections are congruent to the base. Consequently, the prism P and

cylinder C satisfy the given conditions of Cavalieri’s Principle. Since the volume of
the prism is Bh, the volume of the cylinder is also Bh. _J

Corollary: The volume of a circular cylinder with base radius r is jrr
2h.

Notice that the volume formula for cylindrical solids applies both to right cylin-
ders and oblique cylinders. This is akin to the area formula for a parallelogram apply-
ing both to right-angled parallelograms (i.e., rectangles) and those that have no right
angles. This tends to violate many people’s intuition about the volumes of these fig-
ures, which is affected by the different boundaries—surface area for the cylinders
and perimeter for the parallelograms.

From pyramids to cones

The same principles that generalize prisms to cylinders also generalize pyramids to

cones. Given a connected region G in a plane, a conic solid is the set of all points on

line segments connecting a point of G (its base) with a single point (its apex) in a dif-
ferent plane (Figure 63a). The conic solids of main interest are those in which G is a

circle. A circular cone is the boundary of a conic solid whose base is a circle. If the seg-
ment connecting the apex of the cone to the center of the base is perpendicular to the

base, then a right circular cone is formed (Figure 63b). Right circular cones corre-

spond to regular pyramids.

axis

The lines containing the segments that join the apex to the points of the circular
base in a right circular cone form a figure of infinite extent that is open on each side of
the apex. This figure is called a two-napped cone (Figure 64a), and from it the conic sec-

tions arise (Figures 64b-64e). This provides another way of arriving at a right circular
cone. Form a two-napped cone by rotating one of two intersecting lines in space about
the other line at the point of intersection. Then cut off one of the nappes by a plane per-
pendicular to the line that is fixed to form a right circular cone.

This gives the word “cone” two closely related but different meanings, one mean-

ing used when studying area and volume, the second used when studying the conic
sections.
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Figure 64

The derivation of a volume of a cone is slightly more complex than for a cylin-
der but also involves Cavalieri’s Principle.

Theorem 10.20 The volume of a cone with base area B and altitude h is \Bh.

Proof: We begin as in the proof of Theorem 10.19. Let C be a cone with apex A,
base G in plane b, and height h, and let B = a(G). Now let P be a pyramid with a

rectangular base of dimensions 1 by B in the plane b, and apex in the plane a

through A parallel to the plane of the base (Figure 65). Then the height of P is
also h. Let c be a plane between a and b at a distance x from a , creating a cross sec-

tion of P. (This argument should by now be rather familiar.) Because the cross sec-

tion can be thought of as the image of the base under a size change with center A
and magnitude f, the area of the cross section is Z?(f) 2

.

Figure 65

c p

The intersection of the plane c with the cone C is a cross-section that is also similar
to the base, being the image of the base under a size change with center at the cone’s

apex and magnitude f. The cone’s base area B is the sum of areas of triangles or the

greatest upper bound of such sums. The cross-section’s area is the sum of areas of the
size change images of these triangles. Because each triangle in calculating the cone’s

cross-sectional area has area (f ) 2
times the corresponding triangle in the base, the
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cross-section has area B\jr ) 2
. Consequently, the pyramid P and cone C satisfy the

given conditions of Cavalieri’s Principle. Since the volume of the pyramid is \Bh,
the volume of the cone is also \Bh. _J

Corollary: The volume of a circular cone with radius r and height h isf 7tt
2 /z.

From cylinders and cones to spheres
A sphere is the set of all points in E 3 that are the same distance from a given point.
It is the 3-dimensional analogue to the circle, and the terms center, radius, diameter,
chord, secant , and tangent are used in the same way with spheres as they are with cir-
cles. The solid figure bounded by a sphere is a ball. A ball is the set of all points in E 3

that are less than or equal to a fixed distance from a point. A ball is the 3-dimensional

analogue to a 2-dimensional disk.
Our derivation of the formula for the volume of a ball or sphere involves sur-

prising relationships between the volumes of cones, cylinders, and spheres, and an

elegant application of Cavalieri’s Principle.

Theorem 10,21 The volume of a sphere with radius r is f 7tt
3

Proof: Let S be a sphere with radius r, and let a and b be planes tangent to the sphere
at the endpoints of a diameter of S. To use Cavalieri’s Principle, we construct a

right circular cylinder with radius r and bases in the planes a and b. This cylinder
has height 2r, so (by the Corollary to Theorem 10.19) its volume is 2r • irr

2
, or 2irr3

.

In Figure 66 we have shown the sphere, cylinder, and plane b. The plane a is not

shown because it would hide helpful details.

Figure 66

Now consider the two cones with apex at the center of the cylinder and whose
bases are the bases of the cylinder. Each of these cones has height r and base area

7rr
2

, so (by the Corollary to Theorem 10.20) each cone has volume |7rr 3
. Thus the

region R between the cones and the cylinder has volume 27rr3
— 2 • ^7rr 3

, or f 7rr
3

.

We now show that the volume of the sphere equals the volume of R. Consider
a cross section parallel to a and b. If the cross section contains the center of the

sphere, then its area is 7rr
2 in both the sphere and the cylinder. If the cross section

of the sphere is at a distance h from the center, then, as Figure 66 shows, its area is
7r(r 2

— h2 ). The corresponding cross section of R is a ring. The outside radius of
the ring is r. Notice that WV = VZ = r, so mZWZV = 45°. Consequently,
mZWZX = 45°. Thus XY = XZ and the inner radius of the ring is h. Conse-

quently, the area of the ring is 7rr
2

— rrh2
, the same as the area of the cross section
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of the sphere. Because the area of each cross section of the sphere equals the area

of each cross section of R, by Cavalieri’s Principle the volume of the sphere equals
the volume of R. This proves the theorem. _|

Theorem 10.21 is found in Archimedes’ work On the Sphere and the Cylinder.
In that work Archimedes shows many other relationships between volumes and sur-

face areas of cones, cylinders, and spheres. We have discussed the volume relation-

ships. In the next section, we turn to surface area.

10.2.3 Problems

Show a drawing of the situation in the proof of Theo-
rem 10.19.

2. Archimedes calculated the volume of a sphere by inscrib-

ing it in a cylinder. Suppose a cone is inscribed in a cylinder
of the same size as that in which a sphere is inscribed.

a. What is the ratio of the volume of the cone to the volume
of the cylinder?

b. What is the ratio of the volume of the sphere to that of the
cone?

3. What common figure has a volume equal to \ hB, where h
is its height and B the area of its base?

Rain gauges are often made in the shape of cones. Figure 67
shows two such cones of the same height H but different radii rx

and r2 .

a. Show that if these rain gauges are placed in nearby loca-
tions in a rain storm, the water will reach the same height
h in each of them, independent of their diameters.

b. How does this height h vary with the amount d of rainfall?

5. Criticize the following explanation: To say that the vol-
ume of a sphere is 400 cubic feet means that the sphere con-

tains 400 cubic feet, or that the amount of space is the same

as in a 400-foot cube.

6, A prismatoid is a polyhedron with all of its vertices lying
in two parallel planes. The faces in those planes are its bases
and its altitude h is the distance between the bases. If the bases
have areas B and B' and the cross section midway between
the bases has area M, show that the volume of the prismatoid
is given by V = {^)(B + B' + 4M)h. This formula is known
as the Prismoid or Prismoidal Formula. (Hint: Pick any point
P on the middle cross section, and find the volume of the two

pyramids with P as apex and the bases of the prismatoid as their
bases. Then partition the rest of the prismatoid into triangular
pyramids with bases lying in the lateral faces of the prismatoid.)

Which theorems of Section 10.2.2 and this section can be
considered as special cases of the Prismoidal Formula?

8. Find the volume of the largest right circular cone in which
a sphere of radius 5 can be inscribed.

Derive the formula for the volume of a circular cone using
calculus. (Consider the cone as a solid formed by rotating a

right triangle in space about one of its legs.)
10. Derive the formula for the volume of a sphere using cal-
cuius. (Consider the sphere as a solid formed by rotating a

semicircle about one of its diameters.)
Prove that there is exactly one sphere that contains the

vertices of a tetrahedron. (Hint: Let A, B, C, and D be the ver-

tices, and let E be the circumcenter of triangle ABC. Prove
that if X belongs to a line 6 that is perpendicular to the plane
of Azl5Cat£,thenTA — BX — CX. Then prove that if Y is
a point equidistant from A, B, and C, then Y belongs to €.)

Let P be a plane intersecting a ball S. A spherical cap is
the union of P Cl S and the set of points of S on one side of the

plane. The depth of a spherical cap is the distance between P
and the plane tangent to the cap parallel to P. Use Figure 66

and essentially the same proof as that of Theorem 10.21 to

prove that the volume V of a spherical cap of depth h for a

sphere of radius r is given by

Figure 67
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| Unit 10.3 Relationships among Area, Volume, and Dimension

While perimeter, area, and volume measure different aspects of figures in different

dimensions, and while knowing one of these seldom determines any other, these mea-

sures are related in many ways. For instance, every area formula involves the prod-
uct of two lengths, and every volume formula involves the product of three lengths.
Also, a rectangle with a given area can have as large a perimeter as one wants, but no

smaller than the perimeter of a square with that area. In this unit we discuss a vari-

ety of other interesting relationships among length, area, and volume.

10 . 3.1 Surface area

The surface of any prism, pyramid, polyhedron, cylinder, or cone can be folded or

rolled onto a plane. As a consequence, the surface areas of these 3-dimensional fig-
ures are found in the same way that 2-dimensional areas are found. When there are

new formulas, it is only because the arrangement of the surface on the plane has reg-
ularity that allows the area to be calculated given certain dimensions of the original
3-dimensional surface. Flowever, the use of an abbreviation such as S.A. for surface
area misleads some students to believe that surface area is as different from area as

volume is. The sphere is the only commonly studied solid whose surface cannot be
rolled or folded to be a plane figure. Other common solids with this characteristic are

ellipsoids and tori (doughnut-shaped solids).

Figure 68

Surface areas of prisms and pyramids
The part of the surface of a cylindric or conic solid that is not the base is called the
lateral surface of the solid. The lateral surface of any prism can be unfolded to form
a union of parallelograms. The total area of these parallelograms is the lateral surface
area (L.A.) of the prism. The bases can then be attached at opposite sides of one of
the parallelograms. The resulting figure is a net for the prism, and its area is the total
surface area (S.A.) of the prism.

In school mathematics, surface areas of prisms are most often found for right prisms.
Then the parallelograms of the net are rectangles and the lateral area is the product of
the height of the prism and the perimeter of its base. An example is shown in Figure 68.

Whereas the lateral surface of a prism consists of parallelograms between two par-
allel lines, the lateral surface of a pyramid consists of triangles with a common vertex, as

in Figure 69. For a regular pyramid, these triangles are isosceles and congruent, and the
sum of their areas is the product of half an altitude of any of the triangles and the perime-
ter of the base. This altitude is called the slant height of the pyramid and is customarily
denoted by the script letter €. Thus L.A. = \ €p. It seems as if this is a new formula, but
it is simply an extension of the triangle area formula A = \bh.



Figure 69

Figure 70
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In Figure 70 we show two pyramids with congruent triangular bases ABC and
A'B'C' and the same height h. Notice that, whereas the volumes of the pyramids are

equal, their surfaces areas are not equal. This is a 3-dimensional analogue to the fact
that triangles with equal bases and altitudes can have different perimeters.

D D [

Surface areas of cylinders and cones

Unrolling the label from a soup can mimics the process used to determine the lateral area

of a cylinder. When unrolled, the lateral surface of a right cylinder is a rectangle whose

height is the height of the cylinder and whose width is the circumference of the base.

Unrolling a right circular cone is a little more interesting. The lateral surface is a

sector of a circle. By thinking of the area of the sector as a limit of the sum of areas of

triangles, the formula L.A. = \ tp for pyramids can be adapted. Here € is the slant

height of the cone, the length of any segment joining the apex to any point on the cir-
cle that is the boundary of the base; p is the perimeter of the base, or 2 irr, if the radius
of the base is r. So one formula for the lateral area of a right circular cone is L.A. = rrr€.

Figure 71
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There is a very nice formula for the lateral area of a right circular cone in terms

of its slant height and the angle between the segment from the apex perpendicular
to the base and any segment whose length was used to measure the slant height. This

angle can be thought of as measuring the opening of the cone. If </> is the measure of
that angle (see Figure 71), then sine/) =

r
-

( , from which r = € sine/). Consequently,
L.A. = 7r€2 sine/>.

The surface area of a sphere
To the chagrin of mapmakers, the surface of a sphere cannot be unrolled onto a plane
surface. This forces planar maps of Earth’s surface to distort some aspect of the actual
surface. It also forces a different approach for obtaining the surface area.

Our approach utilizes the volume of a sphere to obtain its surface area. While
this may seem like a roundabout approach (no pun intended), it is not that much dif-
ferent from using the area of a circle to obtain a value for rr and thus to obtain its
circumference.

Theorem 10.22 The surface area of a sphere with radius r is 47rr2

Figure 72 Proof: Consider a ball as being partitioned into “almost pyramids”, each with an apex
at the center of the sphere. One element of the partition is shown in Figure 72.

Each element of the partition is not exactly a pyramid because its base does
not lie in a single plane. But as there are more and more elements of the partition,
the base is closer and closer to lying in a single plane. If the areas of the bases of
the partition are B1 , B2 ,..., Bk , then as k increases so that the largest Bk is made

smaller, the volume of the /th element of the partition becomes closer and closer
to | BjT, where r is the radius of the sphere and also the height of the pyramid.

Let the volume of the sphere be V and its surface area be S.A.

V » ^Bx r + |B2 r + ■ ■ • + ~Bk r

= 3(^1 + B2 b Bk )r

~ —S.A. • r
3

Now use the volume formula for a sphere (Theorem 10.21).
4 , 1
—

77T
3

= —S.A. • r
3 3

Solving this formula for S.A,

r

Simplifying this fraction yields the theorem. J

Archimedes derived the formula for the surface area of a sphere by inscrib-

ing the sphere inside a circular cylinder with the same diameter and height as the

sphere. He was so excited about this result that he directed the sphere in a cylin-
der diagram to be engraved on his tombstone. He noted (and we note) the fol-

lowing about a sphere with diameter d, which summarizes the formulas for both the
circle and sphere.
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Great circle: circumference 7rd, area 1 7rd 2

Sphere: surface area nd2
, volume rd3

Notice that the coefficients of area and volume are proportional to the corre-

sponding coefficients (| and f) in formulas for areas of triangles and volumes of

pyramids. These results suggest that it might be easier to have students learn the
formulas for circles and spheres in terms of their diameters rather than in terms of
their radii.

Figure 73

Relationships among formulas

Many calculus students notice that when V = \nr3
, then 77

= 4nr 2
= S.A. That is,

the derivative of the volume with respect to the radius seems to be the surface area.

Also, when A = nr
2

, then 77
= 2nr = C. Are these relationships calculational coin-

cidences or are they the result of special properties of the circle and sphere?
To answer this question, recall that if g is a function of r, then

g'(r) lim
h -*0

g(r + h)
h

g{r)

Let A{r) be the area of a circle of radius r. Then

A(r + h) — A(r ) = n{r + h) 2
— nr

2
= 2nrh + nh2

.

The quantity A[r + h) — A(r ) is the area of the ring-shaped region between two

concentric circles of radii r and r + h (Figure 73). As h approaches 0, it follows alge-
braically that

Air + h) - Air)
A'ir ) = lim —

7
— = lim(27rr + nh) = 2nr = C(r).

h *0 h /i -»0

Geometrically, as the width of the ring gets smaller, the relative change in area of the
circle from r to r + h approaches the circumference of the circle of radius r.

The equation ^7^ = 477T 2
= S(r) can be interpreted in a similar way. LetF(r)be

the volume of a sphere of radius r. The quantity V(r + h) — V (r) =\n(r + h) 3
— \nr 3

is the volume of the spherical shell between the spheres of radii r and r + h. (A spheri-
cal shell is the 3-dimensional counterpart of a 2-dimensional ring.) This quantity can be

simplified to

V(r + h) V(r) = 4nr 2h + 4nrh2 + —

7r/i3
.

The first term of this sum, 4nr2 h, is the approximation to the volume of this shell
obtained by multiplying the area 47rr2 of the inner surface of the shell by the shell’s
thickness (an underestimate), while the term 4nrh2 + \nh3 is the error resulting from
this underestimate of the shell volume.

As h approaches 0, it follows algebraically that

V'(r) lim
h *0

V{r + h)
~~h

V(r)
lim
h *0 ^47rr 2 + 4nrh + 47rr2

= S(r).

Geometrically, as the thickness of the shell decreases to zero, the relative change in
volume of the sphere between r and r + h approaches the surface area of the sphere
of radius r.

So these relationships are not coincidences, but explainable both geometrically
and algebraically.
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10.3.1 Problems

1. Interpret the formula L.A. = ttF2 sin </> for the lateral area

of a right circular cone when 4> = 90°.

2. Find a formula for the lateral area of a right circular cone

in terms of the radius of its base and the angle between a lat-
eral edge and the plane of its base.

3. a. Find the volume of a right circular cone in terms of the
measure of the opening of the cone and its slant height.

b. Use this formula to answer the following question. A sec-

tor is cut out of a disk, and the radii that are edges of the
sector are made to coincide. Then the disk has become
the lateral surface of a right circular cone. What is the
measure of the central angle for which the cone’s volume
is maximized?

4. A rectangle with dimensions a and b can be rolled up in
two ways to become the surface area of a cylinder.
a. What are the volumes of the two cylinders so formed?

b. Which way should an 8.5" by 11" sheet of paper be rolled

up to obtain the cylinder of larger volume?

5. a. Suppose that Tr is an equilateral triangle and Sr is a

square, both inscribed in a circle of radius r. Find for-

mulas for the areas A(r) and perimeters P(r) of Tr and

Sr in terms of r and show that it is not true that

A'{r) — P(r) for either of these figures.
b. Suppose that, in part a, Tr and Sr were circumscribed about

a circle of radius r. Is it true that A'(r) = P{r) for either

figure?
6 . Let A n (r) and Pn (r) be the area and perimeter of a regu-
lar n-sided polygon inscribed in a circle of radius r. Investigate
the behavior of the derivative A'n (r) as n increases.

7. Prove: If a cylinder’s base is the disk of a great circle of a

sphere, and the cylinder’s height is equal to the diameter of the

sphere, then the cylinder’s total surface area is § the surface
area of the sphere.
8 . Show that the surface area Sh r of a spherical cap of depth
h on a sphere of radius r is given by

Shr
= 2Trrh.

(.Hint : Use the result of Problem 13 in Section 10.2.3 and an

argument similar to that in the proof of Theorem 10.22.)

\
9. a. Figure 74 displays a cross-section of a sphere with center

O by a plane that contains point P and the arc ACB that

is visible from P. Let r be the radius of the sphere, let a

be the distance from P to the sphere, let H be the inter-

section of AB and OP, and let d = HC. Explain why

and use this fact to show that d = ^.
Figure 74

P

b. Use part a and Problem 8 to conclude that the fraction Fa r

of the surface area of a sphere of radius r that can be seen

from a point P that is a units above the surface of the sphere
is given by

a'' 2 (r + a)
c. Assume that Earth is a sphere of radius 3960 miles. What

fraction of Earth’s surface can be viewed from a satellite
in a circular orbit 1000 miles above the surface?

d. Explain why 3 satellites placed in geosynchronous circular
orbits 20,000 miles above the equator are insufficient to

operate a communications network for the entire Earth.

e. Based on the meaning of Fa r , how do you expect Fa r to

vary as a increases without bound for fixed r? Confirm

your expectations mathematically using the formula for

Far from part b.

10.3.2 The Isoperimetric Inequalities
Theorem 10.2 in Section 10.1.1 states a well-known result: Of all rectangles with a

given perimeter, the square has the greatest area. The problem this theorem solves is
an isoperimetric problem , that is, a max-min problem dealing with figures that have the
same perimeter. That particular theorem relates to a situation where you have a fixed
amount of fence and you wish to enclose the rectangular region with the largest area.
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Dido’s problem
If we do not restrict the shape of the region, then we are faced with the general prob-
lem for the plane. The problem of enclosing the largest possible area with a given
perimeter is known as Dido’s problem. The story of this problem is interesting.

Carthage was a port on the Mediterranean Sea in Northern Africa and one of
the great cities of ancient times. A major foe of Rome, Carthage engaged Rome in
three major wars in the 3rd and 2nd centuries b.c., being destroyed in the last of these.

Carthage later was rebuilt and was important in the Roman empire. It was again
destroyed around 450 a.d. and was depopulated after 698 a.d. The ancient site of

Carthage is now in the suburbs of the city of Tunis in Tunisia. Archaeological exca-

vations indicate that Carthage was founded around 750 B.c.

The story of Dido as told in the epic poem Aeneid by the Roman poet Virgil
clearly involves many myths. According to legend (but possibly with some reality),
Dido was the daughter of King Belus of the Phoenician city ofTyre. She fled to Africa
with some devoted followers after her husband was murdered. She was offered only
as much land as she could surround with a bull’s hide. Determining the most efficient

shape became Dido’s problem. Her solution was to cut the hide into very thin strips
and lay them out end to end to enclose the largest possible area. The enclosed region
became the site of Carthage.

The next theorem states the solution to Dido’s problem. A rigorous solution

requires a very careful definition of the length of a simple closed curve , which we do
not give. So we can present only a partial proof. This proof was first given by the Swiss
mathematician Jakob Steiner (1796-1863). We assume that there exists a simple
closed curve with the largest area for a given perimeter.

Theorem 10.23 Of all plane figures with the same perimeter, the circle has the largest area.

Proof: Let F be the simple closed curve with largest area for a given perimeter p.

1. First we show by an indirect proof that F must be convex. Suppose F is not

convex. Then there exist two points A and B on F such that AB contains

only points in the exterior of F (Figure 75). Then reflect the nonconvex

part of F bounded by A and B over AB . The new curve F' has the same

perimeter as F and greater area. This contradicts F having the largest area

for its perimeter.

Figure 75

2. Now we show by indirect proof that there exist lines through any point of F

that split the area of F into two equal halves. Suppose F cannot be split in this

way. Let A be any point on F. Since F has perimeter p, there is a unique sec-

ond point B on F whose distance from A along F is f. (B can be said to be
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Figure 76

P

Figure 77

“halfway around” F from A.) Since from part (1) F is convex, AB splits F
into two regions, each with the same perimeter (Figure 76). If these regions
do not have the same area, then we can reflect the region with the larger area

over AB and replace F by the new curve. But this means there is a curve

with perimeter p enclosing a larger area than F, contrary to our assumption.
So AB splits F into two regions with the same area.

3. Lastly, we show that each half of this split must be a semicircle. Let C be a

point on F other than A or B. The half of the region containing C and
bounded by AB consists of two regions and R2 with areas A 1 and A 2

(Figure 77a) and AABC with area A 3 . If ZACB is not a right angle, then
consider the new curve F' obtained by attaching regions R l and R2 upon
AA'C'B', where A’C' = AC, B'C' = BC, and ZC' is a right angle. Since

a(AABC) = \AC-BC- sin ZACB, anda(AA'B'C') = \-AC-BC, the
area of F' is greater than the area of F. This again contradicts F being the
curve with maximal area for its perimeter, so ZACB must be a right angle.
Let M be the midpoint ofAB. Since AACB is a right triangle, M is equidistant
from A, B, and C. So C lies on the circle with center M and passing through A
and B. Thus all points of F on this side ofAB are on this circle, and the same

argument can be applied to the part of F on the other side ofAB.

J

This theorem may explain why tepees, hogans, igloos, yurts, and other structures

of peoples throughout the world are circular in shape. These structures maximize
the floor space that can be surrounded by a fixed amount of material. Since the mate-

rials that are used in these structures were valuable and sometimes scarce resources,

people learned not to use more material than necessary. The same principle may
explain why besieged pioneers in covered wagons would want to “circle the wagons”;
the space enclosed by the wagons would then be maximized.

If the given perimeter is p, Theorem 10.23 allows us to calculate the maximum
area of a figure with a given perimeter. All other figures must have less area. The

result, an immediate consequence of Theorem 10.23, is an isoperimetric inequality.

Corollary 1 (Isoperimetric lnequalities 2
for the Plane): Let a plane region

have perimeter p and area A. Then A £- or, equivalently, p > 2VttA, with

equality occurring if the region is circular.

Proof: In the circle with perimeter (circumference) p, p = 2irr. Thus r = Since

A = tty
1

, substituting for r, we have A = 7t(£:) 2
= £;. By Theorem 10.23, this is the

maximum area figures with perimeter p can have. So for any other figure with area

p
^

A and perimeter p,A<^. Solving for p yields the second inequality in the state-

ment of the corollary. _|
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The second inequality in the corollary provides a useful restatement of Theo-
rem 10.23.

Corollary 2: Of all plane figures with the same area, the circle has the least

perimeter.

It is not always desirable to have the smallest perimeter for a given area.

Upscale suburban developments outside many cities include human-made lakes.
Shoreline property is worth more per square foot than other property, so the devel-

oper may try to make the lake longer and thinner. Then the region covered by water

will have a larger perimeter than a circle of equal area.

The 3-dimensional counterpart

Many igloos and yurts not only have circular bases but also have roughly hemispher-
ical roofs. These roofs suggest that 3-dimensional counterparts to the 2-dimensional

isoperimetric inequalities would involve hemispheres or spheres. In fact, the sphere
plays the same role in these inequalities in three dimensions that the circle plays in
two dimensions. However, the proof we have given for Theorem 10.23 does not gen-
eralize to three dimensions. A proof for the 3-dimensional counterpart was first
found by Hermann Amandus Schwarz (1843-1921). We omit the proof.

Theorem 10.24 Of all solids with the same surface area, the sphere has the largest volume.

Theorem 10.24 has corollaries corresponding to those of Theorem 10.23.

Corollary 1 (Isoperimetric Inequalities for Space): Let a solid have surface

area A and volume V. Then V < or, equivalently, A > ’S/'56irV2
, with

equality occurring if the region is spherical.

Proof: The proof follows the idea of the proof of Corollary 1 to Theorem 10.23 and
is left to you. _J

Theorem 10.24 can be restated in the language of minimums just as Theo-
rem 10.23 could.

Corollary 2: Of all solids with the same volume, the sphere has the least sur-

face area.

Corollary 2 suggests that containers should be spherical if they are to maximize
their capacity for a given amount of material needed to form the container. So, for

example, we might expect to have spherical milk cartons or spherical cereal boxes.
One problem with such a solution is obvious: Spheres roll! A second problem is that

they are not easily transported—even a bowling ball has holes!
Just as a 2-dimensional region can have a large perimeter and small area, a

3-dimensional solid can have a large surface area and small volume. Filters such as

those found in heaters and air conditioners, water purifiers, and cigarettes are based
on the idea that small particles can stick to surfaces. They have very large surface
areas for their volumes.
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10.3.2 Problems

1. An equilateral triangle, a square, and a regular hexagon
each have perimeter p.

a. Give the area of each figure. How much larger in area is
a circle with a circumference of pi

b. A lake has a surface area of 1000 km2
. What are the max-

imum and minimum lengths of beach this lake might have?

2. An equilateral triangle, a square, a regular hexagon, and a

circle each have area A. Find the perimeter of each and show
that the circle’s perimeter is smallest.

3. Let the sides of a triangle be a , b, and c with c and a + b
constant. Under these conditions, prove that the triangle with
maximal area is isosceles.

4. A boxing “ring” is actually square-shaped. Design a plan
for 2000 people to have seats to view the ring that would allow
maximum visibility for the greatest number of people.
5. Suppose a local zoning law requires a floor space of at least
600 square feet of living space for a summer cottage. How
should the cottage be shaped to minimize the cost of materi-

als for the walls?

6. A rancher has 300 yards of fencing. He wants to use the

fencing to construct a rectangular pen and to divide the pen
in two halves to separate the bulls from the cows.

a. Find the dimensions of the pen that provides the largest
area for bulls and cows.

1
b. Show that neither splitting a big square pen in two con-

gruent halves, nor using a pen with two square halves,
yields the pen with the largest area.

7. A rectangular dog pen is to be built alongside a house. The

house will form one side of the pen; fencing will form the other

three sides. What shape pen gives the dog the most play area?

8 . Prove Corollary 1 to Theorem 10.24.

9. When a spherical soap bubble lands on a flat surface so

that the surface becomes one of the sides of the space
enclosed by the bubble, the bubble will assume the shape of
a hemisphere. (There is soap film on the surface when this

happens.) If the radius of the original bubble was r, what is the
radius of this hemisphere?

*10. Containers for many foods are circular cylinders. It is in
the interest of food distributors to use cylinders with shapes
that maximize volume for their surface areas.

a. What ratio of height to radius maximizes the volume of a

circular cylinder with a given surface area SI

b. As the ratio of height to radius changes, by how much does
the volume of a circular cylinder with a given surface area

S change?

10.3.3 The Fundamental Theorem of Similarity
From the basic properties of similarity transformations, when two figures are similar
with ratio of similitude k, corresponding angles have the same measure and corre-

sponding distances are in the ratio k. But what happens to area and volume?
Consider a square with side s. Under a similarity transformation with ratio of

similitude k, the image square has side ks. The original square, which had area s
2

, gives
rise to an image with area (ks)2

, or k2
s

2
. The area of a figure that is not a square is

determined by partitioning that figure into squares or parts of squares. If each square
in the partition of a preimage figure has its area multiplied by k2 in the image figure,
then the area of the image is k2 times the area of the preimage. Thus if two figures are

similar with ratio of similitude k, then the ratio of their areas is k2 (Figure 78).

Figure 78

5

Area ns
2

Area n(ks) 2
= nk 2

s
2

In 3-dimensional space, under a similarity transformation with ratio of similitude

k, a cube with edge e gives rise to an image cube with edge ke. The original cube,
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which had volume e
3

, gives rise to an image with volume ( ke ) 3
, or k3

e
3

. Using the
same reasoning as in the 2-dimensional situation, if two figures are similar with ratio
of similitude k, then the ratio of their volumes is k3

.

These properties are summarized in a theorem we call the Fundamental Theo-
rem of Similarity because of its wide-ranging scope and applications.

Theorem 10.25 (Fundamental Theorem of Similarity): If (3 is the image of a under a similarity |
transformation of magnitude k, then

a. angle measures in (3 are equal to corresponding angle measures in a;

b. distances in (3 are k times corresponding distances in a\

c. areas in (3 are k2 times corresponding areas in a; and

d. volumes in (3 are k3 times corresponding volumes in a.

Figure 79

For instance, the ratio of similitude in Figure 79 is 1.75. So, while correspond-
ing angle measures are equal, the lever in (3 is 1.75 times as long as the lever in a, and

/3 occupies an area 1.75 2 times as great on the page as a does.
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The parts of the Fundamental Theorem of Similarity are instances of an impor-
tant pattern. Rewrite part (b) as distances in (3 are k } times corresponding distances
in a. Then the exponent of k in parts (b), (c), and (d) signifies the dimension of the mea-

sure. Distance is 1-dimensional, area is 2-dimensional, and volume is 3-dimensional.
This pattern also extends to angle measure. Part (a) can be written as angle measures

in /3 are k° times corresponding angle measures in a. This suggests that angle measure

is O-dimensional, a property that is corroborated by examination of formulas that
involve angle measures. One such formula is s = r9 for the length 5 of an arc with a

central angle of 6 radians in a circle with radius r. If 9 had any dimension, then the

lengths r and 5 would have different dimensions.
Another argument for angle measure being O-dimensional is that angle measure

is defined around a point, a O-dimensional figure. From this perspective, the other
dimensions fit in familiar ways. Distance and length are defined along a line, a

1-dimensional figure; area is defined on plane figures, which are 2-dimensional; and
volume deals with the capacity of a figure in 3-dimensional space.

Applications to the strength of objects

Applications of the Fundamental Theorem of Similarity to the strength of natural

objects, both animate and inanimate, and of manufactured objects as well, were first

recognized by the great Italian scientist Galileo around the beginning of the 17th

century and published by him in On Two New Sciences in 1638.
Until Galileo’s time, it was commonly believed that larger and smaller objects

would have the same strength as long as they were similar. However, the strength of
an object is proportional to its cross-sectional area, while its weight is proportional
to its volume. Through a dialogue somewhat like that found in Plato’s writings and
mathematical arguments like those found in Euclid’s Elements , Galileo shows why
larger objects made of the same materials and similar to smaller objects will be
weaker. If the larger object is k times the smaller, then the weight of the larger object,
being proportional to the volume, is k3 times the smaller, while the cross-sectional
area is only k2 times the smaller. As a result, k times more pressure is placed on each

point on the larger object. This is often enough to collapse the larger object.
For example, a model airplane made of balsa wood can fly, but a larger simi-

lar airplane made of the same balsa wood will collapse of its own weight. As another

example, a fly has very thin legs compared to its body, but a larger animal could
not support itself if its legs were proportional to the fly’s. So the horse must have

proportionally thicker legs than the fly, and the elephant must have thicker legs
than the horse.

It is commonly said that an ant is proportionally stronger than a human
because it can lift a leaf that is many times its weight. Birds are said to eat more than
humans because they may eat many times their weight in a day, whereas a human
eats only a small percent of his or her weight each day. These biological phenom-
ena are not anomalies but due again to the fact that length, area, and volume are

not proportional.

On the existence of giants

Suppose there were to be people on Earth similar in shape and substance to us but
5 times our size. By the Fundamental Theorem of Similarity, such people would have
125 times our weight, but that weight would be supported on only 25 times the area.

As a result, each part of the body would have to support 5 times as much weight as

our parts do. Even champion weightlifters seldom lift more than twice their body
weight, and when they do, it is only for a few seconds. The bodies of such giants would

collapse under their own weight.
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Reality supports the theory. You may have seen television or movie pictures of

people weighing well over 500 pounds. Even though their legs are wider, these peo-
pie often can barely move. They cannot support their own weight.

Very heavy people tend not to have the same shape as lighter people. So they
do not necessarily tell us how tall people can become without changing shape. Expe-
rience suggests that the answer is not much more than 1.5 times average height. The
tallest man on record from anywhere in the world has been Robert Wadlow

(1918-1940). Wadlow was born in Alton, Illinois, and was known from his youth as

a giant, and so his condition was subject to medical study and there exist quite a num-

ber of pictures of him. He was growing his entire life, and on June 27,1940, he was

measured to have a height of 8 feet, 11.1 inches.
If you saw a picture ofWadlow without other people next to him, you would have

little idea that he was not of average height. But he was so large that he could not sup-
port his weight without help and needed a leg brace for support. This tragically turned
out to be the cause of his death. While getting out of a car—a difficult task for a man

of such size—his brace cut a deep wound in his leg. Gangrene set in (penicillin was

not in use at the time) and Wadlow died 18 days after his height was last measured.
The need for a brace by a man about 1.5 times the height of many other peo-

pie shows that the human shape is meant to fall within a rather narrow range of

heights. The shortest adult dwarfs in recorded history are just a little under two feet
tall. The range of 2 feet to 9 feet belies giving any reality to humanlike miniatures or

giants such as those found in fairy tales, cartoons, or movies.

Applications to formulas for area

The Fundamental Theorem of Similarity explains the structure of area and volume
formulas. In Table 3 we arrange a variety of area formulas into two categories: those
that involve one variable and those that involve two.

Table 3

One-Variable Area Formulas Two-Variable Area Formulas

Squares: A = s
2 Rectangles: A = iw

Equilateral triangles: II *\l Triangles: A = \bh
Circles: A = irr

2 Ellipses: A = Trab

The figures identified in the left column of Table 3 have the property that all
members of the type are similar. For instance, all equilateral triangles are similar. This
illustrates the following consequence from the Fundamental Theorem of Similarity.

Theorem 10,26 For every set of similar 2-dimensional figures, there is an area formula of the form
A = kL2

, where L is a corresponding length on one of the figures.

Proof: We want a formula for all figures of a set S of similar figures in terms of a par-
ticular segment in S. (For instance, for the circle formula above, this segment is a radius.)

When this segment has length L, call the figure F{L) and its area A{L). Consider
the figure F (1). This is the figure in which L — 1. (For the circle, this is the unit circle.)

Every figure F{L) in the set is the image of F(l) under a similarity trans-

formation with a magnitude L. So, by the Fundamental Theorem of Similarity,
A(L) = A(1)L2

. _|
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In practice, L is usually a natural length on a figure, such as a diameter, height, or side.
The proof of Theorem 10.26 does more than prove the statement of the theo-

rem. It shows that the constant k in the statement of the theorem is the area of the

figure in the set when L = 1. For instance, the constant tt in the expression tty
2 is the

area of a circle when its radius is 1. The constant in the formula for the area of an

equilateral triangle is the area of an equilateral triangle with side s = 1. Thus, the
formula for a set of similar figures in terms of a particular segment on those figures
is entirely determined by the area when that segment has length 1.

Applications to formulas for volume

Volume formulas are slightly more complex, for they may involve one, two, or three
variables. But the idea of Theorem 10.26 still holds. Examine the volume formulas
shown in Table 4.

Table 4

One-Variable Two-Variable Three-Variable
Volume Formulas Volume Formulas Volume Formulas

Cubes: V = s
3

45

Circular cylinders: V = rnr

1

2 h Boxes: V — £wh

Spheres: V — f tty
3 Circular cones: V = \irr2h

Theorem 10.27 For every set of similar 3-dimensional figures, there is a volume formula of the |
form V — kL3

, where L is a corresponding length on one of the figures.

We leave the proof of Theorem 10.27 to you. We also leave it to you to describe
the quality of figures that separates those whose volume formulas involve two vari-
ables from those whose volume formulas require three variables.

10.3.3 Problems

1. a. A figurine weighs w kg. A similar figurine, made of the

same materials, is twice the height of the first figurine.
What is the weight of the larger figurine?

b. Suppose a pail filled with sand weighs 5 lb. A similar pail,
twice the height, is filled with sand. What is its weight?

c. Generalize parts a and b.

2 . According to 1998 weight guidelines from the National
Institutes of Health, the middle weight of the healthy range for
a 6-foot person of either sex is 158 lb.

Use the ideas of this section to determine the correspond-
ing weight for a similar person with the given height.
a. 7 feet b. 5 feet c. h feet

3 . Find the area of a circle with diameter 1. Use this result to

find a formula for the area of a circle in terms of its diameter.

4 . Find a formula for the area of a regular hexagon.
5 . Find a formula for the area of a regular n-gon in terms of

its side length 5. (You will need trigonometry.)

1
6 . In On Two New Sciences, Galileo proves the following theo-
rem: The area of a circle is the geometric mean of the areas of two

regular n-gons with the same number of sides, one circumscribed
about the circle and one with the same perimeter as the circle.

a. Prove this theorem for a particular value of n.

b. Prove the general theorem.

7 . Does Theorem 10.26 apply also to formulas for surface
area? Explain why or why not.

8 . Prove Theorem 10.27.

9 . Find a formula for the volume of a sphere with diameter d.

10. Find a formula for the volume of a regular square pyra-
mid with base of side s and height h.

11 . Find a formula for the volume of a cone with height h
and an elliptical base having axes of lengths a and b.

12. Give some volume formulas that involve two variables,
and other volume formulas that involve three variables. What

quality separates the figures in one group from the figures in
the other?
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10 . 3.4 Fractional dimension

Normally we think of dimension as a count of independent directions. For instance,
if a figure extends in two directions, the figure is 2-dimensional. A direction such as

“13° north of west” is not independent of “north” and “west” because we can go a cer-

tain distance north and a certain distance west to get to 13° north of west. But going
north and west will never get us in an up or down direction, and so we view up or down
as adding a 3rd dimension. If dimension is conceived as a count of directions, there
can never be a fractional dimension.

However, recall that the Fundamental Theorem of Similarity (Theorem 10.25)
has an interpretation closely linked to dimension. Its four parts can be combined
into one statement: If (3 is the image ofa under a similarity transformation with mag-
nitude k, then d-dimensional measures on [3 are kd times corresponding d-dimensional
measures on a. In this form, the dimension d has a role as an exponent. Because

exponents do not have to be integers, this form allows for the possibility of fractional
dimension.

Another way to connect measures with dimension is found in unit conversion.
For instance, we might begin with the conversion of feet to yards.

1 yard = 3 feet

1 square yard = 9 square feet

1 cubic yard = 27 cubic feet

Let us rephrase these conversions using exponents.

1 yard = 3 1 feet

1 square yard = 3 2
square feet

1 cubic yard = 3 3 cubic feet

Again the dimension of the unit is an exponent, in this case, an exponent in the con-

version factor.

Might there be a kind of yard that does not convert to feet by an integer power
of 3? The answer is that there is, and for this we consider a real problem.

The length of a coastline

Surveys measure lengths of coastlines. For instance, the National Oceanic and Atmo-

spheric Administration (NOAA) of the U.S. Department of Commerce provides a

length of coastline for every state bordering on one of the oceans. The four states with
the most coastline are: Alaska, 5580 miles; Florida, 1350 miles; California, 840 miles;
Hawaii, 750 miles. It is not easy to calculate the length of a coastline. How far in
should you go inland, if at all, on a river? When should an inlet be counted as coast-

line? Should a small finger of land be included?
The NOAA figures were calculated in the following way: The general outline

of the seacoast as found on charts as near the scale of 1:1,200,000 as possible was

used. One inch on such a map is about 19 miles. Measurements were made with a

unit measure of 30 minutes of latitude. Coastline of sounds and bays were included
to a point where they narrow to a width of 30 minutes of latitude, and then the dis-
tance across at this point was used.

A key aspect of this description is that a unit of measure is selected. The unit
of measure is critical because the smaller the unit, the more the measurer has to go
into the narrower parts of sounds and bays. Fingers of land that might not be con-

sidered with a larger unit must be included with a smaller unit. Consequently, when
a smaller unit is used, the coastline is longer.
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This goes against the intuition that a coastline should have a definite length.
But it agrees with another intuition, that measuring a coastline is difficult because a

coastline really does not have a length at all. In between is a mathematical way of

dealing with both intuitions: coastlines have a measure but it is not 1-dimensional.
The NOAA figures were calculated from maps, but suppose we were to actually

go out to the coast to measure the coastline. Then we might proceed as follows. First
we choose a unit, say 1500 meters. We put down a stake at a point O on the coast and
draw an imaginary circle with O at the center and a radius of 1500 m. Assuming we are

not on a small island, the circle intersects the coast at two points, one on each side of O.
Let us call these points A 1 and B x (Figure 80). Now we go to A 1 , put down a stake, and
draw a second circle, this time with A x as center and with radius 1500 m. This circle
intersects the coastline at O and a new point A 2 . We continue this process with each
new Ai as center intersecting the coast at A t _ t and a point A i+X , until we have gone all
the way around (if we are on a large island) or we reach the end of the territory whose
coastline concerns us. If O were not at the edge of a territory, we would also need to use

point B x and generate points Bx in the direction of B x just as we generated the points A t .

Figure 80

When we have finished covering the coastline, we count the number of spaces
between stakes we have put down, and we arrive at a length of the coastline for the
unit of1500 meters.

But suppose we chose a unit of 300 meters. If we were measuring the length of
a straight road, we would get 5 times the number of 300-meter intervals as we got for
the 1500-meter interval. But a coastline is not a road. It goes in and out, and using
300-meter intervals we go in and out more than we did with the 1500-meter intervals.
It would not take much of a disruption in the coastline for there to be six 300-meter
intervals for each 1500-meter interval, on the average (Figure 81).

Figure 81

In such a case, if the coastline was 210 units long for the unit of 1500 meters, then
it would be 1260 units long for each unit of 300 meters. With the unit 1500 meters long,
the coastline would be 210 • 1500, or 315,000 meters long. But with the unit 300 meters

long, the coastline would be 1260 • 300, or 378,000 meters long. Instead of

5 300-meter units = 11500-meter unit

we have

6 300-meter coastline units = 11500-meter coastline unit.
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The dimension d of the coastline units is found by solving 5 d
— 6. The solution to this

equation is log5 6, or or about 1.113. This hypothetical coastline would have
dimension about 1.113.

The Koch curve

Study of the Koch curve enables us to connect the ideas of similarity, change of units,
and dimension. The Koch curve is the limiting boundary of a sequence Sn of plane
figures created by the following iterative procedure.

S) is an equilateral triangle (Figure 82a).
Sn+l is created from Sn in the following way. Divide each side of Sn into thirds.
On the middle third, construct an equilateral triangle outward from the exist-

ing figure, then remove the middle third. The nonconvex polygon iS„ +1 created
in this way has 4 times as many sides as Sn , and each side is f the length of Sn .

Figure 82b pictures S2 ; Figure 82c pictures S3 .

Viewed as a 1-dimensional object, the Koch curve has an interesting property.
If 5) has sides of length 1, then the perimeter of S) is 3. From the way that Sn+l is ere-

ated from Sn ,Sn+1 has 4 times the number of sides as Sn , and each side of Sn+3 is | the

length of a side of Sn . So the perimeter of S„ +1 is f the perimeter of Sn . The sequence
of perimeters of S), S2 , ■ ■ ■ begins 3,4, y, y,... . It is a geometric sequence with first
term 4 and constant ratio f, and has nth term 3 • (f)" \ This sequence grows without
bound, indicating that the limit, the Koch curve, has infinite perimeter. On the other

hand, the Koch curve encloses a finite area that can be calculated (see Problem lb).
The seemingly paradoxical situation of a curve enclosing a finite area but hav-

ing an infinite length can be explained by the following argument that the Koch curve

is not a 1-dimensional figure. Think of the Koch curve as a coastline whose dimen-
sion is not known. First use a unit of length 1 to measure the curve, starting at any
vertex of the equilateral triangle. With this unit, the curve has length 3 because all of
the infinitely many ins and outs are missed by such a large unit.

Next use a unit of length y This unit picks up the ins and outs of 5) but none of
the ins and outs of any of the later curves. With this unit, the perimeter is 12, so the
total length is 4. Continuing this process, each time picking a unit | the size of the pre-
vious unit, the perimeter is multiplied by 4, instead of being multiplied by 3 as it would
if this were a normal 1-dimensional curve. The situation can be thought of as follows:

3 small units of length = 1 large unit of length
4 small units of Koch curve = 1 large unit of Koch curve.
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Thus the dimension of the Koch curve is the solution to the equation 3 d
= 4, from

which d = ~ 1.26.
The Koch curve, like many curves of fractional dimension, is self-similar , mean-

ing that if a small part of the curve is blown up, the result cannot be distinguished from
the original. Specifically, if a part of the Koch curve is blown up 3 times, then it looks
like the (new) picture is merely covering 3 times as much as the original curve. When
the whole curve is blown up 3 times, however, if its boundary is measured as a coast-

line is, then the boundary is found to be 4 times what it was. Again this tells us that
the dimension d satisfies 3d

= 4.
The Koch curve is an example of a fractal, a term coined by Benoit Mandelbrot

in 1976. Since Mandelbrot’s path-breaking book, a large literature about fractals has

appeared. The study of fractals involves ideas from virtually every branch of math-
ematics: complex numbers, analysis, topology, geometry, random processes. While
not always accessible with elementary mathematics, some of the pictures created

using fractals are among the most beautiful ever created with mathematics.

10.3.4 Problems

1. a. In the sequence S of figures whose limit is the Koch

curve, explain why the perimeter of S,1+1 is f the perime-
ter of Sn .

b. In the sequence S of figures whose limit is the Koch curve,

explain whyaThen use this to

determine the area enclosed by the Koch curve.

1
2. Suppose Si is a square, and S„ +1 is created from Sn by divid-

ing each edge of Sn into fifths and constructing a square out-

ward from Sn on the 2nd and 4th fifth, then removing these fifths.

a. Find lim (perimeter of S,,).
n—*oo

b. Find lim a(Sn ).
n—>oo

c. What is the dimension of S„?

Chapter Projects

1. Areas of regions with parabolic boundaries. Consider

a point P inside a parabola, and lines through this point. Each

line cuts off a region inside the parabola. Does the midpoint
principle (Section 10.1.3) apply to the problem of finding the

line that cuts off the smallest area? (Use any method to

explore this question.) Answer this question for points inside

other curves: circle, ellipse, hyperbola.
2. The method of exhaustion. Investigate Archimedes’

development of the method of exhaustion, and demonstrate
its connection to integral calculus.

3. Quadrature of the parabola. Archimedes was able to

find the area of a region between a segment and a parabola.
This quadrature of the parabola was one of the developments
that later mathematicians utilized in the evolution of calculus.
Find a source that explains how Archimedes did this, and
rewrite his method in your own words.

4. Area under a cycloid. In 1637, Gilles Persone de Rober-
val (1602-1675) devised an elegant geometric proof that the
area under one arch of the cycloid
(1) x = a(t — sin(t)) y = a( 1 — cos(f))

1
is 37to

2 by applying Cavalieri’s Principle twice. Complete the

following parts to see how Roberval’s proof works.

a. Use a graphing utility to plot the first half of the arch of the

cycloid described in (1), the left half of the circle generat-
ing that cycloid,
(2) x(t) = —asin(f) y(t) = a(l — cos (t)),
and the curve with parametric equations
(3) x(t) = —at y(t) = a( 1 — cos(t)),
all for a = 1, on the same coordinate axes.

(Roberval referred to the curve (3) as the companion of
the cycloid (1).)

b. At any given value t in the plotting interval 0 < t < it,

explain why the corresponding points Ps on the semicir-

cle, Pc on the companion curve, and Pt on the cycloid are all

on the same horizontal line L t , and that the distance

between Ps and the y-axis is equal to the distance between

the points Pc and Pt .

c. Use part b and Cavalieri’s Principle to conclude that the

area between the companion curve and the cycloid is
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d. Consider the rectangle R joining the points (0,0),
(-77-0,0), (rra, 2a) and (0,2a). Prove that for any given t

with 0 < t < tt, the point Pt is the same distance from the

right side of R as the point is from the left side of R.

e. Use part d and Cavalieri’s Principle to conclude that the

companion curve (3) divides the rectangle R into two

regions of equal area.

f. From parts c and e, show that the area under one arch of
the cycloid (1) is 3-7to 2

.

5. Squaring the circle. One of the classic problems of antiq-
uity was “squaring the circle”. Geometers sought to construct

a square with area equal to that of a given circle, using straight-
edge and compass. It was not proved until the 19th century that,
with those tools, the problem cannot be solved. Investigate the

history of this problem, and write an essay explaining why it
cannot be solved and then describing how it can be solved, if
the restriction of using the tools of antiquity is removed.

6. A sphere inscribed in a cone.

a. Given a right circular cone of a given size and shape, what
is the radius of a sphere inscribed in the cone?

b. How does the ratio of the sphere’s volume to the cone’s
volume vary with the shape of the cone?

c. What shapes give the largest and the smallest ratios?

d. Sketch the cone with the largest ratio.

e. Prove that this is the shape of cone for which the inscribed

sphere has diameter equal to exactly half the height of the
cone.

7. Constructible numbers. The first three of Euclid’s five

postulates (Section 7.1.1) refer to geometric constructions.

They establish the rules of constructions followed by Greek
mathematicians.

1. Given two points P and Q in the plane, the line PO can be

constructed.

2. Given a point P and a given line segment??/), a circle can

be constructed with center P and radius RS.

The instruments used for these constructions are (1) the

straightedge and (2) the compass. A point may be used as a

given point in a construction if and only if it is given or is an

intersection point of constructed figures, that is, an intersec-
tion point of lines and/or circles. (This means that in a classi-
cal Greek construction, you cannot merely open a compass to

any radius.) A Euclidean construction of a geometric figure F

is an algorithm that begins with given geometric objects
(points, lines, line segments, triangles, circles, etc.) and proceeds
in a finite number of allowable compass and straightedge con-

structions to the figure F. A real number c is constructible if
and only if a line segment of length |c| can be obtained from a

given line segment of length 1 by a Euclidean construction.

a. Given that a and b are constructible numbers, prove that the

numbers a + b,a — b,ab, f, and are constructible.

b. Let E be the set of all constructible numbers. Prove that

(E, + , •) is a field containing both the subfield (Q, + , •)
of rational numbers and the subfield (Q(Va), + , •) for any
constructible number a that is not the square of a rational
number.

c. Suppose that P and Q are points in the plane whose coordi-
nates are in E and that r is in E. Prove that PQ and the cir-
cle with center P and radius r have equations whose
coefficients are in E. Call such lines and circles constructible
lines and constructible circles.

d. Prove that the coordinates of all points of intersection of
two constructible lines, or a constructible line and a con-

structible circle, or two constructible circles are in E.

e. Explain why every constructible number is an algebraic
number.

8. Duplicating the cube. Another classic problem of antiq-
uity was “duplicating the cube”. Geometers sought to construct

a cube with volume equal to twice that of a given cube, using
straightedge and compass. It was not proved until the 19th cen-

tury that with those tools, the problem cannot be solved. Solutions
to the problem, without the restriction to the tools of antiquity,
were found by Erastosthenes, Menaechmus, and Nicomedes,
among others. Investigate the history of this problem, and explain
why it cannot be solved using straightedge and compass.

9. Measuring water in a container. The goal of this project
is to construct three different scales on the side of an open
cone-shaped container that measure in three different ways
the amount of water in the container. For definiteness, begin
with a cone with radius r = 3.25 cm, height h = 21 cm, and
slant height 5 = 21.25 cm (Figure 83).

Figure 83

3.25 cm

a. Depth scale: On a strip of paper 21.25 cm long, make a

“depth scale” that can be pasted to the slanted side of the
cone. The problem is to do this in such a way that a mark
5 on the scale measures the depth h of the water in the

cone, with a mark for every centimeter of depth. Describe
the functional relationship between 5 and h.

b. Volume scale: On a second strip of paper 21.25 cm long,
make a “volume scale” that can be pasted to the slanted
side of the cone. Do this in such a way that a mark 5 on the
scale measures the volume V of the water in the cone, with
a mark for every 10 mL of volume. Describe the functional

relationship between 5 and V.
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c. Rainfall scale: On a third strip of paper 21.25 cm long,
make a “rainfall scale” that can be pasted to the slanted
side of the cone. The idea here is that during a rainfall of
d centimeters the cone will fill to a certain level. Make the
scale in such a way that a mark s on the scale measures the
amount d of rainfall, with a mark for every centimeter of
rainfall. Describe the functional relationship between s

and d.

10. The Mandelbrot set. Perhaps the most famous fractal
is the Mandelbrot set, the graph of a set of complex numbers.

a. Explain how to determine whether a particular complex
number is in the set, and give examples of numbers that
are in the set and not in the set.

b. Explain why the Mandelbrot set is an example of a fractal.

c. Describe some of the properties of the Mandelbrot set.
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Chapter

AXIOMATICS
AND EUCLIDEAN
GEOMETRY

Before the work of Thales, Pythagoras, Euclid, Archimedes, and other mathemati-
cians of the ancient Greek empire, existing records from Babylonia and Egypt show
an understanding of local deduction, whereby a proposition is logically deduced from
other propositions and principles. For instance, the Babylonians had derived a form
of what we now call the Quadratic Formula by using mathematical principles not

much different from those we would use today.
The Greek mathematicians were the first to move from local deduction to global

deduction, in which every proposition is part of the same logical system. The global
system that these mathematicians developed 2000 years ago is, aside from language,
essentially the same system that we use today to study Euclidean geometry. We are

only in recent decades beginning to understand the extent of trade and communica-
tion among peoples of Europe, Asia, and Africa before 1000 a.d. Geometry done
later in Japan, China, and India seems to have been influenced by Greek geometry
to such an extent that we can say that virtually all of today’s formal geometry world-
wide owes its roots to these mathematicians.

Every mathematical system emanates deductively from (1) undefined terms,

(2) other terms that are defined from the undefined terms, and (3) axioms, assumed

relationships among these terms. (In Euclid’s Elements, both postulates and com-

mon notions are axioms.) The theorems of the system are the propositions that are

logically deduced from the axioms.
In 1882 the German mathematician Moritz Pasch (1843-1930) gave the first

axiomatic development of Euclidean geometry that would be considered rigorous
by today’s standards. By the early twentieth century, a multitude of similar, but dif-

ferent, axiom systems were produced for Euclidean as well as other geometries, by
such noted mathematicians as David Hilbert (1862-1943), Mario Pieri (1860-1913),
Giuseppe Peano (1858-1932), and Oswald Veblen (1880-1960), to name a few. The
creation of new axiom systems for geometry continues even today. In this chapter
we discuss the issues involved in creating an axiom system for Euclidean geometry
from scratch.
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| Unit 11.1 Constructing Euclidean Geometry
In Section 7.1.1, we described Euclidean geometry as a mathematical system in which
the statements that are assumed or can be deduced include all the axioms and propo-
sitions that are in Euclid’s Elements. In trying to construct a rigorous development
of Euclidean geometry, the first problem that faced mathematicians working in the
era 1882-1910 was to choose undefined terms. Recall from Section 7.1.1 that Euclid
had offered definitions for all important terms, so his work could not be used as his-
torical precedent to help one decide which terms should be chosen. The only guide
was that if a term T could be defined in terms of other terms P1 , P2 ,..., Pn that were

undefined or previously defined, then T did not need to be taken as undefined.
A quandary faced these mathematicians. How many terms needed to be unde-

fined? Should geometry be separated from the rest of mathematics in the sense that
no terms from outside the system (e.g., “number” or “function”) would be assumed?
Should undefined terms include logical terms such as “and” or “implies”? At this

point in the history of mathematics, neither number nor logic had been placed on

generally agreed-upon logical footings, so these mathematicians had major decisions
to make.

Pasch chose point, line segment, plane segment, and congruence offinite sets.

Peano worked from point and line segment. Pieri selected point and rigid motion.
Veblen utilized point and order. Hilbert chose point, line, plane, between, congruence

of segments, and congruence of angles as undefined terms in order to make his sys-
tern a little more intuitive and easier to use.

In this and the next two sections we create a global system for Euclidean geom-
etry. Our system is most like Hilbert’s. We first establish our undefined terms as

those pertaining to objects and those concerning relationships we associate with those

objects. We take point and line as the basic undefined objects from which other objects
of the geometry (segment, triangle, circle, angle, etc.) will be defined. Then we spec-
ify undefined relations, which, like our undefined objects, are implicitly defined

through the axioms and will be used to define other relations. We want to be able to

talk about a point being “on” a line or a circle (i.e., to specify whether a line or a cir-
cle contains that point). We should be able to identify some sort of order of points
on a line, recognizing which points are “between” other points. Finally, we need to be
able to compare the objects of our geometry by identifying which are equal or “con-

gruent” to one another. To this end, we specify that on, between, and congruent are

the undefined relations of our geometry, and these, along with the undefined objects,
will be used to create the axioms and definitions we will need to prove theorems.

11.1.1 Axioms for incidence

We can classify the axioms that define Euclidean geometry into five categories: inci-

dence, betweenness, congruence, continuity, and the parallel postulate. As you read,
take the time to examine these axioms carefully, and use your intuition about the
Euclidean geometry you studied in high school to convince yourself that they are

indeed statements you can accept without proof. It is very helpful to draw diagrams
to be sure that you understand exactly what each axiom allows you to say about the

objects of geometry. We generally omit diagrams in this section to show that the

propositions follow logically from the system without regard to any picture that may
be drawn. We are careful only to use our undefined terms and relations (and any
definitions derived from them) to create the axioms of our system. However, we do
assume the familiar relations of sets and logic, including set membership, equality,
implication, and the (natural) number of elements of a finite set.
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Incidence axioms

The first axioms are called incidence axioms because they describe incidence prop-
erties of points and lines (i.e., what precisely it means for a point to be “on” a line,
or for a line to be “on” a point). The relation of incidence is symmetric: If a point is
incident with a line, then the line is incident with the point. In this case, we may say
that “€ is on P” or “€ contains P” and that “P is on €” or “P belongs to €”. The fol-

lowing incidence axioms for the Euclidean plane implicitly define the undefined
relation on.

Axioms Incidence:

1-1: There exist at least three distinct points.
1-2: For each two distinct points there exists a unique line on both of them.

1-3: For every line there exist at least two distinct points on it.

1-4: Not all points lie on the same line.

Notice the importance of Axiom 1-1. Without it, we do not know if we have

any points.

Question 1 : Why do Axioms 1-1 and 1-2 guarantee the existence of (at least) one

line?

Axiom 1-2 can be reformulated with the familiar statement: Two points deter-
mine a line. If A and B are points on line €, we may write AB for €, since they
determine €.

Notice that Axiom 1-3 is not a definition of a line, but simply a statement telling
us one of its properties. From this axiom alone, we cannot assume, for example, that
a line is infinite, or even that it contains three points. For that, we need another axiom,
which we introduce in Section 11.1.2.

Axioms 1-1 and 1-2 together imply that there exists at least one line. However,
it is possible that our geometry consists only of that line. For us to establish that there
is more than one line, we need Axioms 1-3 and 1-4.

What kinds of theorems of Euclidean geometry can be proved using only these
incidence axioms? One theorem is the following.

Theorem 11.1 Given a point, there exist at least two distinct lines on it.

Proof: Let P be a point (1-1). By 1-4, there exists at least one line l no t on P. There
are at least two distinct points on t (1-3), call them A and B. So AB does not con-

tain P. By 1-2, A and P determine a line. AP is not AB because P is not on AB .

Similarly, B and P determine a line that is not AP or AB . Consequently, there
are at least two lines on P. _]

When two or more lines are on the same point, we say that these lines intersect
in that point.

Geometries satisfying the incidence axioms that are not Euclidean

Axioms 1-1 to 1-4 are sufficient to prove there are at least three lines in the geome-
try (see Problem 3b). Also, these axioms appear intuitively true for Euclidean geom-
etry. Can we now conclude that with point, line , and on as undefined terms, and with
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Figure 1

B

D

tetrahedron ABCD

the incidence Axioms 1-1 to 1-4, we will be able to deduce all the theorems of Euclid-
ean geometry? The answer is no. One way we can confirm this is to create a model

(or interpretation) of these four axioms that is not Euclidean.
One such model has the four vertices of a tetrahedron ABCD as its points , and

the six edges of the tetrahedron {A , B}, {A, C}, { A , D}, {B, C}, { B , D},and (C, D }
as its lines (Figure 1).

(Convince yourself that Axioms 1-1 to 1-4 hold for this model.) Since for Euclid-
ean geometry, we need infinitely many points, this model is not Euclidean.

Fano’s geometry
Another model of Axioms 1-1 to 1-4 that is not Euclidean is called Fano’s plane
geometry, after the Italian mathematician Gino Fano (1871-1952).

Let P be the set of 7 points: {A, B, C, D , E, F, G}.
Let L be the set of 7 lines: {{A, B, C}, {A, D, E], {A, F, G}, {B, D, F},
{B, E, G}, (C, D, G}, (C, E, F}}. We use set notation because no order to

the points on a line is implied.
We now show that this algebraic model satisfies 1-1 to 1-4:

1-1: There exist at least three distinct points.
Since P contains 7 points, we can select any three to verify the axiom.

1-2: For each two distinct points there exists a unique line on both of them.
When we examine the lines we see that no two points belong to two different

lines, and there is a line on every pair. To save space, we write ABC for the line

{A, B,C}.
A, B ABC B,CABC
A,C ABC B,DBDF
A, DADE B,EBEG
a,eade b,fbdf
A, F AFG B , G BEG

A, G AFG

C, D CDG D,EADE
C, E CEF D, F BDF

C, F CEF D, G CDG

C, G CDG

E, F CEF F, G AFG

E, G BEG .

1-3: For every line there exist at least two distinct points on it.
This axiom is easily verified by observation. In fact, there are three distinct

points on each line.

1-4: Not all points lie on the same line.
Since F does not belong to ABC , for example, the axiom is verified.

Question 2: Construct a geometric model of this system. Notice that there is nothing
in the axioms that imply a line must be drawn straight! One geometric model of this

system can be constructed using a “triangle” with an inscribed “circle”.

These two models, the first consisting of 4 points and the second with 7 points,
are examples of what are called finite incidence geometries. The study of finite inci-
dence geometries was initiated by Fano in 1892, when he introduced a three-dimen-
sional geometry with 15 points and 35 lines, in which each plane is on 7 points.

Question 3: What is the smallest finite geometry that can be created from the inci-
dence axioms? Give an algebraic and geometric model.

All the models introduced in this section, as well as Euclidean geometry, are

classified under the general title of incidence geometries, i.e., geometries consisting
of points and lines with the relation on, and that satisfy Axioms 1-1 to 1-4.
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These models show that Axioms 1-1 to 1-4 are not sufficient to prove that a line
contains infinitely many points. We know this is a property of Euclidean lines. In
the next section we introduce the required axioms to “fill in” the gaps between and

beyond the points of the line given by the incidence axioms.

11.1.1 Problems

1. Create a model of a 3-point geometry that satisfies Axioms
1-1 to 1-4.

2. a. Create a model of a finite geometry that satisfies only
two of Axioms 1-1 to 1-4.

b. Create a model of a finite geometry that satisfies only three
of Axioms 1-1 to 1-4.

3. Prove the following theorems of Euclidean geometry using
the incidence axioms alone.

a. The intersection of two distinct lines is exactly one point.
b. There exist three nonconcurrent lines (i.e., lines that are

not on one common point).
c. For every line there is at least one point not on it.

4. Prove the following theorems of Euclidean geometry using
the incidence axioms.

a. If a point A is not on a line € containing distinct points B

and C, then there is no line containing all three of them.

b. If there is no line containing all three points A, B, and C,
then A, B, and C are distinct points.

5. Consider the following axioms, based on the undefined
terms point, line, and on:

F-l: There exists at least one line.

F-2: There are exactly three points on every line.

F-3: Not all points are on the same line.

F-4: There exists exactly one line on any two distinct points.
F-5: There exists at least one point on any two distinct lines.

Show that Fano’s 7-point geometry satisfies these axioms.

6. Rewrite the axioms for Fano’s plane geometry (Problem 5)
interchanging the words “point” and “line”. Each of these
new axioms is called the dual of its counterpart. Create a

model for this new axiom set and determine if it also satisfies
F-l through F-5.

7. See Problem 5.

a. Construct a model for a geometry that satisfies F-l and

F-2, but not F-3.

b. Construct another model for a geometry that satisfies F-l
and F-3, but not F-2.

c. Determine whether each of your models is a model of inci-
dence geometry. Explain why or why not.

8. a. Using the axioms for Fano’s plane geometry (Problem
5), prove that each point is on exactly three lines,

b. Use Fano’s model to answer the following question: A

Rotary club with seven new members wants to plan meet-

ings for the new members so they can get to know one

another. The club wants each new member to meet with

every other new member exactly once, and to have exactly
three new members present at each meeting. How can

such meetings be arranged, and how many of these meet-

ings will each new member attend?

9. Let P be the set of 9 points {A, B, C, D, E, F, G, H, /}.
Let L be the set of 12 lines {ABC, DEF, GHI, ADG, BEH,
CFI, AEI, BFG, CDH, AFH, BDI, CEG}. Here, as in this

section, we write ABC for {A, B, C}, etc. Show that this sys-
tern, with the relation “on”, satisfies axioms 1-1 to 1-4. This 9-

point geometry is called Young’s geometry. It is named after
the famous mathematician John Wesley Young (1879-1932),
who discovered it.

10. Consider the following model. The set of points is the
interior of a given Euclidean circle. The set of lines consists
of the open chords of the circle (an open chord is a chord
minus its endpoints). Explain why this model satisfies or does
not satisfy Axioms 1-1 to 1-4.

11. Consider the model in which the set of points are those
inside a given Euclidean triangle, and the set of lines consists
of the open segments joining two points lying on different
sides of the triangle (an open segment is a segment without
its endpoints). Explain why this model satisfies or does not

satisfy Axioms 1-1 to 1-4.

12. Consider the follow axiom set, based on the undefined
terms point, line, and on.

Axiom 1: There are exactly four points.
Axiom 2: For each two distinct points there is a unique line

on them.

Axiom 3: There are exactly two points on every line.

Construct a model for this geometry and create and prove
one theorem for it.

13. Desargues’s Theorem, named after the French mathe-

matician Girard Desargues (1596-1660), states that if AABC
and ADEF are so situated that the lines AD , BE , CF all
mee t in a po int, then the inte rsections of sides AB and
DE , BC and EF, CA and FD are on the same line.

a. Draw a picture of this theorem in the Euclidean plane,
choosing the vertices of AABC and ADEF so that no pair
of corresponding sides is parallel.

b. This theorem is true in Fano’s plane geometry of 7 points
and 7 lines. Create two triangles in Fano’s geometry
(assuming a triangle is simply a set of three points not on

the same line) that satisfy the hypothesis of Desargues’s
Theorem, and show that the conclusion holds.
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ANSWERS TO QUESTIONS

1. There exist three distinct points by Axiom 1-1. Call them

A, B, C. Then, by Axiom 1-2, there is at least one line AB .

2. See Figure 2.

Figure 2 E

3. 1-3 tells us that there exist at least three distinct points. Call
them A, B , and C. By 1-1 there exists a unique line on each

pair of them. So there are at least three lines: AB , AC , and

BC . These lines satisfy the conditions of 1-2: For every line
there exist at least two distinct points on it. And 1-4 is satisfied
because B is not on AC . So the smallest plane incidence geom-
etry consists of the set of points P = {A, B,C} and the set of

lines L = {AZ?, AC, BC }. A geometric model of this geom-
etry consists of the vertices of triangle ABC.

11 . 1.2 Axioms for betweenness

We have seen that the incidence axioms alone do not imply that there are infinitely
many points on a line. To achieve this, as well as to enable us to “order” points on a

line, we introduce betweenness of points, and we specify the set of axioms that reveal
the properties of this concept.

The betweenness axioms

Suppose a line contains four points A, B, C, and D. Assume A is between B and C,
and C is between A and D. What can be concluded about A, B, and D? Suppose
these four points were on a circle. Would the conclusion be the same? Euclid’s
axioms did not provide the means to determine the answers to these questions. The
axioms that follow do. They also ensure that a geometry that satisfies them and the
incidence axioms will contain infinitely many points. Notice that, just as with the inci-
dence axioms, the only objects and relations we use are those we have accepted as

undefined terms. You should draw diagrams to be sure you understand the proper-
ties of points that these axioms reveal.

Axiom B-l is like Euclid’s second postulate, which guarantees that a line can be
extended “continuously”. Axioms B-2 through B-4 ensure that there is an order to

points on a line. For this reason some people call these “axioms of order”. These
axioms also enable us to distinguish lines from closed curves.

Ax i o m s Betweenness:

B-l: Let A and B be two distinct points. There exist points C, D , and E on line
AB such that C is between A and B, B is between A and D, and A is between
E and B.

B-2: If A, B, and C are points such that B is between A and C, then A, B, and C
are distinct and on the same line.

B-3: If A, B , and C are points such that B is between A and C, then B is between
C and A.

B-4: If A, B, and C are three distinct points on the same line, then exactly one of
the following statements is true: B is between A and C; C is between A and

B; or A is between C and B.

Question 1 : What do Axiom B-l and Axiom 1-3 have in common?

Axiom B-2 makes the necessary connection between the incidence axioms and
the betweenness axioms, relating the concept of betweenness to the incidence properties
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of point and line. Without it, we would have two separate theories—one for inci-

dence, and one for betweenness.

Question 2: Axiom 1-1 guarantees that there exist at least three distinct points.
How many points do we obtain by Axioms B-l and B-2?

From now on, because of Axioms B-l and B-2, we do not need to be concerned
that there are an insufficient number of points necessary for our theorems. Axiom B-3

says we can symmetrically permute A and C in the relation “5 is between A and C”, with-
out destroying its validity, but Axiom B-4 says that if we apply certain other cyclic per-
mutations, the validity of the relation is destroyed. Axiom B-4 indicates that all points
on a line can be lined up so that, given any three points, one is between the other two.

At this juncture we are able to make certain definitions that would not have
been possible before. It is important to realize that definitions are meaningful in a

mathematical theory only if the axioms imply that the object being defined actually
exists. With B-l to B-4, for example, we are able to define segment because these
betweenness axioms indicate that there are points between two given points, and oth-
ers that are not. We need the concept of segment before we introduce our next

betweenness axiom.

Definitions Let A and B be two distinct points. Segment AB, written AB, is the set consisting
of A and B and all points on the line AB that are between A and B. A and B are

called the endpoints of AB.

Notice we have defined segment using only the undefined terms of our system:
“point”, “line”, “on”, and “between”.

Now we are free to incorporate the idea of segment into the definitions and
axioms that follow. One idea that you have seen on occasion and that is defined in
terms of segments is convexity. For instance, we spoke of convex and nonconvex

kytes in Section 7.3.1 (Problem 9). Recall that a set S of points is convex if and only
if whenever A and B are in S, so are all points between A and B. Since many ele-

mentary geometry books speak little if at all about convexity, many people think con-

vexity is a frill or nonessential part of the study of geometry. Quite the contrary. A
last betweenness assumption, Axiom B-5, involves convexity.

We can define the plane to be the set of all points and lines in this geometry. Our
last betweenness axiom allows a plane to be partitioned into a line and two other

parts, and is therefore described as a “plane separation” axiom.

Axiom Plane Separation:
B-5: Every line € partitions the plane into € itself and two convex sets Si and S2

such that if a point P is in Sj and a point Q is in S2 , then PQ and € have a point
in common.

We say that 5^ and S2 are the sides or half-planes of the line €, and that they are

bounded by €. It is also common to say that and S2 are opposite sides of €. Recall
the invalid “proof” in Section 7.1.2 that every triangle is isosceles. Our explanation
of the fallacy relied on a careful definition of sides of a line that the plane separation
axiom and the above definitions provide.

The triangle with vertices A, B, C, denoted AABC, is defined to be the union
of the segments AB, BC, and AC, its sides. With Axiom B-5, we are able to prove a

statement based on an axiom introduced by Pasch in 1882. This statement essen-

tially states that a line that goes into a triangle must come out.
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Theorem 11.2 (Postulate of Pasch): If line € different from AB intersects side AB of AADC in |
a point between A and B, then exactly one of the following holds: (1) € contains C,
(2) € contains a point on AC between A and C, or (3) € contains a point on BC

between B and C.

Proof: Let line €, different from AB , intersect side AB in a point X between A and
B. Then l cannot also contain A or B because it would then equal AB . Since i
intersects AB between A and B, A and B are on opposite sides of €. Now, by the
Plane Separation Axiom, either (1) C is on €; (2) C is on the same side of € as A,
in which case C is on the opposite side of € as B and so € intersects BC; or (3) C is
on the same side of € as B, in which case C is on the opposite side of € as A, and so

€ intersects AC. _]

Theorem 11.2 fills a significant gap in the deductive reasoning of the Elements.
Euclid relied in many theorems on visual clues from diagrams, instead of using Pasch’s
axiom (or one equivalent to it) to validate his proofs.

The Plane Separation Axiom also allows us to order more than three points on a

line. Theorem 11.3 and its corollary allow us to establish order for four points on a

line. To help understand this theorem and its corollary, we introduce some notation. We
write A-B-C if and only if B is between A and C.

Theorem 11.3 Let A, B, and C be points on a line with A-B-C. Suppose D is a fourth point on

the line such that A-C-D. Then A-B-D and B-C-D.

Proof: Let A, B, C, and D be four distinct points on line € such that A-B-C
and A-C-D. There exists a point E not on €. (Why?) Let m = EC . Then m ^ €

(because E is on m and not on €) and A, B, and D are not on m (because otherwise
m = €). So AD ^ m. (Why?) Since A-C-D, AD intersects m at C. Consequently,
A and D are on opposite sides of m. Now since A-B-C, AB does not intersect m

(otherwise C is between A and B). Thus, by Plane Separation, A and B are on the
same side of m. Consequently, again by Plane Separation, B and D are on oppo-
site sides of m, and since BD intersects m at C, B-C-D.

To show that A-B-D, let n = EB and proceed in the same way as with m. We

leave the details to you.

A similar proof leads to this corollary. See Problem 4.

Corollary: (1): If A-B-C and B-C-D, then A-B-D and A-C-D.

(2): If A-B-D and B-C-D, then A-B-C and A-C-D.

When points A, B, C, and D satisfy a given condition of the corollary, we can

write A-B-C-D because we can delete any one of these 4 points and the rest are in
the same order.

The betweenness axioms provide us with the infinite lines and order of points
on lines we need for Euclidean geometry. Does that mean that these axioms, in

conjunction with the incidence axioms, are sufficient to define Euclidean geometry?
Again, we can demonstrate they are not by constructing a model of these axioms that
is not Euclidean.
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Consider the Beltrami-Cayley-Klein plane model, which is named for Eugenio
Beltrami (1835-1900), Arthur Cayley (1821-1895), and Felix Klein (1849-1929). Bel-

trami and Klein independently discovered it in 1871. However, it also appeared in an

1859 paper by Cayley.
In the Beltrami-Cayley-Klein plane model, a point is interpreted as a point inte-

rior to a Euclidean circle C. A line is any open chord of C, i.e., a chord of the circle
without its endpoints. Figure 3 shows a point P on a line € in this model. Since the
environment of this geometry is the interior of a Euclidean circle, it would appear that
this could be a model of Euclidean geometry. We know that the incidence and
betweenness axioms hold for Euclidean points and lines. Since chords can be viewed
as subsets of lines, it makes intuitive sense that these axioms also hold in this model

(see Problem 10 of Section 11.1.1).
Consider, for example, Axiom 1-2. To show it holds in the Beltrami-Cayley-

Klein plane, we need to show that for any two distinct points A and B in the interior
of C there is a unique open chord containing them.

Proof ofAxiom 1-2 for the Beltrami-Cayley-Kleinplane: Let A and B be interior
to C. Let AB be the unique Euclidean line on them by Axiom 1-2. This line inter-
sects the boundary of C in two points. (This is a theorem of Euclidean geometry
that ensures a line passing through the interior of a circle will intersect the circle
in two distinct points. We discuss it in Section 11.1.3.) Call these points C and D.
Then A and B lie on the open chord CD, which by Axiom 1-1 for Euclidean geom-
etry, is the only open chord on which they both lie. _J

Figure 4

The other incidence axioms and betweenness axioms can be likewise verified
for this model (see Problems 5 and 6).

Once the incidence and betweenness axioms are verified, does this mean that
the Beltrami-Cayley-Klein plane is a model of Euclidean geometry? No. It turns out

that the geometry this model describes is not Euclidean! Here is one reason why
(there are many others!): In Euclidean geometry there is only one line parallel to a

given line through a point outside of that line. (By “parallel” we mean “noninter-

secting”.) We can see from Figure 4 that it is possible to have at least two such lines
in the Beltrami-Cayley-Klein plane. In fact, there are infinitely many lines parallel
to € through P.

The Beltrami-Cayley-Klein plane is a model of a non-Euclidean geometry. Such

geometries are infinite incidence geometries that share certain Euclidean axioms but
that replace the Euclidean parallel postulate, which we discuss in Section 11.1.4, with
an axiom of multiple parallels, or with an axiom that denies the existence of parallels.
The Beltrami-Cayley-Klein plane is a model of the non-Euclidean geometry that is
called hyperbolic or Bolyai-Lobachevskian, named for the Russian mathematician
Nikolai Ivanovich Lobachevsky (1792-1856) and the Hungarian mathematician Janos

Bolyai (1802-1860), who first discovered it.
In hyperbolic geometry, the incidence and betweenness axioms 1-1 to 1-4 and B-l

to B-5 hold. For this reason, hyperbolic geometry is considered, as is Euclidean geom-
etry, an ordered incidence geometry. But there must be certain axioms that distin-

guish hyperbolic from Euclidean geometry since it is non-Euclidean. From the
discussion above, we can see that the Euclidean parallel postulate is false in hyperbolic
geometry. Are there other Euclidean propositions that do not hold in hyperbolic
geometry? Yes, in hyperbolic geometry, if two triangles are similar, then they are con-

gruent. We next explore the congruence axioms of Euclidean geometry to determine
if these are sufficient to categorize it, and perhaps further distance it (or not!) from

hyperbolic geometry.



556 Chapter 11 I Axiomatics and Euclidean Geometry

11.1.2 Problems

1. a. Which betweenness axiom guarantees that AB con-

tains at least three points?
b. Explain why AB represents the same set of points as BA.

2. Rewrite Axioms B1 to B4 using the A-B-C notation for

betweenness of points.
3. Complete the proof of Theorem 11.3.

4. Prove the Corollary to Theorem 11.3.

5. Verify incidence Axioms 1-1,1-3, and 1-4 in the Beltrami-

Cayley-Klein model of hyperbolic geometry.
6 . Consider the following analytic description of the Beltrami-

Cayley-Klein plane: A point is an ordered pair (x, y) such that
x and y are real numbers and x

2 + y
2 < 1. A line is any non-

empty set of points (x, y) that satisfies some equation
ax + by + c = 0, such that a and b are real numbers not both
zero. Verify betweenness Axioms B-2 to B-5 for this model.

7. Let € be an arbitrary line in a given plane. Prove that €
determines exactly two distinct half-planes.

ANSWERS TO QUESTIONS

1. They are both existence axioms.

2. These axioms provide us with the means to generate an

infinity of points on a line. We know by Axiom 1-1 there exist
three distinct points. Call them A, B, and C. By Axiom B-l,
for distinct points A and B , we generate additional points D

1
8 . Look up Euclid’s proof of his Proposition 21 in Book I.
Determine where in the proof there is a statement that

requires Pasch’s axiom.

9. Interpret points to be real numbers, and lines to be sets of
real numbers.

a. If the betweenness relation is interpreted in terms of <

(i.e., B is between A and C means A < B < C, or

C <B < A), show that the betweenness Axioms B1-B4

are verified.

b. If the betweenness relation is interpreted in the following
way: B is between A and C means that A A C and there
exist positive real numbers x and y such that B =

Ax + Cy, where x + y = 1, show the betweenness
Axioms B1-B4 are verified.

10. Can the betweenness axioms hold in a finite incidence

geometry? Support your answer by either showing they are

verified in one of the finite incidence geometries discussed in
Section 11.1.1, or explaining why they do not.

between A and B, E such that B is between A and E, and F,
such that A is between F and B. These points are distinct
from each other and from A and B by Axiom B-2. Now we

can continue this process choosing distinct points in pairs and

generating other points on the line.

11.1.3 Congruence and the basic figures
In Chapter 7, we detailed Euclid’s treatment of congruence. We remarked that
Euclid’s approach to congruence assumed without proof that one figure could be

superimposed onto another. To correct that weakness and also to allow the geome-
try of congruence to apply to all figures, we showed how congruence can be developed
through transformations. We used synthetic, coordinate, and complex number descrip-
tions of these transformations to deduce properties of congruence. Clearly, along the

way we were utilizing a great deal of knowledge about Euclidean geometry, about

functions, and about number.

A pure synthetic approach
We called one of our earlier approaches synthetic because it did not use coordinates
or complex numbers. However, we did utilize numbers for distance and angle mea-

sure, and we defined congruence in terms of distance. So it was not a pure synthetic
approach to congruence. The use of numbers in an approach which is otherwise syn-
thetic is the most common current practice, and it is quite efficient and effective
because it allows everything we know about numbers to be used. However, it leads

many students to believe that geometry cannot be divorced from numbers.
A pure synthetic approach does not allow numbers at all. In this section we

exhibit such an approach. We start from scratch about congruence, assuming only
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what we have explicitly mentioned in Sections 11.1.1 and 11.1.2. These axioms,
together with the congruence axioms we introduce in this section, correct the defects
in Euclid’s approach to congruence and enable all his theorems about congruence to

be deduced. Our approach here also shows how some terms previously defined in
terms of number (e.g., supplementary angles and midpoints of segments) can be
defined without number. We show how to examine two angles or two segments and
determine that one is bigger than another without using numbers. We also treat tri-

angle congruence without using numbers. Along the way, you will see many defini-
tions of terms that you have been using in earlier chapters. Some are the same as in

previous chapters and are repeated here so that this unit can be self-contained. Oth-
ers are different due to the approach we are taking but are still not contradictory to

definitions in earlier chapters.

Congruence axioms

Remember, in addition to on and between, we take the relation is congruent to

(denoted “
= ”) as an undefined term. In the following definitions and axioms, we

develop the properties of congruent segments and angles. We first need to introduce
the concept of ray. These definitions are the familiar ones.

Definitions Given distinct points A and B, ray AB, written AB , is the set of points of the seg-
ment AB together with all points C on line AB such that B is between A and C.
A is called the vertex (or endpoint) of the ray. AB and AC are opposite rays if
A is between B and C.

Like a segment, a ray is convex. And, from their definitions, both segments and

rays are subsets of the lines containing them. Rays can therefore be related to half-

planes, or sides of a given line in the following way: If A is a point on a line € and B

is a point not on €, then ray AB includes point A and exactly those points on line

AB on the same side (half-plane) of € as B. The only other points on AB are the

points other than A on the ray AC opposite ray AB . These points are on the oppo-
site side of € as B. We say that line € separates line AB at A.

Segment congruence

Three axioms treat congruence of segments. Again you should draw diagrams to

convince yourself that these axioms make sense to you.

Axioms

C-l: Let A and B be distinct points. If C is any point, then for each ray r with
vertex C, there exists a unique point D on r such that D is distinct from C and
AB is congruent to CD, written AB = CD.

C-2: Segment congruence is reflexive, symmetric, and transitive. That is, segment
congruence is an equivalence relation.

C-3: Let B be between A and C, and E be between D and F. IfAB = DE and
BC =EF, thenAC = DF.

Question 1 : Which of Euclid’s common notions, if any, do each of the congruence
axioms C-l, C-2, and C-3 replace?

Axiom C-l gives justification for the familiar operation of “laying off” a segment
on a ray. Intuitively, it tells us we can “move” the segment along the ray. Axiom C-3,



558 Chapter 11 I Axiomatics and Euclidean Geometry

in effect, tells us that if we “add” congruent segments, the sums are congruent. Notice
that we are able to specify this axiom without introducing the concept of distance or

length. From it we are able to prove the corresponding “segment subtraction” property.

Theorem 1 1.4 Let B be between A and C, and E be between D and F. If AC = DF and
AB = DE, then BC = EF.

Proof: Using Axiom C-l, let C' be the point on ray BC such that BC' = EF. Using
this and the given AB = DE, AC' = DF by Axiom C-3. But AC = DF is

given. So by Axiom C-2, AC = AC'. Since A-B-C, C is on AB . We would like

to show that C = C'. For this, we need to show that C' is on AB . Since C is on BC

either (1) B-C-C', (2) B-C'-C, or (3) C = C'. (1) If B-C-C', then by Theorem 11.3,
A-B-C', so C' is on AB ; (2) if B-C'-C, then by the Corollary to Theorem 11.3,
A-B-C', so C' is on AB . So in all cases C' is on AB . Because C and C' are on the

ray AB , by Axiom C-l, C = C'. Consequently, BC = BC', and so using Axiom

C-2 once again, BC = EF. _J

With a suitable definition of “greater than”, we can order segments by their size
even without numbers!

Definition Segment CD is greater than segment AB, written CD > AB, if and only if there
exists a point E between C and D such that CE = AB.

We can now prove an important order relation for segments.

Theorem 11,5 If CD > AB and AB = EF, then CD > EF.

Proof: If CD > AB, then by definition, there exists a point X between C and D such
that CX = AB. If AB = EF and CX = AB^thenby Axiom C-2, CX = EF.
Thus A is a point between C and D such that CX = EF. Therefore, by definition,
CD > EF. _|

We ask you to prove other order relations for segments in Problem 11.
With Axioms C-l to C-3, we can now define some other important objects of

Euclidean geometry in terms of congruence, and distance and length are not involved.

Definitions Let O and A be distinct points. The set of all points B such that OB = OA is the

circle with center O. Each of the segments OB is a radius of the circle.

Recall that Euclid explicitly postulated the existence of a circle (see Section

7.1.1), instead of making it the subject of a definition as we have done.

Question 2: How do we know the points B of the definition exist? How many of
these points are necessary to determine a circle completely?

It turns out that although such points B exist, there are not yet sufficient axioms
to actually prove that given three noncollinear points, a circle exists that contains
them. You may be surprised to learn that the Euclidean parallel postulate is needed
to prove this.
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Angle congruence

From segments we proceed to angles. The concept of betweenness of points leads in
a natural way to the concept of betweenness of rays, and that to the concept of angle.
We can make the analogy that betweenness of rays is related to angles as between-
ness of points is related to segments.

Definition Let AB, AC, AD be distinct rays such that AB and AD are not opposite. Ray
AC is between rays AB and AD if and only if there exist points X, Y, and Z, such

that X belongs to AB , Y belongs to AC , Z belongs to AD , and Y is between X

1

and Z.

Because betweenness of rays is defined in terms of betweenness of points, each
betweenness axiom for points B1-B4 has a counterpart in the betweenness of rays.

Question 3: What betweenness axiom allow s us to conclude that betweenness of

rays is symmetric?

It is also possible to prove that if AC is between AB and AD , then, other than A,

i. each point of AB and each point of AC are on the same side of AD , and likewise,
ii. each point of AC and each point of AD are on the same side of AB ,

iii. each point of AB and each point of AD are on opposite sides of AC.

With the correspondence between betweenness of points and betweenness of

rays in mind, we can use many of the results we achieved for betweenness of points
to prove theorems about betweenness of rays.

Question 4: Can the following property of betweenness of points be extended to

rays? If B is between A and C and C is between B and D, then B is between A
and D.

Angles
We now turn to angles. The following definition should be familiar.

Definitions An angle (written Z) is the union of two distinct and nonopposite rays AB and

AC, called its sides. A is the vertex of the angle. The angle is denoted as ZBAC

or Z CAB. A point D is in the interior of ZBAC if D is on the same side of AC

as B and if D is also on the same side of AB as C.

Question 5: Describe the interior of an angle in terms of betweenness of rays and
in terms of half planes.

It turns out that just as we can separate a plane by a line, we can separate a

plane by an angle, into those points that are in its interior and those that are not.

Some developments of geometry allow straight angles, defined as angles that
are the union of opposite rays, angles that in an analytic approach have measure 180°.
Such angles, when they are allowed, can cause difficulties because they are identical
to lines, any point on them can be a vertex, and either side of the line can be the inte-
rior of the angle. When Euclid wished to speak of the equivalent of 180°, he used the

phrase “two right angles”, as you can see from Proposition 32 in the list in Section
7.1.1. Some developments also allow zero angles, defined as angles that are the union
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of identical rays, angles that in an analytic approach have measure 0°. Such an angle
would have no points in its interior and would be identical to a single ray. And we

have pointed out in Section 7.2.2 that some books speak of reflex angles , angles with
measures greater than 180°. Allowing reflex angles requires that the union of two rays
determines two angles. All of these ideas are possible in a rigorous treatment of

geometry, but because they tend to complicate the development, we do not employ
them here.

The following axioms are the assumed properties of congruent angles. Notice
that they do for angles what Axioms C-l, C-2, and C-3 do for segments. Axioms C-l
and C-4 convey the analytic idea that segments and angles have exactly one mea-

sure. In an analytic approach, we could replace Axioms C-2 and C-5 by assuming
that congruent segments have the same measure and congruent angles have the same

measure. Axioms C-3 and C-6 tell us that if we put together adjacent congruent seg-
ments and angles, the results are congruent.

Axioms Angle Congruence:
C-4: Given ZBAC and ray DE , there exist unique rays DF and DG on differ-

ent sides of DE such that ZBAC = ZEDF = ZEDG.

C-5: Angle congruence is reflexive, symmetric, and transitive. That is, angle con-

gruence is an equivalence relation.

C-6: Let D be in the interior of ZABC and E be in the interior of ZGHL If
ZABD = ZGHE and ZDBC = ZEHI, then ZABC = ZGHI.

From Axioms C-4 to C-6, we can deduce “angle subtraction” in a manner sim-
ilar to the proof of Theorem 11.4.

Theorem 11.6 Let D be in the interior of ZABC and E be in the interior of ZGHL If
ZABC = ZGHI and ZABD = ZGHE, then ZDBC = ZEHI.

Proof: The proof is left to you as Problem 12. _J
The next definition enables us to be able to compare angles that are not con-

gruent. It is analogous to the earlier definition in this section comparing segments.

Definition ZDEE is greater than ZABC , written ZDEF > ZABC, if and only if there i
exists a ray EG such that ZABC = ZDEG and G is in the interior of ZDEF.

Terms defined in earlier chapters without reference to number can be used
here. Two angles with a common vertex form a pair of vertical angles if the sides of
one are opposite to the sides of the other. Two angles form a linear pair if they have
a common side and their noncommon sides are opposite rays. Two angles are adjacent
angles if they are a linear pair, or if they have a common vertex and a common side
that is in the interior of the angle formed by their noncommon sides.

These definitions enable us to define supplementary angles and right angles
using congruence and with no reference to angle measure or other numbers. So these
definitions are likely to be different from those you have seen before.

Definitions Two angles are supplementary and each is a supplement of the other if they are

respectively congruent to the angles of a linear pair.
A right angle is an angle that is congruent to a supplement of itself.
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Triangle congruence

Thus far, all of the congruence axioms have dealt with relationships along a line or

around a point. We need an axiom which guarantees that congruence in one part of
the plane is like congruence in every other part. An axiom that fills this void is Side-

Angle-Side (SAS) congruence for triangles.

Axiom Triangle Congruence Axiom (SAS Congruence):
C-7: Given two triangles, if two sides of one are congruent to two sides of the other,

and the angles included by the congruent sides are congruent, then their third
sides are congruent and their remaining corresponding angles are congruent.

When all six parts (sides and angles) of one triangle are congruent to the cor-

responding parts of another triangle, we call them congruent triangles. Thus, trian-

gle congruence is defined in terms of the undefined terms segment congruence and

angle congruence, and the properties of triangle congruence are known only by what
can be deduced from postulates C-l to C-7.

It follows from the definition of triangle congruence and Axioms C-2 and C-5
that triangle congruence is reflexive, symmetric, and transitive.

Notice that the statement of the SAS Congruence Axiom C-7 is very much like
Euclid’s statement of the SAS proposition. It does not mention congruent triangles!
Rather, it goes directly to the usual reason for proving triangles congruent, namely, to

obtain the congruence of the other sides and the other two pairs of corresponding angles.
The SAS Congruence Axiom is very powerful—it connects congruence of angle

and congruence of segments, which until this point have, in a sense, been two separate
theories. It also enables us to deduce all the other triangle congruence propositions.

You can see how the connection is made between congruent segments and con-

gruent angles in the following theorem. Although its proof seems long, it is quite
straightforward, simply involving repeated use of the SAS Congruence Axiom to

achieve the result.

Theorem 11.7 Supplements of congruent angles are congruent.

Proof: It is sufficient to consider the case where the pairs of supplementary angles are

linear pairs, since (by Axiom C-5) congruence of angles is an equivalence relation.

Suppose then that ZAOB and ZAOC, and ZDPE and ZDPF are two linear pairs,
and that ZAOB = ZDPE. We show that ZAOC and ZDPF are congruent. We
can assume that segments OA, OB, and OC are congruent respectively to PD, PE,
and PF (Axiom C-l). (See Figure 5.) Then AB = DE and ZOBA = ZPED by
SAS Congruence (Axiom C-7). Furthermore, we know that O is between B and C
and that P is between E and F (definition of opposite rays). So BC = EF by Axioms
C-2andC-3. Since ZABC = ZDEF, then again by SAS Congruence, AC = DF
and ZACB = ZDFE. Thus ZAOC = ZDPF by SAS Congruence. _J

Figure 5
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The need for an additional axiom

The incidence, betweenness, and congruence axioms allow the proving of many the-
orems about circles and polygons. But they do not enable rigorous proofs of some

of the basic theorems that are in Euclid’s geometry. As an example, consider Euclid’s

very first theorem and the proof he gave.

Euclid’s Theorem 1 An equilateral triangle can be constructed on any segment AB.

Proof: Draw a circle with radius AB and center A, and draw the circle with radius
AB and center B (see Figure 6). (These can be drawn because of Euclid’s Postu-
late 3.) Let C be a point of intersection of the circles. NowAC = AB (Euclid’s def-
inition of “circle” applied to the circle with center A) and BC = AB (Euclid’s
definition of “circle” applied to the circle with center B). By Common Notion 1,
AC = BC. And so all sides of triangle ABC are congruent to each other, and the

triangle is therefore equilateral. _]

Figure 6

(We note that all of Euclid’s proofs are written in paragraph form. The two-column form
for writing proofs is a relatively recent invention, traceable back only to the 1890s.)

Question 6: Is Euclid’s reasoning sound? Suppose we try to verify his theorem on

a plane of points with rational coordinates. Let A be the origin (0, 0) and
B = (0,1). What happens?

Euclid’s proof contains justifications for all its statements except one: Let C be
a point of intersection of the circles. It happens that no postulate or theorem
deducible from Euclid’s postulates ensures that the circles intersect. An axiom of
continuity fixes this gap. This axiom was first proposed by Dedekind.

Axiom Axiom of Continuity:
D-l: Let a line € be partitioned into two nonempty subsets of points, S and T, in

such a way that no point of S is between two points of T and no point of T
is between two points of S. Then there exists a unique point O on t with the

following property: For any points A and B on € distinct from O, O is between
A and B if and only if A is in S and B is in T, or A is in T and B is in S.

Prior to Dedekind, most mathematicians had based their understanding of the

continuity of a line on the fact that between any two points there exists another point
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(Axiom B-l). But Dedekind realized that between any two rational numbers there
exists a rational number, and yet the rational numbers do not form a continuum. The
real numbers, on the other hand, do form a continuum and can be put into one-to-one

correspondence with the points of a line.
Dedekind recognized that the continuity of a line can be based on a line separa-

tion property, i.e., the fact that a point can partition a line into two sets of points with
the property that each point of the line belongs to one and only one set, and all the

points of one set are to the left of all the points in the other set. Dedekind’s axiom can

be thought of as the converse to this line separation property: There is a unique point
that creates that partition, separating the points of the line to the left and right of it.

The Axiom of Continuity guarantees that two circles have a point of intersec-

tion, but the argument is too long for us to give the details here. Instead, we outline
a proof that is detailed in Heath’s commentary on Euclid’s Elements.

1. Call a ray an interior ray of an angle if its endpoint is the vertex of the angle and
if it is between the sides of the angle. Consider the set I of all interior rays of
an angle. Using the Axiom of Continuity, it can be proved that if a ray R in set

/ partitions I into itself and two subsets S and T so that all rays in S are on one

side of the ray R, and all rays in T are on the other side of R , then R is either at

the edge of S or at the edge of T.

2. If an angle is a central angle of a circle, the same partition of its interior rays also

partitions the intersections of these rays with the circle itself. Consequently, the

points of a minor arc can be partitioned just as the rays in (1) can be partitioned.
3. From (2) it can be proved that if a line has one point in the interior and one point

in the exterior of a circle, then it has two points in common with the circle.

4. From (1), (2), and (3) it can be proved that if a circle A contains one point X
that is in the interior of circle B , and if circle A contains a second point Y that
is in the exterior of circle J5, then circles A and B must intersect in two points.
(See Problem 5.)

11.1.3 Problems

1. Draw a diagram illustrating each statement.

a. Axiom C-l

b. Axiom C-4

c. definition of “is greater than” for angles
2 . Using only the language developed in Sections 11.1.2 and
this section, define each term.

a. complementary angles
b. obtuse angle
3 . How does the definition of triangle in this section differ
from Euclid’s definition shown in Section 7.1.1?

4 . Each of the following terms is defined in this section.
Reword that definition using the concepts of distance and/or

angle measure.

a. circle

b. supplementary angles
c. right angle
5 . a. Using the concept of betweenness and without using the

concept of distance, define the interior of a circle and the
exterior of a circle.

1
b. Use the axioms we have assembled so far to explain why

there must exist two points X and Y that are in the interior

of a circle with center O such that O is between X and Y.

6 . Use Theorem 11.2 (the Postulate of Pasch) to prove that no

line can contain points on all three sides of a triangle without

containing a vertex of the triangle.
7 . Use the triangle congruence axiom (C-7) to prove that the
base angles of an isosceles triangle are equal. This is a famous
theorem called pons asinorum or Bridge ofAsses. (It receives
its name from the diagram Euclid used in its proof.)
8 . Using the betweenness axioms and the definitions of seg-
ment and ray, prove that the intersection of AB and BA is AB.

9. A student argued that the Plane Separation Axiom B-5
can be converted into the line separation property merely by
replacing the word “plane” by the word “line” and “line” by
“point”. Is the student correct? Why or why not?

10 . Prove the following theorem: Suppose AB = CD. For

any point E between A and B, there exists a unique point F

between C and D such that AE is congruent to CF.
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11. Prove the following theorems using the segment con-

gruence axioms and the definition of > (greater than) for

segments.
a. Exactly one of the following conditions holds: AB >

CD, AB = CD, or CD > AB.

b. IfAS > CD and CD > EF, then AS > EF.
With Theorem 11.5, these theorems provide for the ordering
of segments.
12. Prove Theorem 11.6.

13. Prove the following theorems:

a. If P is in the interior of AABC, the line AP intersects the

line segment SC.

ANSWERS TO QUESTIONS

1. Axiom C-2 replaces Euclid’s first and fourth common

notions. Axiom C-3 replaces his second common notion.

2. Axiom C-l provides for them. We need three points.
3. Axiom B-3.

4. No. Let ZAOB be a right angle. Let ZCOD be a right
angle with OC not in the interior of ZAOB, C and B on the
same side of OA , and C and_D on opposite sides of OA . Then
OB is between OA and OC, and OC is between rays OB
and OD , but OB is not between rays OA and OD .

b. If P is in the interior of AABC, any line through P inter-

sects two of the sides of the triangle.
14. Prove the following theorem: Suppose ZABC = ZDEF.
For any point X between A and C, there exists a unique point
Y between D and F such that ZABX = ZDEY. (Hint: Use
Problem 10.)
15. Use Theorem 11.7 to prove the following theorems:

a. Vertical angles are congruent to each other.

b. An angle congruent to a right angle is a right angle.
16. Use the definition of > for angles to create and prove
two theorems on the ordering of angles analogous to those
for the ordering of segments in Problem 11.

5. The interior of ZAOB is the set of points X such that OX
is between OA and OB . It can also be described as the inter-
section of two half planes: the half-plane of B bounded by
OA and the half-plane of A bounded by OB .

6 . First construct a circle with center (0, 0) and radius 1,
then another circle using point (0,1) as the center and radius
1. These two circles do not intersect in a point with rational

coordinates, so Euclid’s proof breaks down on the given
plane.

11.1.4 Geometry without the Parallel Postulate

All the axioms we have stated so far are valid propositions in both Euclidean and

hyperbolic geometry. In the next section we add a final postulate that is not true in

hyperbolic geometry and that allows us to define Euclidean geometry completely.
This postulate is Euclid’s parallel postulate. Elowever, we first examine some

of the results of Euclidean (and hyperbolic) geometry that can be achieved without
the parallel postulate. There are good reasons to do this. Euclid proved Proposi-
tions 1 through 28 in the first book of the Elements without using his parallel postu-
late. (See the list in Section 7.1.1.) By examining the body of theorems that do not

depend on a parallel postulate we are better able to understand the role that the pos-
tulate plays in Euclidean geometry.

In particular we want to look at some important concepts and theorems of
Euclidean geometry, see how they are related to each other, and determine if they
require the parallel postulate. We first prove a familiar property of isosceles trian-

gles. We call a triangle isosceles if and only if it has at least two congruent sides. The
third side is called the base and the angles that include it are the base angles of the

triangle. This proof of Theorem 11.8 is due to Pappus.

Theorem 11 Base angles of an isosceles triangle are congruent.

Proof: Let AABC be isosceles withAZ? = AC. We wish to show that ZABC =

ZACB. Consider AABC and AACB. AC = AB by Axiom C-2. Also, by Axiom
C-5 ,ZCAB = ZBAC. Consequently, ZABC = ZACB by the SAS Congruence
Axiom C-7. _|
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Theorem 11.9 (SSS Congruence): If AB
ADEF.

DE, BC = EF, and AC = DF, then AABC

Proof: By Axiom C-4, in the half plane of line AB that does not contain C there

exists a ray AG such that Z BAG = ZFDE. By Axiom C-l, there is a point C'

on AG such that AC' = DF, which by Axiom C-5 and the given AC = DF

implies AC' = AC. By Axiom C-l (SAS Congruence), BC' = EF, which, with

Axiom C-5 and the given BC = EF, implies BC' = BC.

By Axiom B-5, CC' intersects AB at a point P. There are now five cases.

Case 1: P is between A and B. Then ECAC' and A CBC' are isosceles. Con-

sequently, by Theorem 11.8, ZACC' = ZAC'C and ZBCC' =ZBC'C.

By Axiom C-6, ZACB = ZAC'B. So AABC = AABC' by SAS

Congruence. But AABC' = ADEF, and since triangle congruence is an

equivalence relation, AABC = ADEF, which was to be proved.

Case 2: A is between P and B. The argument for this case is like case (1), except
that we use Theorem 11.6 instead of Axiom C-6.

Case 3: B is between P and A. The argument is just like case (2), with A and B

changing places.

Case 4: P = A. Then C ', P, and C are collinear. Thus ABCC' is isosceles. So,
by Theorem 11.8, ZBCC' = ZBC'C. So AABC =AABC' by SAS

Congruence. The rest is identical to case (1).

Case 5 : P = B. This argument is just like case (4), with A and B changing
places. _|

I (AAS Congruence): If AB = DE, ZACB = ZDFE,and ZBAC = ZEDF,\
8

then AABC = ADEF.

You are asked to prove this theorem in Problem 1.
We have not yet defined some simple ideas, among them equidistance and the

midpoint of a segment.

Theorem 11.10

Definitions A point P is equidistant from A and B if and only if PA = PB. M is the midpoint
of AB if and only if M is on AB and equidistant from A and B.

Question 1 : What is the significance of the word the in the definition of midpoint?

Although from Axiom B-l we know that, given two different points A and B,
there exists a point between them, we do not know automatically that there is one and

only one point equidistant from them on the segment. Some geometers make the
existence and uniqueness of a midpoint an axiom. Others deduce these properties
from assumed metric properties of segments (when we postulate that a line can be
coordinatized with real numbers, we have unique midpoints). Regardless of method,
proofs of the existence and uniqueness of a midpoint often reveal interesting con-

nections between it and other geometric figures.
You may have seen some proofs about unique midpoints based on the Euclid-

ean parallel postulate or a postulate equivalent to it. But we can construct a proof
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without it, on the basis of axioms we have collected so far, with the addition of some

definitions and theorems.

Every segment has exactly one midpoint.

Pm&fi Let AB be a segment. Using Euclid’s Theorem 1 and the Axiom of Continuity,
construct equilateral triangles ABC and ABC 1 with C and C' on opposite sides of AB .

Thus AC = AB = BC = BC' = AC'. Let M be the intersection of CC' and AB .

We want to show that M is a midpoint of AB. M ^ A, for if M = A then by the

same argument starting with BA (which equals AB), M = B, and so A = B, which

is impossible since AB is a segment. So A and B do not belong to CC r

, and triangles
ACC and BC'C exist. ZAC'C = ZBC’C by SSS Congruence. So ZAC’M =

= ZBC'M (since M is on CC). Then AM = BM by SAS Congruence. So M is

a midpoint of AB. Uniqueness is left to you as Problem 2. _J

Question 2: Draw a diagram to illustrate this proof.

From the proof of Theorem 11.11, we see that the existence of midpoints is
related to triangle congruence, incidence, betweenness, and separation properties of
the plane. The parallel postulate is not required. To be certain of this, we would,
however, need to examine the theorems (such as SSS and AAS) used, as well as, for

example, whether anything besides continuity is required in the first proof to con-

struct points C and C.
It is often the case that proof reveals some surprising relationships between the

concepts of geometry. For example, it turns out that the existence and uniqueness of
a midpoint plays an important role in the proof of one of the famous theorems of
Euclidean geometry—the exterior angle theorem.

Definition In AABC, if point D is on BC such that C is between B and D, then ZACD is I
called an exterior angle of AABC.

In any triangle, an exterior angle is greater than either
of its nonadjacent interior angles.

Figure 7 A f

Suppose AABC has exterior angle ACD (Figure 7). Let E be the midpoint of

side A C. Extend BE to F so that BE = EF. The vertical angles AEB and CEF are

congruent, and AE = EC, so ZACF = Z CAB by SAS Congruence (Axiom C-7).
F is on the opposite side of AC from B, so it is on the same side of AC as D (Plane

Separation Axiom). Also, since E is between B and F, and since FB intersects CD
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at B, F is on the same side of CD as E. Thus F is in the interior of ZACD. Conse-

quently, ZACD is greater than ZACF, so ZACD > Z CAB. This same argument
could be repeated starting with the midpoint of side BC, so the theorem is proved.

J

The exterior angle theorem is very powerful. It enables us to prove, for exam-

pie, that given a line and a point not on it, there is a unique line on that point per-
pendicular to that line (see Problem 5).

Now we introduce parallelism. We adopt here Euclid’s definition of parallel.
Parallel lines are lines with no points in common. A sufficient condition for paral-
lelism is found in an important theorem, which follows from the Exterior Angle The-
orem. Before we explore this theorem, we again need some definitions:

Definitions Let lines €, m, and n be distinct. Let B be on € and n, and let C be on m and n such
that B is distinct from C. Choose A on £ and D on m such that A and D are on

opposite sides of n. Then ZABC and ZBCD are a pair of alternate interior angles
formed by the line n, which we call a transversal, and the lines € and m.

Theorem 11.13 (Alternate Interior Angle Theorem): If two lines are intersected by a transversal j
so that alternate interior angles are congruent, then the lines are parallel.

Figure 8 n

Proof: The proof is indirect. Refer to Figure 8. Assume that the alternate interior

angles ABC and DCB are congruent but AB and CD intersect. Then find a con-

tradiction to one of the theorems we have proved. The rest is left to you. _|

Since Theorem 11.12 was used in the proof of Theorem 11.13, can we conclude
that the exterior angle theorem is necessary to prove the alternate interior angle the-

orem, and therefore that the concept of midpoint is also necessary for its proof? No.
Consider the following proof of the alternate interior angle theorem:

Proof: Let €, m, n and points A, B , C, D be as in the preceding definition of alter-
nate interior angles and ZABC = ZDCB. Assume that € and m meet at a point
E, and that E is on the same side of n as D and the opposite side of n as A. There
is a point F on BA such that BF = CE (Axiom C-l). CB is congruent to itself

(Axiom C-2) so in triangles BCE and CBF, ZEBC = ZFCB (Axiom C-7). Since
ZEBC is the supplement of ZFBC, ZFCB is the supplement of ZECB (Axiom
C-4,Theorem 11.7). Then F is on m. Since both E and F are on € and m, € = m

(Axiom 1-1). This contradicts the given that € and m are distinct lines. Therefore,
€ is parallel to m. _J
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Question 3: Can we conclude from the Alternate Interior Angle Theorem that par-
allel lines exist?

We did not use the concept of midpoint in the previous proof. In fact, it turns out

that we can use the alternate interior angle theorem to construct yet another proof of
the existence of a midpoint, again based on the axioms we have collected so far .

1

This discussion is intended to help you understand the power of proof in expos-
ing relationships between geometric concepts. It also serves as a caution to you not

to assume that simply because a result is used in the proof of a theorem, it is neces-

sary for all proofs of that theorem. It might simply be sufficient. For example, there

are proofs of the exterior angle theorem based on Euclid’s parallel postulate, but, as

we have shown, the parallel postulate is not necessary for the proof.
11.1.4 Problems

1
1. Prove Theorem 11.10 (AAS Congruence).
2. Prove the uniqueness of the midpoint of a line segment.
(Hint: Assume there are two midpoints and derive a contra-

diction using AAS.)
3. Prove ASA Congruence using SAS Congruence.
4. Complete the proof of Theorem 11.13.

5. If ZAOB is a right angle, then lines OA and OB are

perpendicular to each other at O.

a. Prove that for every line € and every point P there exists
a line on P perpendicular to €.

b. Use part a to prove (without the parallel postulate or any
equivalent statement) the following corollary to the Alternate

Interior Angle theorem: If € is any line and P is any point not

on €, there exists at least one line m through P parallel to €.

c. Prove that the perpendicular in part a is unique.
6 . Use the following theorem (which can also be proved with-
out the parallel postulate) to give an alternate proof of the

corollary to the Alternate Interior Angle Theorem stated in
Problem 5b.

7. Prove that the alternate interior theorem, in the presence
of the incidence, betweenness, and congruence axioms, is suf-
ficient to show that parallel lines exist. You may assume that
all right angles are congruent. (Hint : Use perpendicular
lines.)

ANSWERS TO QUESTIONS

1. The word the signifies that if the midpoint exists, it is unique.
3. Yes, because congruent alternate interior angles can be formed at points B and C, the theorem is sufficient to prove the exis-
tence of parallel lines.

11.1.5 Euclid’s Fifth Postulate

Although many theorems can be proved from the axioms we have so far stated, which
fill in the gaps in the first four postulates of Euclid, not all the theorems of Euclidean

geometry can be deduced from them. Like Euclid, when he was using only the first
four of his postulates, we are one postulate short of those needed to prove all the the-
orems found in Euclid’s Elements. That is, we need one more postulate in order to have
a full set of postulates for Euclidean geometry. Here again is Euclid’s fifth postulate.

Axiom Euclid’s fifth postulate (parallel postulate):
P-E: If a straight line falling on two straight lines makes the interior angles on the

same side less than two right angles, the two straight lines, if produced indefi-

nitely, meet on that side on which are the angles less than the two right angles.

‘See Marvin J. Greenberg, Euclidean and Non-Euclidean Geometries (Third Edition). San Francisco:

W. H. Freeman, 1993, p. 137.
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Question: Draw the figure described in the fifth postulate.

In the English translation (by Thomas Heath) that we have adapted for use

here, the fifth postulate uses more words than Euclid’s first four postulates put
together. This also is the case in the original Greek, so it should not surprise you
that, from the time of Euclid, the length and complexity of the fifth postulate led
mathematicians to try to prove it from the other postulates. Examination of Euclid’s
first 28 propositions suggests that he also may have tried to prove his fifth postulate
from the other four.

It was not until the 19th century that such attempts were revealed to be futile
because models of geometry were described that satisfied the first four postulates
but not the fifth. Still, much was learned from efforts to prove the fifth postulate,
including the discovery of non-Euclidean geometries and the proofs of many state-

ments equivalent to the parallel postulate of Euclid.
No original version of Euclid’s Elements survives, and our knowledge of Euclid

comes mainly from two detailed commentaries written by Greeks centuries later,
Pappus (c. 320 a.d.) and Proclus (410-485 A.D.). Proclus was one of the first to advo-
cate that Euclid’s fifth postulate be a theorem, proved from a postulate he suggested:

1. There is only one parallel to a given line through a point not on that line.

This has become known as Playfair’s version of the parallel postulate, after John Play-
fair (1748-1819), who suggested its use in 1795. We noted in Section 11.1.2 that Play-
fair’s postulate is violated in the Beltrami-Cayley-Klein model of hyperbolic geometry.
Thus once we include Euclid’s parallel postulate (or any statement, such as Playfair’s,
equivalent to it), our axiom set can no longer describe hyperbolic geometry.

Other statements that have been proved to be equivalent to the fifth postulate
include the following:

2. Any line that intersects one of two parallel lines intersects the other.

(Proclus)
3. Given a triangle, another triangle can be constructed that is similar and not

congruent to it. (John Wallis, 17th century)
4. The sum of the measures of the angles of a triangle equals 180°.

Figure 9

North Pole

Equator

Euclid’s fifth postulate does not mention the word “parallel”, yet it is some-

times called Euclid’s “parallel postulate” because it has implications for the behav-
ior of parallel lines. Since Euclid had defined “angle” in terms of “inclination”, he

might have defined “parallel lines” as lines with the same inclination. But he never

uses this word again and would have found it difficult to prove things about parallel
lines had he adopted such a definition. He also could have defined parallel lines as

lines that “go in the same direction”, perhaps like chariot tracks. But he may have real-
ized that the Earth is nearly a sphere (Greek mathematicians did know Earth was

round) and that two lines drawn in the directions of due north and south would inter-
sect at the poles. He might have defined parallel lines as lines that are equidistant,
but this definition requires knowing that the set of points at a fixed distance from a

line on one side of it is in fact a line. Instead, Euclid defines lines to be parallel if

they are in the same plane and do not meet. Then he assumes the fifth postulate,
which provides a sufficient condition for lines not to be parallel!

Euclid’s fifth postulate shows once again that Euclidean geometry does not

apply on the surface of the sphere. Recall the triangle NPQ from Section 10.1.1

(Figure 9) whose sides are the great circles of the sphere. Such a triangle includes two

right angles, and so violates Euclid’s fifth postulate.
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The connection between the fifth postulate and parallelism comes through the

logic of the Principle of the Contrapositive: If p and q are statements, then p => q has
the same truth value as its contrapositive not q => not p.

Euclid’s fifth postulate is of the form p=> q, where

p is “A straight line falling on two straight lines makes the interior an-

gles on the same side less than two right angles.”
and q is “The two straight lines, if produced indefinitely, meet on that side on

which are the angles less than the two right angles.”
So the contrapositive of the fifth postulate is

not q => not p: If two lines do not intersect on a side of a third line, then the interior

angles on that side are either equal to or greater than two right angles.
But if the interior angles on one side are greater than two right angles, the interior

angles on the other side of the line are less than two right angles, and (due to the

postulate) the lines will meet there. So we can conclude: If two parallel lines are

cut by a transversal, then the interior angles on the same side of the transversal

equal two right angles. That is, (in modern language) they are supplementary.
This argument shows that the parallel postulate is also equivalent to the fol-

lowing statements:

5. If two parallel lines are cut by a transversal, then corresponding angles are

congruent.
6. If two parallel lines are cut by a transversal, then alternate interior angles are

congruent.
The converses of statements (5) and (6) are not equivalent to the parallel pos-

tulate. Theorem 11.13 shows that (6) can be deduced from our axioms without the

parallel postulate.

Theorems requiring the Parallel Postulate

We can prove many theorems of Euclidean geometry without the parallel postulate,
such as, for example, that two lines perpendicular to the same line are parallel to each
other. However, the following theorem, which appears to be quite similar, requires it.

Theorem 11.14 Two distinct lines parallel to the same line are parallel to each other.

Proof: Given lines £, m, n, such that £ is parallel to m and n is parallel to m, and
lines £ and n are distinct. We prove that £ is parallel to n. Suppose not. Let A

belong to £ and n. Since £ is distinct from n, there exist two distinct lines, £ and n,
each on A and each parallel to m. But this contradicts the Euclidean parallel pos-
tulate (Playfair’s version). Therefore, £ is parallel to n. _J

You may be surprised at other theorems that require the parallel postulate.
Because of their equivalence to the parallel postulate, statements (1) to (6) require
the parallel postulate or some equivalent assumption in order to be proved. Because
of statement (4), the sum of the measures of the angles of a quadrilateral will not be
360° without the parallel postulate. Thus the parallel postulate is needed to ensure

the existence of rectangles (figures with four right angles) and the existence of squares.
Consequently, the basic definition of area in Euclidean geometry (Section 10.1.1)
requires the parallel postulate. Because of the equivalence of statement (3) to the par-
allel postulate, the existence of noncongruent similar figures also requires the paral-
lei postulate. The Pythagorean Theorem, which relies either on area or similarity for
its proof (Section 8.3.1), thus also relies on the parallel postulate.
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With the parallel postulate, not only do we get all the above theorems, but we

have an axiom set that defines Euclidean plane geometry. That is, using the 18 axioms

11-14, B1-B5, C1-C7, D-l, and P-E, and the definitions we have given, all the theo-
rems associated with Euclidean plane geometry can be deduced.

11.1.5 Problems

1. Consider this statement: If a line is perpendicular to one of
two parallel lines, then it is perpendicular to the other. Prove
that it is implied by Euclid’s parallel postulate.
2. Prove that statement (5) in this section is equivalent to

Euclid’s parallel postulate.
3. Prove that the suggested alternates (1) and (2) to the par-
allel postulate mentioned on the first page of this section

imply each other.

4. Prove that Playfair’s parallel postulate (f) implies state-

ment (6) in this lesson. (Hint. Use Theorem 11.10.)
5. Determine if the parallel postulate holds in the following
geometries mentioned in Section 11.1.1. Support your
answers.

a. Fano’s geometry
b. Young’s geometry (see Problem 9 of Section 11.1.1)
c. three-point geometry (see Problem 1 of Section 11.1.1)
d. four-point geometry (see Problem 11 of Section 11.1.1)
6 . Consider the geometry consisting of 13 points {A, B , C, D,
E, F, G, H, I, J, K, L, M} and 26 lines: {ABC, BDF, CDG,
DHI , EFK, FGM, GIK, HJL , ADE , BEI, CEJ , DJK, EGL,

1
FIJ,AEH, BGH, CFL , DEM, EHM,AGJ , BJM, CHK,AIL,
BKL,CIM,AKM}. Here ABC means the line {A,B,C},etc.

a. Does the Euclidean parallel postulate hold?

b. Prove or disprove that this geometry satisfies the incidence
axioms.

c. Formulate a theorem in the above geometry.

d. Does the postulate of Pasch (Theorem 11.2) hold in this

geometry?

7. Answer the same questions as Problem 6 for the geome-

try consisting of 13 points {A, B, C, D, E, F, G, H, I, J , K,
L, M} and 13 lines {ABCD, AEFG, AHIJ, AKLM, BEHK,
BFIE,BGJM, CEIM , CFJK, CGHL, DEJL, DFHM, DGIK}.
Here ABCD means the line with four points {A, B, C, D}.
8 . a. Prove that the perpendicular bisectors of the three sides

of a triangle have a point in common.

b. Identify the place(s) in your proof where the parallel pos-
tulate is used.

ANSWER TO QUESTION

Figure 10 is one such figure.

Figure 10

Unit 11.2 The Cartesian Model for Euclidean Geometry
In this unit, we explore an approach to Euclidean geometry that is different from the syn-
thetic approach exemplified by the axioms 11-14, B1-B5, C1-C7, D-l, and P-E of Unit
11.1. This approach is analytic, and by examining it, we connect the lines that are stud-
ied in algebra with the lines in Euclidean geometry. It also justifies the analytic proofs
that we have in this book for deducing some of the theorems of Euclidean geometry.

In this analytic approach to Euclidean geometry, we are led to ask questions about
our axiom system for Euclidean geometry. Does our axiom system apply only to Euclid-
ean geometry, or, like the incidence axioms, can it apply to different geometries?

11.2.1 The Cartesian coordinate system
Recall from Section 8.1.1 that the Cartesian plane is the set R2 of all ordered pairs of
real numbers. Accordingly, a Cartesian point is an ordered pair of real numbers. A
Cartesian line is the set of points (jc, y ) that satisfy an equation equivalent to a linear

equation in the standard form Ax + By + C = 0, where A and B are constant real
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numbers that are not both zero. If A = 0, then the equation represents a horizontal line;
if B = 0, a vertical line. While you can think of drawing the usual picture of such a

system with the x-axis as horizontal and y-axis as vertical, all of the work that we do in
this system in this section can be done with algebra alone, dependent not on the pictures
but on the properties of real numbers.

Note, that the standard form Ax + By + C = 0 is not unique, since all multi-

pies kAx + kBy + kC = 0, where k is a nonzero constant, represent the same line.

However, a line is uniquely determined by its slope and y-intercept. So if the line is
not vertical, then B # 0 and we can convert the standard form of the equation to the
familiar slope-intercept form of an equation: y = mx + b, where m is the slope of the

line and b is the y-intercept, where m = —

p and b = — §. If B = 0, we say the line
has no slope , and the equation is of the form x = h, where h =

—j. The equation
kAx + kBy + kC = 0, when converted to slope-intercept form, yields the same slope
and y-intercept as the original equation. Therefore, all such multiples can be treated
as essentially the same equation.

We wish to demonstrate that the Cartesian plane with these points and lines is
a model of Euclidean geometry, that is, an example or interpretation or manifestation
of the axiom system of Euclid’s geometry. To do this, we must show that each axiom
in Euclidean geometry is satisfied in the model. Thus the axioms in our earlier devel-

opment of Euclidean geometry become theorems in the model. Our first theorems
are the four incidence axioms.

Theorem 11.15 (Cartesian 1-1): There exist at least three distinct points.

Proof: We have an infinity of trios of Cartesian points from which to select. One
trio is (1,1), (0,-4), and (§,7). _l

Theorem 11.16 (Cartesian 1-2): For each two distinct points, there exists a unique line on them. J
Proof: Let (x1 ,y1 ) and (x2 ,y2 ) be the two distinct points. Then, algebraically, the

coordinates of these points must satisfy the equation of any line on them. Geo-

metrically, the line passes through the two points.
An equation for the unique line on these two points is found by using the

familiar two-point formula

y
~

y\
=

y\
~

yi
- x2

{x *1),

which we can use when x 1 does not equal x2 . How do we know this is the only
equation that describes the line on these two points? We convert our equation into

standard form.

~{y\
~ yi)x + (*1 - xi)y + (a *2

- *13*2) = 0

Considering all multiples as representing the same line, we see that A, B, and C
are uniquely determined by the coordinates of the given points. That is,

-4 = -(a - yi\ B = {x 1
- x2 ), and C = (yx x2

~ xx y2 ). _|

Question 1: Prove Cartesian 1-2 for the case x 1
= x2 .

Theorem 11.17 (Cartesian 1-3): For every line there exist at least two distinct points on it. 1
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Proof: Let the line have equation Ax + By + C = 0. First assume A is zero, but B

is not zero. Two possible points are (l, — §) and (2, — §). If B is zero, and A is not

zero, our points can be 13) and ( —§, 0), among others. If neither A nor B is

zero, we could choose (j, and ( — ^

Theorem 11.18 (Cartesian 1-4): Not all points are on the same line.

Proof: Again, we have an infinity of points to select in order to demonstrate this
axiom. The points we chose in the proof of Cartesian 1-3 will suffice. _J

Thus the Cartesian plane satisfies the incidence axioms of Euclidean geometry.
What about the Euclidean parallel postulate? Let’s check on this. We’ll use the Play-
fair version: On a given point not on a given line, exactly one line can be drawn paral-
lei to a given line. We must first specify what it means in our model for two lines to be

parallel. We define parallel lines here as lines that do not intersect, so two lines in our

model are parallel if there is no ordered pair that satisfies their respective equations.
Before we demonstrate the Playfair axiom, we first prove three lemmas.

Lemma 1 Every vertical line intersects every nonvertical line.

Proof: Any vertical line can be represented by the equation x = A, and any non-

vertical line can be represented by the equation y = mx + b. The ordered pair
that satisfies both these equations is ( A , mA + b). _|

Lemma 2 Two lines are parallel if and only if (1) both are vertical lines; (2)
neither is vertical and they both have the same slope.

Proof: Since Lemma 2 is an “if and only if” statement, we must prove both directions.

(<=) (1) If both distinct lines are vertical or (2) if neither of two distinct lines is verti-
cal and both have the same slope, we must prove that the two lines are parallel.
(1) Let two distinct vertical lines be represented by the equations x = A

and x = B, where A ^ B. Since A ^ B, their respective solutions sets,
{(A, y)} and {(5, y)} for all real numbers y have no common solution.

Therefore, the lines are parallel.
(2) Let two distinct nonvertical lines with the same slope be represented

by the equations y = mx + b x and y = mx + b2 , where bx ^ b2 . Solv-

ing these equations simultaneously produces a contradiction: bx
= b2 ,

and so there is no common solution. The lines are parallel.
(=>) If two lines are parallel, we must prove that either (1) both lines are vertical

or (2) if neither line is vertical, both have the same slope.
Let two lines be parallel. Then no ordered pair is a common solution to their

respective equations. By Lemma 1, then either both lines are vertical or nei-
ther line is vertical. If both lines are vertical, then (1) holds. Therefore, it
remains only to prove that if neither line is vertical, both must have the same

slope in order to be parallel.
We proceed using an indirect proof. Assume two nonvertical lines have dif-

ferent slopes yet are parallel. Let the first line be represented by the equa-
tion y = m x x + b x . Let the second line be represented by the equation
y = m2 x + b2 , where m x is not equal to m2 . Solving these equations simul-

taneously, we obtain
m y x + b x

= m2 x + b2 ,
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from which

and

x =

b2
~ b x

m x
— m2

+ bx .

So (x,y) = mi+ bi). These values for x and y satisfy the

equations of both lines (y = m x x + b x and y = m2 x + b2 ), indicating that
the lines intersect in the point represented by that ordered pair. This con-

tradicts our hypothesis that the two lines are parallel, and so our assumption
that they had different slopes must be false. _|

Lemma 3 Given a point P = (x^y^ and a real number m, there is exactly
one line that is on P and has slope m.

Proof: Lines with slope m can be represented by equations of the form y = mx + b.
If such a line contains P, then the coordinates of P must satisfy its equation. Substi-

tuting Xj and yx for x and y, respectively, we obtain b = yx
— mx x . Therefore, the

unique line on P with slope m is y = mx + (yx
- mxx ).

The lemmas we proved have established certain properties of vertical and
nonvertical lines in the Cartesian plane. We are now ready to prove that the

Playfair axiom holds in the Cartesian plane. In the proof below, we partition the
lines of the Cartesian plane into vertical and nonvertical, treating each as a sep-
arate case.

Theorem 11.19 (Cartesian Parallel Postulate): On a given point not on a given line, exactly one j
straight line can be drawn parallel to a given straight line.

Proof: Given a line and a point P = (xj, yx ) not on it.

Case 1. The given line is vertical. Let this line be represented by the equation
x = A. Then the unique vertical line on P is given by the equation x = x x .

Since both lines are vertical, by Lemma 2, they are parallel, and by
Lemma 1 there is no nonvertical line parallel to our given line. Thus the

Playfair axiom is verified for this case.

Case 2. The given line is not vertical. Let this line be represented by the equation
y = mx + b. Then by Lemma 2, the only line on P parallel to the given line
is a line on P with slope m. Using Lemma 3, this unique line is given by the

equation y = mx + {yx
— mxx ). Thus the Playfair axiom is also verified

for this case. J

We have thus established that the incidence axioms and the parallel postulate
(Playfair version) are satisfied in the Cartesian plane. To complete the proof that
the Cartesian plane is a model of Euclidean plane geometry as defined by our axiom

system, we would have to show that all the other axioms of betweenness, congruence,
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and continuity are similarly verified. Some of these proofs are included as problems
and others can be found in the literature. 2

By demonstrating that all of the 18 axioms we gave in Unit 11.1 are true in the
Cartesian plane, we allow coordinates to be used for proofs in Euclidean geometry.

11.2.1 Problems

1. For each of the cases in the proof of Cartesian 1-3, find two

points on the line Ax + By + C = 0 other than the two

points shown.

2. Give an equation for the line through the two given points,
a. (a, b) and (c, d) b. (x0 , y0 ) and (0,0)
c. (a, 0) and(0, b) d. (x1? yx ) and (x l5 y2 )
e. (a, —a) and (~b, b )
3. In the proof of Cartesian 1-4, it is asserted that (1,1)
(0, —4), and (|, v) are not on the same line. Show that this is
true with two different explanations.
4. Give an equation for the line parallel to the given line

through the given point.
a. {(x, y): Ax + By + C = 0}; (0,0)
b. {(x, y): x = 1}; (2,5)
c. {(x, y): ax + by = l};(c, 0)
d. {(x, y): 4y = 2x + 3};(§,§)
5. Provide an analytic proof of Euclid’s Theorem 1

(Section 11.1.3), taking A - (0,0) and B = (b, 0).
6 . Let A = (x^y^andC = (x2 , y2 ), with A ¥= C. Define B
to be between A and C if and only if there exists t such that
0 < t < 1 and B = ((1 — t)x l + tx2 , (1 — t)y-^ + ty2 ). From
this definition and properties of real numbers, deduce the indi-
cated betweenness axiom from Section 11.1.2.

a. B-l b. B-2 c. B-3 d. B-4

* 7. Prove that the Postulate of Pasch (Theorem 11.2) is true in
the Cartesian plane. (Hint: you must use the betweenness
axioms and specify an interpretation of segment in terms of

distance.)
8 . Show that Theorem 11.1 of Section 11.1.1 is true in the

Cartesian plane.

1
9. Consider the system of integers modulo 3. This system
consists of the elements 0,1, 2 with the definitions of multi-

plication and addition as in Figure 11 (see Unit 6.1).

Figure 11

X 0 1 2

0 0 0 0

1 0 1 2

2 0 2 1

+ 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

All possible points (x, y) are given by (0,0), (0,1), (0,2),
(1,0), (1,1), (1,2), (2,0), (2,1), and (2,2). We can put these
nine points into one-to-one correspondence with the nine

points of Young’s geometry (see Problem 8 of Section 11.1.1).
List all possible linear equations. Show that each line con-

sists of exactly three points.
10. Use the axioms of Sections 11.1.1,11.1.2, and 11.1.3 to con-

struct the Cartesian coordinate system. You may assume certain

principles, including the fact that the points on any line can be
numbered so that number differences measure distances and
the fact that we can assign direction. (Hint: Fix an arbitrary
point as the origin (indicating what axiom justifies its existence).
Choose an arbitrary direction (by convention we would choose
from left to right), and an arbitrary unit of length to construct a

real number line. Construct a second number line at right angles
to the first, justifying its existence. From there, define the coor-

dinates of a point, and deduce the straight line and two of its

representations: the two-point form and slope-intercept form.)

ANSWER TO QUESTION

If Xj = x2 , then yx A y2 because the points are distinct. So (x1? yx ) and (x 1? y2 ) are on the line. The line containing these points
has no slope; it is the vertical line x — x1 .

2 See, for example, Edwin E. Moise, Elementary Geometry from an Advanced Standpoint (Reading, MA:

Addison-Wesley, 1963), Chapter 26.
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11.2.2 Verifying the definition of Euclidean geometry: the relationship
between a mathematical theory and its models

The Cartesian plane is a model of Euclidean geometry. What does this tell us about
Euclidean geometry, in general, and about other models of it? If we prove that cer-

tain statements hold in the Cartesian plane, does that mean that these statements are

always true in Euclidean geometry? If there are other models of Euclidean geome-
try, what is their relationship to the Cartesian plane? If a statement is true in the
Cartesian plane, will it be true in all other models of Euclidean geometry?

In Sections 11.1.1 to 11.1.5, we defined Euclidean geometry by means of a set

of axioms. There are, however, other axiom sets that can define Euclidean geometry.
The relationship of such axiom sets to the one we constructed is that each must pro-
duce the same body of knowledge (theorems). But how can we determine if another
axiom set defines Euclidean geometry? If we accept our axiom system as a defining
Euclidean geometry, we must be able to demonstrate that every one of its axioms is
true (because it is either taken as an axiom or is provable as a theorem) in any other
axiom set claiming to define Euclidean geometry.

Is there any other way to demonstrate that another set of axioms defines Euclid-
ean geometry? Can we use the Cartesian coordinate system? It turns out that the
answer is yes, because our axioms for Euclidean geometry enjoy a special property.
They are categorical.

When an axiom set is categorical, it is possible to set up a one-to-one corre-

spondence (isomorphism) between the objects of any two models of that axiom set

in such a way that any property that holds for one model will hold for the other. Thus,
every model of a categorical set of axioms exhibits the same properties.

The property of being categorical, which is applied both to a theory and its
axiom sets, was first suggested by John Dewey (1859-1952). Oswald Veblen

(1880-1960) introduced it in his systems of axioms for geometry in 1904. Since

then, the term and the notion itself have been attributed to Veblen. However, the
American mathematician Edward V. Huntington (1874-1952) is sometimes cred-
ited with being the first to state it clearly and use it. The first proof of what we

today call categoricity, due to Dedekind in 1887, was about axioms for the real
numbers.

A model becomes a very powerful tool when we are dealing with a categorical
set of axioms. An important theorem in mathematical logic tells us that a statement

is true in a mathematical theory if and only if it is true in every one of its models.

Therefore, when a theory is categorical (where all of its models are essentially the

same), we can determine what is provable in that theory on the basis of what we can

verify for any single model of it!
Not all axiom systems for Euclidean geometry are categorical. The one we

presented is because it includes Axiom D-l (continuity), which provides sufficient

points on a line to be put into 1-1 correspondence with the real numbers. There are

other axiom systems for Euclidean geometry that are categorical because of the
addition of axioms other than D-l that allow the establishment of an isomorphism
between the geometric line and the real numbers. Since our axiom system for
Euclidean geometry is categorical, and we have demonstrated that the Cartesian
coordinate system gives a model of this axiom system, we can say that all models
of it are essentially the same as its analytic model based on the Cartesian coordi-
nate system. This means that we can use the Cartesian model to make certain state-

ments that we know will be provable from our axioms for Euclidean geometry, and
will be valid for every model of it. For example, we can prove the following theo-
rem of Euclidean geometry by verifying that this statement holds in the Cartesian

plane.



Unit 11.2 I The Cartesian Model for Euclidean Geometry 577

Theorem 11.20 The altitudes of a Euclidean triangle are concurrent.

Proof (analytic version): A coordinate system can be located so that the triangle has
vertices P = (a, 0), Q = ( b , 0), and R = (0, c), with abc ^ 0. Then QR has slope
— and PR has slope —~

a
. The altitude of A PQR from P is perpendicular

to QR and therefore has slope The altitude of the triangle from Q is perpendic-
ular to PR and therefore has slope f. The equations of the altitudes from P and O

are respectively bx -

cy
- ab = 0 and ax -

cy
- ab = 0. Subtracting the sec-

ond equation from the first, we obtain

bx —

cy
— ab = 0

ax —

cy
— ab = 0

(b — a)x =0 => x — 0 (since a ^ b ).
Thus the point of intersection of the altitudes from P and from Q lies on the y-axis.
Since the altitude on R is the y-axis, all the altitudes pass through the same point.

Figure 12 illustrates the proof.

Figure 12

The point of concurrency of the altitudes of a triangle is called the orthocenter
of the triangle.

The above proof of Theorem 11.20 is analytic since it makes use of the number

properties of the Cartesian plane. Let’s pause for a minute to analyze it. In constructing
the proof, we assumed the following definitions and properties of the Cartesian plane:

1. The slope of a line on two points (xq, yx ) and (x2 , y2 ) is given by ypyp.
2. Perpendicular lines have slopes that are opposite reciprocals of one another

(see Problem 4, Section 7.2.2).
3. The line with slope m that passes through the point (x0 , y0 ) is given by the

equation y
—

y0
= m{x — jc0 ), which can be written in standard form.

4. To determine the point of intersection of two lines, we can solve their

equations simultaneously to obtain the ordered pair which represents the

point of intersection.

5. The y-axis consists of the points in the plane with coordinates (0, y) where y
is a real number.

Using these definitions and properties, we then translated the geometrical data
of the problem into algebraic terms so we could develop the proof in our model.
That is, we constructed a triangle using the Cartesian coordinate system. We used
the laws of algebra to transform the data and draw algebraic conclusions from them.
That is, we wrote the equations of the lines and solved these equations simultane-

ously. Then we translated the results back to geometric language to obtain the desired
result for Euclidean geometry.
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Since Theorem 11.20 holds for a model of Euclidean geometry, it is also prov-
able directly from the axioms we took in Sections 11.1.1 to 11.1.5. Such a proof is

synthetic. For a synthetic proof of Theorem 11.20, we first state some familiar defin-

itions, and lemmas (which we ask you to prove in the problems) that we need to use.

Definitions A polygon is a plane figure consisting of the points on n line segments (its sides),
such that each side intersects exactly one other side at each of its endpoints (its
vertices). A quadrilateral is a polygon with four sides. A parallelogram is a quadri-
lateral with both pairs of opposite sides parallel.

Lemma 1 : The opposite sides of a parallelogram are congruent.

Lemma 2: The perpendicular bisectors of the sides of a triangle meet in a

point. (This point is called the circumcenter of the triangle.)

With these we are now ready to prove Theorem 11.20 synthetically.

Theorem 11.20 The altitudes of a triangle are concurrent.

Proof (synthetic version): Given triangle ABC. Through A, draw the line parallel to

BC , through B draw the line parallel to AC , and through C, draw the line paral-
lei to AB . We know these lines exist by the Euclidean parallel postulate. In this

way we construct a new triangle, which we call A'B'C' (Figure 13).

Figure 13

ABAC is a parallelogram, so be Lemma 1 ,A'B = AC'. Also, BC'AC is a paral-
lelogram, so BC' = AC. Thus A'B = BC' (Axiom C-2). Since a line that is per-
pendicular to one of two parallel lines is perpendicular to the other (Problem 1 of
Section 11.1.5), the altitude in A ABC from B to AC is the perpendicular bisector

of the side A'C' of AA'B'C'. In similar fashion, the other two altitudes of Is ABC
are the perpendicular bisectors of the other two sides of AA' B'C'. By Lemma 2,
the perpendicular bisectors of AA'B'C’ are concurrent. Thus the altitudes of
AABC are concurrent. I
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You should compare the two proofs of Theorem 11.20—the analytic one con-

structed in the Cartesian model of Euclidean plane geometry, and the synthetic one

deduced from the axioms and theorems of Euclidean plane geometry. The analytic
proof requires a convenient position on the coordinate axis for the triangle. After that,
the proof proceeds in a routine fashion, using the laws of algebra. The synthetic proof
requires a little more ingenuity in the construction of the new triangle A'B'C'. Which
method you prefer to employ is simply a matter of taste.

Another consequence from Euclidean geometry being a categorical system is
that it enables us to determine whether a certain structure is a model of the Euclid-
ean plane. One such structure is the Gaussian plane, named for Gauss, who studied
it. The points in the Gaussian plane are the complex numbers z — x + iy, where x

and y are real numbers, and i is V~1 . A Gaussian line is the set of all points z that

satisfy an equation Dz + Dz + E = 0, where D is a nonzero complex number, D is
its conjugate, and E is a real number.

We set up a 1-1 correspondence between the Cartesian plane and the Gauss-
ian plane by mapping the real point (x, y) of the Cartesian plane into the com-

plex point x + iy, and mapping the Cartesian line given by the equation
Ax + By + C = 0 into the Gaussian line Dz + Dz + E — 0, where D = A — iB,
D = A + iB, and E = 2C. We define the distance between two Gaussian

points zi = Xj + iy1 and z2
= x2 + iy2 to be |z x

- z2 \ = |(*i - x2 ) + i{y\ ~

y2 )\ =

V(jc 1
- x2 ) 2 + (y1

-

y2 ) 2
. With this definition, distance is preserved by the map-

ping. With these correspondences, the Cartesian plane and the Gaussian plane can

be proved to be isomorphic, and as a result, the Gaussian plane is a model of Euclid-
ean plane geometry. Thus, if a theorem can be proved in the Gaussian plane, then
it is a theorem of Euclidean plane geometry.

We can also use a model to verify that a specific axiom (or its equivalent) is nec-

essary to the definition of the theory in the presence of the other axioms, by showing that
the reduced axiom set with that axiom removed does not define the categorical theory.

For example, we can use the Cartesian model to investigate the role of Dedekind’s
axiom (D-l) in our axiom set. Dedekind’s axiom enables us to obtain sufficient points
on a line so the points in the Cartesian plane can be put into one-to-one correspondence
with ordered pairs of real numbers. Suppose that we remove Dedekind’s axiom from
our set. One model of the resulting reduced axiom set is known as the surd plane. We
define a surd as a real number x with the following property: We can calculate x by a

finite number of additions, subtractions, multiplications, divisions, and extractions of

square roots, starting with 0 and 1. Certainly, every rational number is a surd. However,
not all real numbers are surds. Therefore, the lines of the surd plane are full of holes.

Furthermore, the surd plane is countably infinite, while the Cartesian plane is uncount-

able, so there is no way to establish a one-to-one correspondence between the points
and lines of the Cartesian plane and the points and lines of the surd plane.

We can therefore conclude that the axiom set of Sections 11.1.1 to 11.1.5 with
D-l removed produces two different (nonisomorphic) models, the Cartesian plane and
the surd plane. A theory for which there are nonisomorphic models is noncategorical.
Thus, our axiom set with Dedekind’s axiom removed is noncategorical and cannot

define the Euclidean geometry of our axiom set, which we deemed categorical.
Are axiom sets for the most familiar mathematical structures categorical? No.

For instance, the rational numbers and the real numbers with the usual operations of
addition and multiplication satisfy the axioms for a field, but we cannot set up a one-

to-one correspondence between these two models. Thus a theorem true for the ratio-
nal numbers may not be true for the real numbers, and vice versa. But the axioms of
a complete ordered field are categorical. So every theorem that holds for a complete
ordered field also holds for the real numbers. (See Section 2.3.1.)
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We have now come to the end of this book, but in a way we have returned to

its beginning. Recall that in Chapter 2 we used the number line as a geometric model
of the real numbers and as inspiration for properties of real numbers. In this unit,
we have shown how real numbers enable us to develop an algebraic model for geom-
etry. These models demonstrate the cross-fertilizations of algebraic and geometric
ideas that permeate all of mathematics and lead to the richness of its theory and

applications.

11.2.2 Problems

1. Prove Lemma 1: The opposite sides of a parallelogram are

congruent. You may choose a synthetic or analytic proof.

2. Prove Lemma 2 both synthetically and analytically: The

perpendicular bisectors of the sides of a triangle meet in a

point, which is called the circumcenter of the triangle.

3. Prove Theorem 11.20 from Lemma 2, by means of the
transformations discussed in Chapter 8. (Hint: Construct a

size change that maps the altitudes of any triangle onto the

perpendicular bisectors of the sides of a second triangle.)
4. Prove the following theorem synthetically and analytically:
The diagonals of a parallelogram bisect each other.

5. Prove analytically and synthetically that any three non-

collinear points lie on a circle.

6. An axiom is called independent in a set S of axioms if it
cannot be proved or disproved using only the other axioms in
S. An axiom system S is complete if it is impossible to add an

independent axiom to it. By an indirect argument, prove that
if an axiom system S is categorical, then it is complete.

7. In Section 11.1.1 we discussed a 7-point geometry that sat-

isfies the incidence axioms. Our discussion was based on an

1
algebraic model of the geometry. The following axioms define
the geometry of that model (Fano’s geometry):
F-l: There exists at least one line.

F-2: Every line has exactly three points on it.

F-3: Not all points are on the same line.

F-4: For each two distinct points, there exists exactly one

line on both of them.

F-5: For each two lines there exists at least one point on both
of them.

a. Using the axioms, prove that there are exactly 7 points in
Fano’s geometry, and therefore in every model of it. Note:
You must not only show 7 points exist. You must also show
an 8th point cannot exist.

b. Create a model for Fano’s geometry that is different from
the one given in Section 11.1.1.

c. Show that axiom F-5 of Fano’s geometry is independent
of the other four axioms. (Hint : Create a model for a

geometry that satisfies all the axioms for Fano’s geometry
except for axiom F-5.)

d. Do you think Fano’s geometry as defined by the above
axioms is categorical? Explain why or why not.

Chapter Projects

1. Young’s geometry.
a. Construct an axiom set (Y-l to Y-5) for Young’s geometry

of Problem 9 in Section 11.1.1. Then prove that the inci-
dence axioms (1-1 to 1-4) are satisfied directly from the
axioms you create.

b. Consider the following proof that every point in Young’s
geometry is on at least four lines.

1
Proof: Let P be any point, and let £ be any line that does

not contain P. £ contains exactly three points. P and each

point on £ must determine a distinct line; therefore, we have

at least three lines. Now, there must be a line that contains

P but contains no points on £. Therefore, we have at least

four lines on P. The theorem is proved.
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Refer to the axioms you created in part a and justify every

step of the above proof by means of an axiom. Then use your
axioms to prove that Young’s geometry must contain exactly
nine points and exactly twelve lines.

c. Alter your axioms of part a for Young’s geometry to assert

that instead of three points, there are exactly two points
on every line. How many points and lines would the new

geometry have?

d. Alter your axioms for Young’s geometry to assert that
there are exactly four points on every line. How many
points and lines would this new geometry have?

e. Generalize your results from parts c and d for the case

where each line contains exactly n points (n = some posi-
tive integer). That is, consider a finite model satisfying the

axioms for Young’s geometry, assuming that instead of three

points on a line, there are exactly n points on every line.

How many points and lines would the geometry have?

f. Define parallel lines as lines with no points in common.

Prove that two lines parallel to a third line are parallel to

each other. Use the axioms to construct your proof. (Hint:
First verify the statement by observing the model. Then
construct your proof by assuming that two lines parallel
to a third line are not parallel to each other and show that
this assumption leads to a contradiction.)

2. Pappus’s theorem.The following theorem was discov-

ered and proved by Pappus of Alexandria about a.d. 340. If

A, B, and C are three distinct points on one line, and if A ', B ',
and C' are three different distinct points on a second line,
then the intersections of AC' and CA', AB' and BA’, and

BC' and CB' are collinear.

a. Prove that Pappus’s theorem holds in Young’s geometry
(Problem 9 of Section 11.1.1) for the six points on any pair
of parallel lines.

b. It is possible to create a finite geometry from a geometric
figure. For example, the finite geometry of Pappus arises
from a figure resulting from his theorem. The figure, called
the Pappus configuration, consists of nine points and nine

lines, and inspires the definition of a new finite geometry
with the following axioms:

P-1. There exists at least one line.

P-2. Every line has exactly three points.

P-3. Not all points are on the same line.

P-4. If a point is not on a given line, then there exists exact-

ly one line on the point that is parallel to the given line.

P-5. If P is a point not on a line, then there exists exactly
one point P' on the line such that no line joins P and P'.

P-6. With the exception of Axiom P-5, if P and Q are dis-
tinct points, then exactly one line contains both of them.

Prove the following theorems in this geometry:

a. Each point in the geometry of Pappus lies on exactly three
lines.

b. There are exactly three lines on each point.
c. The geometry of Pappus has nine points and nine lines.

3. George E. Martin, in Chapter 5 of The Foundations ofGeom-
etry and the Non-Euclidean Plane (Springer-Verlag, New York,
1975), gives several models of Euclidean plane geometry. Choose
one of these models, and write an essay describing it, showing
how it is essentially the same as the Cartesian plane.

4. Investigate the work of Fano, in particular his three-
dimensional finite incidence geometry. Design a talk for a

local high school mathematics club, telling them about this
mathematician and describing some characteristics of his
three dimensional model.

5. Explore the interesting connection between Fano planes
and Hamming error-correcting codes in A Course in Modern
Geometries by J. Cederberg (New York: Springer-Verlag, 1989)
or in The Mathematical Theory of Coding by I. F. Blake and
R. C. Mullin (New York: Academic Press, 1975) or in texts in
modern applied algebra. Prepare a lesson demonstrating this

application of finite geometry.

6 . The first model of plane hyperbolic geometry was given
by the Italian mathematician Eugenio Beltrami in 1868. It is
called a pseudosphere and is a surface formed by revolving a

curve, called the tractrix, about an asymptote. Search the
Internet or consult some books on non-Euclidean geometry
for information about the pseudosphere. Draw a geometric
model of the pseudosphere, and determine what are the points
and lines of this model.

7. M. C. Escher’s circular woodcuts (Circle Limits I, II, III,
and IV) depict similar shapes (fish, angels, etc.) that diminish
in size as they recede from the center and fit together to fill
and cover a disk. I, II, and IV are based on a model of the

hyperbolic plane that is owed to Henri Poincare. Do some

research on this and write an essay discussing how the Poin-
care model was used in Escher’s Circle Limit prints. Consult,
for example, H. S. M. Coxeter; “The Trigonometry of Escher’s
Woodcut ‘Circle Limit IIP,” Mathematical Intelligencer 18(4),
1996, or M. C. Escher: Art and Science , North-Holland, 1986

(edited by Coxeter and others).

8 . Read the article “From Pappus to Today: The History of a

Proof,” Mathematical Gazette 74, 1990, 6-11, by Michael

Deakin, which explores different proofs of the theorem that
base angles of an isosceles triangle are equal. Select the proof
that you believe has the greatest pedagogical advantage, and

describe why you believe this to be so.
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connection to polynomial interpolation,

259-60
connection to computer arithmetic, 274

chordal distance on R, 368

ciphertext, 254

circle, 364,558
area of, 376-7,501-5,531,539
chords in,403-6
circumference, 502-3,531
in complex plane, 333

geometric means in, 415
inscribed angle in, 405

isoperimetric property of, 535

intersecting complete angle, 407

parametric equations for, 454
radius of a, 558
secants in, 404-7,415
symmetry of, 334,339
tangents in, 404-7,415
with taxicab distance, 363

circular cone, 524, 540
circular cylinder, 523, 524,540
circular functions (See trigonometric

functions), 444

circular motion (See uniform circular

motion), 469
circumcenter of a triangle, 428,578
circumcircle, 428, 491
circumference of the Earth problem, 459
circumscribed polygon, 407, 501-2,505
clockwise rotation, 307
closed binary operation, 82
closed interval, 27
closed operation, 83
closure

in set of real numbers, 10
in set of rational numbers, 21
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coastline, length of, 541-3
coconut problem, 256,260
codomain, 68
coefficient

domain of a polynomial, 229
of a polynomial, 229

collinearity
under reflection, 315
under similarity transformation, 387

commensurable lengths, 18-9

commutativity, 10,232
complement of a set, 83

complete angle, 406 , 407

complete ordered field, 262, 268 ,

269-70

complete system of axioms, 580

complete system of residues modulo
m > 1,248

completeness property (of real numbers),
268

completing a job problem, 111

complex number(s), 47-8, 49 , 50-66
absolute value (or modulus) of a, 50

addition, 49
arithmetic operations with, 49,54,

56-63
binomial notation, 49
brief history of, 47-8

complex conjugate of a, 56

division, 57-8

exponential form of a, 54

field, 271-2

graph of a, 48-9

imaginary part of a, 50

multiplication, 49 , 56-8
orbit of a, 59
and orientation of three points, 302

polar form (or polar representation)
of a, 52

powers of a, 58-60

principal angle (or argument) of, 52

rectangular form of a, 52
real part of a, 50

roots of a, 61-3

system, 271
for a translation, 304-7

trigonometric function of a, 448-9
vectors and, 54—5

complex exponential and trigonometric
function project, 64

complex plane, 48-65
arithmetic in, 54-63
transformations in, 65

composite integer, 209

composite (composition) of functions, 81 ,

82,95,99
of four reflections, 326
of reflections, 315-8,324-8
of translations, 304-5
of three reflections, 324-5
of two reflections, 315-8
of transformations, 84,389

compound sentence, 143 , 144

computer network security, 222,255
computer arithmetic-Chinese remainder

project, 273-4

concept analyses (selected)
area,477-80
congruence, 295-300

cyclic quadrilaterals, 352

deduction, 283-5

definitions, 290-4

distance, 361-8

equality, 136-40

function, 68-73
functions and equations, 71-3
of a geometric figure, 351
number words, 17

parallel, 1-5
of a particular function, 91-3
real functions, 86-90
similar figures, 383-6
solutions to equations, 140-5

trigonometric functions, 444—8

types of functions, 73-5,80,84-5
types of geometries, 276

volume, 511^1
cone

apex, 524

base, 524

circular, 524

right circular, 524
slant height, 529

two-napped, 524
volume of a, 525-6

congruence (geometric figures)
295-9, 300 , 301-33,344-57,402,412,
515,556-64

of angles, 344-5,559-60
AAS Triangle Congruence, 565
of arcs, 402

axioms, 557,560-1
of circles, 297
in the complex plane project, 357

direct, 300,302,355-7,412
evolution of the congruence concept,

295-301
of finite sets, 548

general theorems about, 353-6
of graphs, 328-33

group, 328 , 412

history, 295-301
HL triangle congruence, 350

opposite, 300,302,356-7,412
in R3,515
SAS Triangle Congruence, 346-7,561
of segments, 344-5,557
SSS Triangle Congruence, 565
sufficient conditions for, 344-50
as superposition, 295-7

synthetic approach to, 556-64
transformation (or isometry),

300-33
of triangles, 296,346-50,561

congruence (integers et al.), 245-61

applications to calendars, 252-3

applications to cryptology, 253-5
class (=residue class) modulo m, 247

modulo an integer m > 1,247
modulo a real number, 252
of integers, 246-61
of polynomials, 259-60

congruence property
of area function, 479
of volume function, 513

congruence transformation (=isometry=
distance preserving transformation),
297-299, 300 , 301-343,357

and distance, 367

glide reflections, 321 , 322-3,325-7,
411-2

group, 328 , 412

translations, 297-8,302, 303 , 304 , 305-6,
409-10, 515

analytic definition, 304

reflections, 313 , 314-20,412
rotations, 306-13,331-2,412,460-2

congruence types via complex numbers

projects, 357

congruent figures, 300 . 515
conic solid, 524

conjugate, 50
constant difference property, 115 , 116
constant monomial, 229
constant width for a region, 481
constructible number, 545

continuity, 170-1
Axiom of, 562

convex

figure (set of points), 128 , 338 , 553

polygon, 385
constructible real number, 545
constructible numbers project, 545

Contrapositive, Principle of the, 570

convergence, 448

Copernicus, Nicolaus, 457-8

correspondence, one-to-one (=1-1), 80

cosecant, 435,460
cosine, 435 , 438 , 445-6

difference formula, 461
sum formula, 461

cosine function, 42, 435

algebraic properties of (identities for),
460-3

analytic properties of, 469-74

complex form of, 64

geometric properties of, 463-5

phase-amplitude form of, 464-5,467-8
Cosines, Law of

for plane triangles, 438-9
for spherical triangles, 381

proof of Hero’s formula, 489-90

cotangent, 435,460
countability

of algebraic numbers, 45
of rational numbers, 45

countability of the algebraic numbers

project, 64
countable (^denumerable) set, 44-7

countably infinite set, 44-7
counterclockwise rotation, 307

counting regions in a circle problem,
202-4

counting regions in the plane problem,
197-201

cross section, 513
crossword puzzles, 343

cryptology, 253-5
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cube, 511, 516

duplicating the, 545
volume of, 511-22,540

cubic equations, 158

history of solution of, 158
solution methods for, 64,158

curves of constant width, 481

cyclic inscribable quadrilateral, 491

cyclic quadrilateral, 352 , 353
area of a, 352,491

cycloid, 454
area under, 544

parametric equations for a, 454

cylinder, 523
altitude of a, 523
base of a, 523

circular, 523

height of a, 523

oblique, 523

right, 523
surface area, 529-31
volume of a, 523^1

cylindric solid, 523

cylindrical tank volume function, 67,75,100

D
d’Alembert, Jean Le Rond, 74

Dase, Zacharias, 503
data fitting with functions, 113-124
data transmission error detection, 365-6

daylight length cycle project, 476

daylight length problem, 450-3
De revolutionibus orbium Coelestium

(Copernicus), 458
De Triangulis Omnimodus

(Regiomontanus), 457

decimal(s), 28-40

binary coded,228
delayed-periodic, 34-5,38-9
finite, 28

fraction, 28

infinite, 28 , 29-43

part of a decimal, 28

period of a, 33 , 37-9

periodic or repeating, 33 , 63

place(s), 28 , 30

representation, 29 , 30-40, 63

simple-periodic, 34—38

terminating, 25
Declaration of Independence, U.S., 253
decreases to 0,269
decreasing function, 91, 101 , 102

decreasing sequence, 103
Dedekind cut, 20,25
Dedekind, Richard, 19-20,184,562-3,

576,579
Dedekind’s axiom, 562-3,579
deduction (or deductive process) and proof,

283-90

concept analysis, 283-5

global, 547

local, 547

defining orientation of plane figures
problem, 302

definition(s)
alternate, 292

concept analysis, 290-4

equivalent, 292

general properties of, 290^1

meaning direction of, 291

purposes of, 290-4

related, 293^4
semantics of, 291
sufficient condition direction, 291

degree
-grad conversion, 433
measure of an angle, 432-3
of a monomial, 229
of a polynomial, 229
-radian conversion, 433

Dehn, Max, 511,514
delayed-periodic decimal, 34—5,38-9
DeMoivre’s Theorem, 62
denumerable set, 44-7

dependent variable, 69

derivative, 84,120, 130 , 131,471-4
Desargues, Gerald, 551

Desargues’ Theorem, 551

Descartes, Rene, 158,272
Dewey, John, 576

Dewey Decimal library classification

system, 18
diameter of a sphere, 526
Dido of Carthage, 533
Dido’s Problem, 533-5

difference(s)
constant, 115 , 116
formulas (trigonometry), 57,461
Method of finite, 122, 123 , 124,199,202,204
of higher orders, 122

second,120
dilatation (See size change), 388
dilation (See size change), 388
dilative reflection, 411

center of, 411

reflecting line of, 411
dimension

matrix, 151

fractional, 541-4
and Fundamental Theorem of

Similarity, 538

Diophantine equations, 212 , 213-7,242
positive solutions of linear, 242
solutions to linear, 213-7

Diophantus, 212
direct congruence, 300 , 357,412

point-image perpendicular bisector

property, 355
direct and opposite congruences project, 357
directed angle, 306 , 444 , 445
directed arc, 432,445

with central angle, 446
directed central angle, 445

directly congruent figures, 300 , 355

directly similar figures, 408 , 409
direct similarity, 413

Dirichlet, Lejeune, 74
Dirichlet function, 74 , 76,94
discontinuity,

essential, 171

removable, 171
discriminant of a quadratic equation, 157

distance, 361-2,366
chordal, 368

concept analysis, 361-8
function (=metric), 362,367
Euclidean, 362-3

Fagnano’s problem, 373
Fermat point, 372-3
Fermat’s problem, 372
in Gaussian plane, 579

Hamming, 365-6
Hero’s problem, 371
Hero’s theorem, 371

length, 362

metric, 367

Minkowski, 367
between a point and a line, 369
between a point and a plane, 370-1
between a point and a set, 368-9
in similar figures, 386,537
shortest paths, 371

spherical, 363,379-83
on surface of Earth, 381-2

taxicab, 363-5

triangle inequality property, 366

undirected, 366
within figures, 414-27

distance formula
for complex numbers, 55
Euclidean for R2

, 362
Euclidean for R3

, 363

Minkowski, 367

spherical, 363

taxicab, 363

distance-preserving transformation

(See congruence transformation),
300-33,367

identification of all, 326-8
distance-rate-time

problem, 76-9

representation, 420-1
distributive property, 11,12,15
div, 23

divisibility tests for 3,9,11 problem,
251

diverge, for a function, 105

dividend, 205
divides (=is a factor of)

for integers, 208
for polynomials, 230

divisibility of integers, 204—11

divisibility tests for 3,9,11,251
division

of complex numbers, 57-8

integer, 204 , 205-11
rational number, 205

Division Algorithm
for integers, 22,32-3,204-8,226-7
for polynomials, 229-30,233-4,242

divisor, 205

(=factor) of an integer, 208

(=factor) of a polynomial, 230

Dodgson, Charles (=Carroll, Lewis),
278,290

dog-on-leash locus problem, 376-7
domain of a function, 68,91

^replacement set) of a variable, 140
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double-angle formulas, 462
dual of an axiom, 551

duplicating a cube project, 545

E
e (base of natural logarithms), 42-3,104,449
Earth, 379-80,450-1

axis of revolution, 379, 380

circumference, 459

dimensions, 380

equator, 379, 380

equinox, 450

geometry on surface, 278

latitude, 380

longitude, 380

meridian, 380
north pole, 379, 380

prime meridian, 379, 380

solstice, 450
south pole, 379, 380

year, 252
Earth-Moon distance problem, 459

earthquake waves problem, 177-8

Egyptian calendar, 252

Egyptian mathematics, 440

Einstein, Albert, 296
Elements (Euclid), 5,19,224,275-82,295,

356,371,458„ 547-8,552,559,564,
568-9

common notions, 280

congruence, 295-7

definitions, 279

postulates, 279

propositions of Book 1,280-2
ellipse, 335

area of, 505,539
parametric equations for an, 454

symmetry, 335,340
end behavior, 91,107-12
endpoint

of a ray, 557
of a segment, 553

ENIAC, 503

equal sign, various uses of, 137

equality, 136 , 137-40

equation(s), 136

equivalent, 142 , 143-4
for a function, 71
for a line, 330,390,572,577
linear, 149-53

matrix, 151-3,311,314,462
of motion, 466

polynomial (degree > 2), 158-9

quadratic, 153-8
solution procedures for, 140-167

system of (=simultaneous), 143-4,150-3,
157-8

equations to functions, 76

equator, 380

equidistant, 565

equilateral triangle, 539,562
construction of, 562-3

equinox, 450

equivalence, 136-40

equivalence relation, 137-40,249
equivalent (logic), 138

equivalent equations, 142 , 143-4
Eratosthenes of Cyrene, 218,459,545
Erdos, Paul, 223,429
Erdos-Mordell Theorem project, 429
error detection in data transmission,

365-6,581
Escher, M. C., 581
essential discontinuity, 171
Euclid of Alexandria, 215,224,275,547
Euclidean Algorithm

for integers, 209-11,214
for polynomials, 237-8,241

Euclidean distance formula
in R2 ,362
in R3 ,363

Euclidean congruences in the complex
plane project, 357

Euclidean construction, 545

Euclidean geometry, 275-7, 278 , 279-360,
547, 548 , 552-4,556-80

analytic approach, 276 , 571-80
Cartesian model for, 571-79

congruence in,295-300,556-61
history, 275,277-8,383-4,547-8,

564,569
synthetic approach, 276,548,552-4,

556-71
traditional perspective, 276
transformation approach, 297-300,

344-50,353-7,383-6,396-407
transformation perspective, 276 , 384
vector perspective, 276

Euclid’s axioms and propositions, 280-2

Elements, 5,19,224,275-82,295,356,371,
458,547-8,552,559,564,568-9

Parallel (fifth) Postulate, 5,548,555,558,
564-6,568-71,573-4

second postulate, 552

superposition, 295-7
third postulate, 558

Eudoxus of Cnidus, 19,500
Euler, Leonhard, 47,54,74,224,458
Euler line, 429
Euler phi function, 40
Euler’s Formula, 65,449
European contributions to trigonometry,

457-8

evaporation problem, 15
even number, 207
excenters of a triangle, 429
excenters of a triangle project, 429
excircles of a triangle, 429

exhaustion, method of, 500,503,544
existential quantifier, 141
existential statement, 141

explicit formula for a sequence, 73,180,182,
184-5,199-200,202

exponential congruence encoding, 255

exponential data fitting, 117-20

exponential function of a complex variable,
64,448-9

exponential functions, 13,87,98-99,117-20,
131,395

expoilential order of growth, 110

exponential sequence (=geometric
sequence), 13, 119

exponents, properties of, 11—13,195-6
Exponential Function Data Fitting

Principle, 118

expression, 71
extended problem analyses

average speeds problem, 173-7

average test-grade problem, 5-6,71-2
box problem, 125-9

catch-up time problem, 76-9
checkerboard problem, 283-4

counting regions in a circle problem,
202—4

counting regions in the plane problem,
197-201

dog-on-leash locus problem, 376-7

earthquake waves problem, 177-8

evaporation problem, 15

indirect measurement problems,
440-4

line through point minimizing area

problem, 492-500
linear and exponential functions project,

130-1

meeting time problem, 79
minimum area, 492-500
mixture problem, 79

receding telephone poles, 423-6

regions of the plane, 197-202
round trips with and against

wind, 79

scoring title problem, 6-10

stamp problem, 212-3,217
Tower of Hanoi problem, 182-6

exterior angle, 566
Exterior Angle Theorem, 566
external center of similitude, 400

F
factor (=divisor)

greatest common (integers), 208 , 209-212,
214-218

greatest common (polynomials), 237
for integers, 208
for polynomials, 230 , 236-41

Factor Theorem, 235
factorial form of a polynomial, 124
factorial function, 112

factorization, 219-21
canonical (=standard) prime, 220
of polynomials over a set, 236-41

Fagnano, J. F. Toschi di, 373

Fagnano’s Problem, 373—4

Fano, Gino, 550,581
Fano’s plane geometry, 550-1,580
Fejer, Leopold, 373

Fermat, Pierre de, 158,178,212,372
Fermat’s Little Theorem on integer

congruence, 250-1
Fermat’s Last Theorem, 212
Fermat’s Last Theorem project, 242

Fermat point of a triangle, 372
Fermat’s Problem, 372-3
Ferrari, Ludovico, 47,158
Fibonacci, 457
Fibonacci sequence, 73 , 193 , 194-6,212
The Fibonacci Quarterly, 194
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field, 150 , 153,245, 261 , 262-72
as algebraic structure, 245

properties, 150,261
ordered, 263 , 264—70

quadratic, 262

solving equations in, 150

subfield, 261

figure, 136
finite decimal, 28
finite geometry, 278,571,575
finite set, 44
finite semicircle model of the real

numbers, 368
first difference of a function at a point, 117
first quotient of a function at a point, 118
fixed point of a transformation,

323 , 326
focal constant for ellipse or hyperbola, 335
focus (foci)

of an ellipse, 335
of a hyperbola, 335

formula(s) (See also individual formulas)
for area, 539
for a function, 71
for volume, 540

Fourier, J. B. J., 74

fraction, 12, 20 , 21,139
fractional dimension, 541—4
fractional part of a rational number, 22

Frechet, Maurice, 367

frequency, 463
frieze pattern project, 357
function (=mapping) see also individual

types, 68,70
additive, 14

analysis of a, 91

area, 479,501
argument, 69

asymptote of a, 106

codomain, 68

composite, composition, 81-2,95,99
concept analysis, 68-73

data-fitting, 93,113-24
decreasing, 91

defining formula for a, 71

distance, 367

divergence, 106

domain, 68,91
end behavior, 91
and equations, concept analysis, 71-3

history, 73-5

identity, 82

image under a, 68

increasing, 91

inverse, 13,81-4,95-100,164
linear, 9,10,13,78, 87 , 91-2,130-1
limit behavior, 105-112

logistic, 93
maximum (maxima), 91
minimum (minima), 91
monotone (=monotonic), 101

multiplicative, 14

multivalued, 75
one-to-one (or 1-1), 80
order of growth, 110-2
ordered pair definition of, 70

pathological, 74

periodic, 450

preimage under a, 68

range, 68, 91

real, 67,86, 87-124
relative maximum, relative minimum, 91
restriction of a, 82,101
rule definition of, 68
set definition of, 70
of two variables, 72

singularity of a, 91

square wave, 455

strictly decreasing, strictly increasing, 101

strictly monotone, 101

trigonometric, 444—59

types, 73-5,80,84-5
value of a, 68

volume, 513-4

zeros, 91,106
Fundamental Property of Similarity, 386
Fundamental Theorem

of Algebra, 48,272
of Arithmetic for integers, 23,219-22,238
of Arithmetic for polynomials, 239
of Calculus, 84
of Similarity, 536-41

G
Galileo, 73,275,372,538,540
Galois, Evariste, 159

gamma function project, 132

Gauss, Carl F„ 48,159,272
Gaussian line, 579
Gaussian plane, 579

Gelfond, Aleksander, 43
General Graph Transformation Theorem,

332

Geng Zu, 513

geometric mean (=mean proportional),
415-9,540

application to maximum viewing
angle, 475

in circles, 415,418-9
in right triangles, 416-8

geometric model of the real numbers, 368

geometric sequence (or exponential
sequence), 13, 119

geometric transformation, 84

geometry
analytic approach, 276

Beltrami-Cayley-Klein plane model,
555-6,569

Bolyai-Lobachevskian, 555
Cartesian model, 571-8
on Earth’s surface, 278

Euclidean,, 275-7, 278 , 279-360,547, 548 ,

552-4,556-80
Fano’s plane, 550-1,580
finite, 278,571,575
hyperbolic, 555,564
non-Euclidean, 278,549-52,555-6,581
synthetic approach, 276 , 548,552-4,

556-71
traditional perspective, 276
transformation perspective, 276,384
types of, 276

vector perspective, 276

Young’s, 551,580-1
Gherardo of Cremona, 457

giants, existence of, 538-9

Girard, Albert, 272

glide reflection, 321 , 322-3,325-7,411-2
analytic description of, 322-3,412
in the complex plane, 323,412
point-image midpoint property, 354
and similarity, 411-2

global positioning project, 428

grad measure, 43

Graph Reflection Theorem, 330-1
Rotation Theorem, 331
Size Change Theorem, 392
Transformation Theorem, 332
Translation Theorem, 329-30

graph(s)
congruent, 328-32

similarity of, 391-5
of sine-cosine combinations, 464-8
units on axes, 393

great circle of a sphere, 379 , 531

greatest common factor (=greatest common

divisor)
for integers, 208 , 209-212,214-8
for polynomials, 237

greatest integer (or floor) function, 22,
23-4,207

greatest lower bound of a set, 108,268
Greek contributions to trigonometry, 456-7

Gregorian calendar, 252

Gregory, Pope, 252

group(s), 10,147,245
congruence, 328

isomorphic, 85,305
of rotations, 309

solving equations using, 146-8

symmetry, 338
of translations, 305

growth factor, 118

growth rate (=relative rate of change), 117

H
Haab calendar, 211

half-angle formulas, 462
half plane of a line, 553
half-turn (=point reflection), 308 , 340

Hamming, Richard W., 365

Hamming distance, 365-6
Handbook of Integer Sequences, 180
harmonic mean, 175 , 177,417-9
harmonic sequence, 177
Harmonic-Geometric-Arithmetic Mean

Inequality, 418

height
of a cylinder, 523
of a polynomial, 64
of a prismatic solid, 515
of a pyramid, 518

Heath, Sir Thomas, 275

Hermite, Charles, 43
Hero (=Heron) the Elder of Alexandria, 371
Hero’s (=Heron’s) problem and theorem,

371-2
formula for the area of a triangle, 486-90
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Hilbert, David, 275,296,511,547-8,582
Hindu contributions to trigonometry, 456-7
Hindu-Arabic numeration, 224

Hipparchus of Nicaea, 437,439,440,456,459
Hippasus of Metapontum, 241-2
HL Congruence, 350

Hofmann, J. E., 372

homomorphism, 85
homothetic transformation

(See size change), 388
homothetic graphs, 393

homothety (See size change), 388

Hooke’s Law for springs, 466
horizontal asymptote, 108
horizontal line, 89
horizontal line test, 96

Humpty Dumpty, 290

Huntington, Edward V., 576

Hurwitz, Adolf, 43

hyperbola, 77,175, 335

parametric equations for, 455

symmetry, 335,340
hyperbolic geometry, 555,564
hypocycloid, parametric equations for, 455

I
i, 47, 48, 49,449

I (=set of irrational numbers), 24,43,46
identity (type of equation), 141, 142

identity(ies)
function, 82
in a group, 147-51
under an operation, 10,232
Pythagorean, 460

transformation, 304,307
trigonometric identities, 449,460-5,475

if and only if, 20

image set for a transformation, 298

image under a function, 68

imaginary axis in the complex plane, 50

imaginary number, 17,47, 50

imaginary part of a complex number, 50

imaginary unit, 50

incenter of a triangle, 429

incidence axioms, 548-52
incidence geometries, 550-2
incircle of a triangle, 429,486
incommensurable lengths, 18-9

incommensurable lengths in a pentagram
project, 64

incorrect proofs, 285,287,289
increasing function, 91, 101, 102

increasing sequence, 103

independent and dependent variables of a

function, 69

independent axiom, 580

independent variable, 69
indirect measurement problems, 440^1
induction hypothesis (for mathematical

induction), 181
inductive step in mathematical

induction, 181

inequality(ies)
of angles, 560

isoperimetric, 532-6
of segments, 558

solution methods for, 12,167-73
for two angles, 560

infinite decimals, 28, 29-43
infinitude of primes, 219,223
inscribed angle in a circle, 405
inscribed circle in a triangle, 429,486
inscribed polygon, 501-2,505
initial side of a directed angle, 306.444
initial values for a sequence, 181
instantaneous rate of change, 120, 130, 131
instantaneous relative rate of change, 131
instantaneous percentage rate of

change, 131

integer(s), 18,179
congruence, 246, 247-62

congruence and calendars, 253

congruence and cryptology, 253-5

division, 204-11

history, 18

quotient, 205, 206-8

remainder, 205, 206-8
sum of first n positive, 187
sum of first n positive squares, 193

integer part of a decimal, 28

integer part of a rational number, 22

integral (calculus), 84

integral domain, 232, 233,245
intercepted angle, 405

intercepted arc, 405
interior of a tetrahedron, 513
interior ray of an angle, 563

Intermediate Value Theorem, 171
internal center of similitude, 400

interval(s), 27
in an ordered field, 269

length of an, 27, 269

nested, 29

open, closed, half open, 27

of real numbers not countable, 45

lntroductrio in analysin infinitorum
(Euler), 458

Invention nouvelle en I’algebre (Girard), 272

inverse function, 9,10,13, 81, 82-4,
95-100,164

applications to solving equations, 165

applications to solving inequalities,
169-70

inverse of a point in the unit circle, 65
inverse trigonometric functions, 87,97-8
inverse under an operation, 10,11,232
inverse operations, 11,83,85
inversion in the unit circle, 65
irrational number(s), 23

arithmetic operations on, 24

conjugates, 50

V2,19,23,30-1,64,241-2
V3,31
7r, 42-3

examples of, 23-4,26,42-3,64,94
properties, 23-5

uncountability of the set of, 46

irrationality of V2 by infinite descent

project, 241-2
irreducible polynomial, 238
isometries in space project, 357

isometry (See congruence transformation),
300-33,357,367

isomorphism, isomorphic, 85, 136,138-9,261
isoperimetric problem, 482, 532

isoperimetric inequalities, 532-6
isosceles trapezoid, 294,353
isosceles triangle, 564

base of an, 564
base angle of an, 564

symmetry, 337

J
j,48
Ja’far Mohammed Ben Musa, 160
Jia Xian, 189

Jones, William, 503

Jordan, Michael, 6-10

K
kaleidoscope problem, 321

key, private, 222

key, public, 222

kite, 337
area of, 483

symmetry, 338

Klein, Felix, 276,384
Klein-Beltrami-Cayley Plane, 555-6
Koch curve, 543-4

k-scaling of a function, 393

L
Lacroix, Sylvestre-Franqois, 458

Lagrange Interpolation Formula

project, 131
and Chinese Remainder Theorem, 259-60

Lampropeltis polyzona (snake species), 395
lateral area (=lateral surface area)

of a right circular cone, 529-30
of a regular pyramid, 528
of a solid. 528

lateral surface of a solid, 528

latitude, 380
effect on daylight cycle, 451
and longitude, 379-80

lattice point, 215,217,241
Law of Cosines

for plane triangles, 438-9,442
for spherical triangles, 381

proof of Hero’s formula, 489-90
Law of Cosines for quadrilaterals problem,

438-9
Law of Sines

for plane triangles, 438^10,442,491
for spherical triangles, 457

least common multiple of integers, 211

least residue of n modulo an integer
m > 1, 247

least upper bound of a set, 108,268
Legendre, Adrian Marie, 278
Leibniz segments, 74, 130

Leibniz, Gottfried, 4,74
length

of arc of a circle, 433
of a coastline, 541-3
of daylight cycle problem, 450-3
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length, (continued)
of an interval, 27,269
of a vector, 55

L’Hopital, Guillaume Frangois
Antoine de, 111

L’Hopital’s Rule, 111

Lie, Sophus, 276
life expectancy in U.S., 121

limits, from the right (or left), 105
limit behavior of real functions, 105-12
limit definitions for e project, 132

Lindemann, Ferdinand, 43,508
line(s)

Cartesian, 571 , 572-4
in the complex plane, 390

horizontal, 572

parallel, 2 , 3,5, 294 , 389,419-27, 567 ,

568-71,573-4
point-slope equation for, 577
real number, 25-7,580
segment, 300 , 548

slope-intercept equation for, 330,572
standard form of equation for, 572

two-point formula for, 572

vertical, 572
line segment, 300,548
line through point minimizing area problem,

492-500

linear (=affine) code, 255
linear Diophantine equation method, 258
linear equations, solution of, 149-53
linear and exponential functions project,

130-1
linear function(s), 13, 87 , 91-2,130-1

in averages of speeds problem, 173-6
in catching up problem, 76-8
data fitting, 113-6
in earthquake problem, 177

graph size change of, 392,394-5
in matching an average problem, 9-10
in mixture problem, 79
in round trips with and against a wind

problem, 79

similarity of graphs of, 395
Linear Function Data Fitting Principle, 114
linear pair of angles, 560

linear (=arithmetic) sequence, 87,115
Liouville, Joseph, 42

Lobachevsky, Nikolai (Nicholas) Ivanovich,
282,555

In (=natural logarithm), 99
locus of points

equidistant from two points, 375

equidistant from two intersecting
lines, 375

at a fixed distance from a line, 377
at a fixed distance from a plane, 378
at a fixed distance from a point, 375
at a fixed distance from a set, 378

problems, 375-9

logarithm (=log) function(s), 13,87,
98-9,112

change of base formula, 99
natural logarithm, 42, 99

logically equivalent, 138

logistic function, 92, 93 , 94

long division
for integers, 32 , 206-7
for polynomials, 235

longitude, 380
and latitude, 379-80

Louis XV (France), 441
lower bound of a set, 268
lower Riemann sum, 504
lowest terms (for a rational number), 21 , 35
Lucas, Edouard, 182,196
Lucas numbers, 196

M
Maclaurin series of a function, 447, 448

for e, 42
for the exponential function, 448
for trigonometric functions, 448

Magellan, 440

magnitude
of a rotation, 307
of a size change (transformation),

388,519
major arc, 401
Mandelbrot set project, 546

mapping (^function), 69

mapping notation for functions, 69
mathematical induction, 181 , 182,185-201

not beginning at 1,188
history of, 188-9

(strong form) project, 241
Mathematics of musical instruments

project, 474

Mathematique Moderne (Papy), 294
matrix (matrices)

group properties of square, 151-3
for linear systems, 151-3

reflection, 314

rotation, 311,462
Maurolico, Francisco, 189
max-min problems, 125-9,474-5,492-9
Maya calendars, 211
mean

arithmetic, 175,417-9,499
geometric, 415-9,499
harmonic, 175 , 417-9

measure

angle, 432
of area,478-511,528-40
of central angle, 405
of major arc, 401
of minor arc, 401

perimeter, 481
of spherical angle, 381

width, 481
measures of two-dimensional regions,

478-511,528-40
measuring water in a container project, 545
mechanical vibrations, analysis of, 465-8
median

of a tetrahedron, 522
of a trapezoid, 485

meeting time problem, 79

Menaechmus, 158,545
Menelaus, 456,458
Meray, Charles, 19-20

Merriam-Webster’s Collegiate
Dictionary, 295

meridian on a sphere, 380

Mersenne, Marin, 158
Mersenne numbers problem, 224
method of exhaustion, 500,503,544
Method of Finite Differences, 122, 123 , 124,

199,202,204
method of infinite descent, 241
method of triangulation, 440

metric, 367

midpoint of a segment, 565
mil measure, 434

migration of zeros of polynomial function,
50-1

minimum area extended analysis, 492-500
Minkowski p-distance, 367
minor arc, 401
minute (part of degree), 434

Mirifici Logarithmorum Canonis
Constructio (Napier), 19

mixed number, 21
mixture problem, 79

Miyoshi, Kazumori, 503

Mobius, A. F., 48

mod, 23

model of a geometry, 550-1,572,576-81
modeling data with functions, 93,113-24
modeling with trigonometric functions,

450-6,476
models of uniform circular motion, 470-4

Mod(m), 247 , 248-262
modular arithmetic, 246-61
modulus

of a complex number, 50
in modular arithmetic, 247

Monge’s Theorem, 400
monic polynomial, 237

monomial, 229
monotone decreasing, increasing, 101
monotone sequence, 103
Monte Carlo method, 509-10

Mordell, Louis, 429

morphisms, 85
motion

equations of, 466

problems, 76-9,173-8
Muir, Thomas, 432

multiple(s), 208
least common, 211

properties of, 11

multiple-angle formulas, 462

multiplication
of complex numbers, 49,56-8
identity for, 232
inverse in, 232
of real numbers, 10-13

multiplicative function, 14
musical instruments and trigonometry

project, 474

N
N (=set or system of natural numbers), 18,

43,83
N7 (={1,2,3,4,5,6,7|), 43-4
NAEP examination, 21-2
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Nakahama, Kazuhiko, 503

Napier, John, 19

Napoleon (=Torricelli) point of a triangle,
429

Napoleon triangles and concurrence

project, 429

nappe, 524
National Oceanic and Atmospheric

Administration, 541
natural logarithm function, 42, 99
natural number, 180 , 189

history of, 18
Peano axioms (=Peano postulates) for,

189-90,192
system, 189

well-ordering property, 191-2

necessary condition, 291

negative bases problem, 228

negative directed angle, 445

negative element of an ordered field, 263-5

nest, 293
nested sequence of intervals, 25,29,31
Nested Interval Property, 25, 29
Nested Interval Theorem, 269

net, 528
for a right circular cone, 529
for a prism, 528
for a cylinder, 529

Newton, Isaac, 159,441,458
Newton’s Second Law of motion, 466
n-fold symmetry of a plane figure, 340

n-gon, area of a regular, 10-36

Nocomedes, 545
non-Euclidean geometry, 278,549-52,

555-6,581
noncategorical set of axioms, 579
nonconvex polygon,385
nondegeneracy property of a distance

function, 367

nonnegativity property of a distance

function, 367
norm (or length) of a vector, 55
normal (Leibniz), 130
normal to a plane or curve, 370

normal distribution curve, 509
normal line, 370

not-so-perfect shuffle project, 273
nth difference of a function, 121,131
nth parts, 12
nth root, 12,41

of a complex number, 61-2

functions, 112
of unity, 62

nth term, 73
number (see also specific types), 17-24,179
number field, 262-72
number line (=real number line), 25-27
number words, concept analysis, 17
number system, 17
numbers-in/number-out problem, 76

o
oblique asymptote, 110

oblique cylinder, 523

oblique prism, 515
obtuse angles, trigonometric ratios of, 437

odd number, 207
Omar Khayyam (Omar bin Ibrahim al-

Khayyami), 158
On the Sphere and the Cylinder

(Archimedes), 527

O’Neal, Shaquille, 6-10
one-to-one correspondence between sets,

43,299
(or 1-1) function, 80

one-variable area formulas, 539
one-variable volume formulas, 540

onto, 69

open interval, 27

open statement, 140

operation
binary, 82

closed, 83

unary, 83

operations as functions, 82-4

opposite congruence, 300 , 357,412
opposite rays, 557

opposite sides of a line, 553

opposite similarity, 413

oppositely congruent figures, 300 , 355

oppositely similar figures, 408

optimization problems, 125-9,474-5,492-9
orbit of a complex number, 59-60,63
orbital speed problem, 473

order, axioms of, 552
order of growth, 110-2
ordered field(s), 263-71

Archimedean, 267-8

complete, 268-70

positive and negative elements in an,

263,265
positive integral elements of an, 265
rational elements of an, 271

ordered incidence geometry, 555
ordered pair, 136
ordinate (Leibniz), 130

Oresme, Nicole, 73
orientation of geometric figures,

299-302,409
orthic (=pedal) triangle, 374
orthocenter of a triangle, 429,577

P
Pappus of Alexandria, 419,569,581
Pappus’ configuration, 581

Pappus’ Theorem project, 581

Papy, Georges, 294

parabola(s),338
area under, 505

similarity of all, 393

symmetry, 336

parallel, concept analysis, 1-5

parallel curves, 3-4

parallel lines, 2 , 3,5, 294 , 389,419-27, 567 ,

568-71,573-4
and similarity, 389,419-27

with transversal, 3,567
Parallel Postulate, 5,548,555,558,564-6,

568-71,573-4
Cartesian form, 574

equivalent statements, 569
theorems requiring the, 570-1

parallel translations, 307

parallelepiped, 516

right rectangular (box), 516
volume of a right rectangular, 517

parallelogram, 292, 341,578
area of, 486,490
symmetry, 341

Parallelogram Law, 54

parameter-in/function out problem, 76

parametric equations
for a circle, 454
for a cycloid, 454
for an ellipse, 454
for an epicycloid, 456
for a hypocycloid, 455

parameterizing lines, 493,495,499-500
partition of a set, 293

Pascal, Blaise, 189
Pascal’s triangle, 189,196

and binomial theorem, 196

Pasch, Moritz, 282,296,547-8,553
Pasch’s Postulate, 554

path, 371
in circular motion, 469-474

length, 371

piecewise linear, 371

pathological function, 74

paths along lattices project, 241

Peano, Giuseppe, 189-90,296,547-8
Peano axioms (=Peano postulates), 189-90,

192,218,270
Peano axioms project, 241

Peurbach, Georg, 457

percentage rate of change of a

function, 117

pedal (=orthic) triangle, 374

“pentagon” of constant width, 481

pentagonal pyramid, 518

pentagram, 64

percentage rate of change, 117

perfect card shuffle project, 273

perfect number, 224

perimeter of a polygon, 481,505
period

of a function, 450
of a decimal, 33,37-9

periodic decimal, 33,34-40
periodic function(s), 450

curve parameterization, 454-6

daylight, 450-3
mechanical vibrations, 465-9

periodicity, 342

perpendicular line to a plane at a

point, 370

perpendicular lines, 568

perspective, 423-7

Peurbach, Georg, 457

phase-amplitude form, 464-5,467-8
phase shift, 464, 465 , 467-8

pi, 42-3, 502 , 508

approximation to, 502-5

history, 503

Picard, Abbe Jean, 441

piecewise linear path, 371

Pieri, Mario, 190,192,282,296,547-8,582
Pitiscus, Bartholomaus, 457-8
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place value in Hindu-Arabic

numeration, 224

plaintext, 254

plane, 553

Cartesian, 571,576-7
curves, 453-5

segment, 548
transformation of, 298

splitting into regions, 197-202

plane separation axiom, 553

Plato, 282
Plato of Tivoli, 457

Playfair, John, 569

Playfair’s Postulate, 569,573—4
Poincare, Henri, 581

point, 548-556,571-5,579
point at infinity, 53

point reflection (=half-turn),308
point-slope formula for a line, 330,577
point-symmetric plane figure, 340

polar coordinates, 52,88-9
polar representation of complex numbers,

52,58-62
polygon(s), 578

circumscribed about a circle, 407 , 484

regular polygon, 62,128,501-3
sides of, 578

similar, 396-9
sum of interior angle measures, 188
vertex (vertices), 578

polyhedron
surface area of a, 528-9
volume of a, 515-23

polynomial division, 230 , 231

polynomial(s)
divisibility, 229-236

equations, solution of, 158-9
factorial form of a, 124

fitting data with, 121-4,131
functions, 86,112
functions and nth-differences project, 131

history of solution of equations, 158-9

long division, 230,233-5
migration of zeros of, 50-1
over a set, 229,230-4,236^11
prime (=irreducible), 238

quotient, 231

remainder, 231
solution of equations, 158-9

zero, 229

pons asinorum, 563

Pope Gregory, 252

Posidonius, 282

positive directed angle, 445

positive element of an ordered field, 263-5

positive integral elements of an ordered

field, 265

postulate(s) (See also axioms)
Euclid’s second, 552
Euclid’s third, 558
Euclid’s fifth (=Parallel), 5,548,555,558,

564-6,568-71,573-4
of Pasch, 554

power function, 101

power of a point with respect to a circle, 399
Power of a Point theorem, 399,404,407

power(s)
of a complex number, 59-60
in modular arithmetic, 250
of real numbers, 11-13,195-6

Practice! Geometriae (Fibonacci), 457

preimage in a function, 68

preimage set for a transformation, 298

preservation properties
of reflections, 315
of similarity transformations, 387

prime(s)
factorization for integers, 219-20
factorization for polynomials, 238-40

gaps between, 223
infinitude of, 219,223
numbers, 209 , 219-21,223-4
(=irreducible) polynomial, 238

prime meridian, 379, 380

primitive Pythagorean triple, 221

principal angle (or argument) of a complex
number, 52

Principle of the Contrapositive, 570

prism(s), 515 , 516
lateral surface area of, 528
net for, 528

oblique, 515

right, 515
surface area of, 528
total surface area of, 528

types of, 515
volume of a, 517-8

prismatic solid, 515 , 516-8

prismatoid, 527
Prismoid or Prismoidal Formula for

volume, 527

private key, 222

probability and area, 508-11

problems named in the text

(See also extended problem analyses)
area of an ellipse problem, 505
area of a sector problem, 504
area under a parabola problem, 505

average speeds, 173-7

average test grade, 5-6,71-2
average yearly inflation, 167
balance scale, 186,218
balanced ternary representation, 228
belt length, 44
Bertrand’s postulate, 223

binary coded decimals, 228

box,125-9
Brahmagupta’s quadrilateral area

formula, 491

catch-up time, 76-9

checkerboard, 283-4
Chinese remainder - Lagrange

interpolation, 261
circumference of the Earth, 459
coconut problems, 256,260
completing a job, 177

counting regions in a circle, 202-4

counting regions in the plane, 197-201

hypocycloid-epicycloid parameterization,
455-6

defining orientation of plane figures, 302

divisibility tests for, 3, 9,11 251

dog-on-leash locus, 376-7
Earth-Moon distance, 459

earthquake waves, 177

estimating tt with perimeters, 505

evaporation, 15

hallway photo, 426
indirect measurement, 440-4
infinitude of primes problems, 22
law of cosines for quadrilaterals, 443

length of daylight cycle, 450-3

meeting time, 79
Mersenne numbers, 224

mixture, 79

negative number bases, 228
orbital speed, 473
Pascal’s triangle-binomial theorem, 196

perfect numbers, 224
Prismoidal volume formula, 527
sine table construction, 439
rational expressions that look

irrational, 25
rationales for, .99999... = 1, 33

receding telephone poles, 423-6

regions of a circle, 202-4
round trip with and against the wind, 79

spherical cap volume, 527

square wave, sine series approximation,
455

scoring title, 6-10

stamp, 212-3,217
track, 217

two-stack, 217

upper bound for the nth prime, 223

Proclus, 282,569
product-to-sum formulas, 462

proof, 283 , 284-9
invalid “proofs”, 285-9

Proof by Mathematical Induction

(or mathematical induction),
181,186-201

history of, 189

proportional quantities, 384 , 419-27

graphical representation of, 420-1

pseudo-random numbers, 273

pseudosphere, 581

Ptolemy (ruler of Egypt), 277

Ptolemy, Claudius, 352,437,439-40,
456-7

Ptolemy’s Theorem, 352-3

public key, 222

pyramid 518 , 519-23
altitude (=height) of, 518

apex of, 518
base of, 518

height (=altitude) of, 518
lateral surface of, 528

regular, 519
slant height of, 528
vertex of, 518
volume of, 520-3

pyramidal solid, 518

Pythagoras of Samos, 18,547
Pythagorean identities, 460

Pythagorean Theorem, 19,285,353,
441,570

and quadrature, 507
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Pythagorean triples, 212 , 221-4

primitive, 221 , 222

Pythagoreans, 18

Q
Q (=set or system of rational numbers),

19.43.83
quadrangular prism, 515

quadrangular pyramid, 518

quadratic equations, 153-7

graphs, 51,396
standard form, 154

Quadratic Formula, 25,47,156,547
derivation, 156

quadrature of plane figures, 506-8

quadrature of the parabola project, 544

quadrilateral(s)
(See also specific types), 578

area of, 479-83

Brahmagupta’s area formula, 491

cyclic, 352-3

cyclic inscribable, 491

hierarchy, 353

quantifier, existential and universal, 141

quartic equation, history of the solution

of, 158

quotient, 205

quotient of complex numbers, 57

R
R(=set or system of real numbers), 26,43,

46.83
radian, 432

-degree conversion, 433

-grad conversion, 433
measure of an angle, 432 , 433-4

radius
of a circle, 558
of a sphere, 526

Ramanujan, Srinivasa, 503
random number generator project, 273

range of a function, 68
rates of change, 117 , 118-20,130-1
ratio of similitude, 386,536-7

ratios, trigonometric, 434-40
rational elements of an ordered field, 271

rational expression division, 231

rational functions, 86,175
limit behavior of, 105-11

rational number(s), 19, 20 , 21-4,43
are countably infinite, 45

decimal representation, 30,32-40
division, 205
distribution of, 40
in lowest terms, 21 , 34-7
that look irrational, 25

rational numbers in base 3 project, 242

Rational Root Theorem, 29

ray(s), 557

between two given rays, 559

interior, 563

opposite, 557

vertex of a, 557
real axis in the complex plane, 50
real function(s), 67 , 86 , 87-124

analyzing a, 87-90

applications to solving equations, 161-6

applications to solving inequalities,
169-70

concept analysis, 86-90
discontinuities of, 171

Dirichlet, 74,76
discrete, 87

exponential, 13, 87 , 98-9

finding values of a, 88

fitting data with, 113-24

graphs of, 88-90

interval-based, 87
inverse trigonometric, 87,98
/c-scaling of, 393

inverse, 81-4,95-100
limit behavior of, 91,105-10, 111 , 112

linear, 87

logarithm(ic), 13,87,98-9
logistic, 93,94
multiplicative, 14
monotone or strictly monotone, 101
order of growth of, 110-2

periodic, 450 , 463-9

polynomial, 86
rates of change of, 117
rational, 86

sequence, 87

trigonometric, 87, 444 , 445-59
values of, 88

real line (=real number line), 25-7,580
real number(s)

constructible, 545
determined by a nested sequence, 29

determined by a decimal, 29
not countably infinite, 46
finite semicircle model of, 368

partitions of, 43

history of, 18-20

properties, 10-13,40
system, 26,270
types, 43

real part of a complex number, 50

receding telephone poles problem,
423-6

rectangle, 292,340
area, 480-2,507,539
quadrature, 506

symmetry, 340

rectangular form of a complex number, 52

rectangular prism, 515

recurrence relation for a sequence, 181
recursive formula (or definition)

of a sequence, 73, 181 , 182-5,200-1
of jc", 195

reflection over a line, 313 , 314-20,412
analytic descriptions of, 314,318-20
over axes, 314
in the complex plane, 320,412
composites of, 315-8,324-8
in the coordinate plane, 314,318
in Fagnano’s problem, 373-4
of graphs, 330
over line x = y, 314
matrices for, 318

symmetry, 333^1

synthetic definition, 313

reflection-symmetric figure, 333-4,339
reflex angle, 306,560
reflexive property

of equality, 137
of implication, 138
of integer congruence, 249

Regio nontanus (Johannes Muller), 457

Regiomontanus’s problem, 474

regions of a circle problem, 202-4

regions of a plane problem, 197-202

regular polygon, 128,501-3
area of, 486
and nth roots, 61-2

regular pyramid, 519

regular tetrahedron, 511
relative rate of change (= growth rate), 117

relative truth, 283

relatively prime integers, 21 , 209
remainder (in integer division), 205 , 206-8
Remainder Theorem, 234
remarkable identities project, 475
removable discontinuity, 171

removable singularity, 94

repeating decimal, 33

repetend, 33

replacement set for a variable, 140

residue class(es) (=congruence class(es)),
247

complete residue set modulo m, 248

least residue of n modulo m, 247

restriction of a function, 82
Reuleaux triangle, 481,485
revolution, 307 , 432-4

Rheticus, George Joachim, 457
Rhind papyrus, 440
rhomboid, 295

rhombus, 338

symmetry, 338,340
Riemann integral, 503-4
Riemann sphere, 53,65
Riemann, Bernhard, 48,504
right angle, 560

right circular cone, 524

right circular cylinder, 523

right cylinder, 523

right prism, 515

right rectangular parallelepiped (=box),
516,517

right triangle(s), 354,416-7
area of, 481

geometric means in, 416

trigonometry, 434-8,441-3
Right Triangle Similarity Principle, 436

rigid motion, 548

Rivest, Ronald A., 222

Robert of Chester, 457

Roberval, Gilles Persone de, 544

roots of unity, 62

rotation(s), 306-13,331-2,412,460-2
in the coordinate plane, 309-12,460-2
in the complex plane, 65,312,412
composites of, 308-9
in Fermat’s problem, 372
of graphs, 331-2

group properties of, 309,312
matrices for, 311
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rotation(s), (continued)
of 90°, 310

synthetic definition of, 307
Two-Reflection Theorem for, 315-6
zero rotation, 307

Rotation Flexibility Theorem, 317
Rotation Image Formula, 460-2

rotation-symmetric figure, 339-41
round trips with and against wind

problem, 79

rounding-up (=ceiling) function, 145
RSA computer security algorithm, 222,255

s
SAS Area Formula, 490
SAS Congruence Axiom, 561
SAS Congruence Theorem, 346-7
SAS similarity condition, 384,397-8
scalene triangle, 291

scaling of a function, 393

Schneider, Theodor, 43
School Mathematics Study Group, 296

scoring title problem, 6-10
secant (trigonometry), 435,460
secant in a circle, 404-7
secant in a sphere, 526
second (part of degree), 434
second differences of a function, 121
Second International Study of Mathematics

Achievement, 22

sector, 504
area of a circular, 504

segment (=line segment), 553

congruence, 557-8

inequality, 558

symmetry, 336,340
Segment Congruence Axioms, 557

semicircle, 401, 416

semiperimeter of a triangle, 487, 488-91

sentence, 136,140-3
compound, 143

sequence(s), 73, 180

e, 104,132
explicit formula for, 73

exponential (=geometric), 87, 118-9

Fibonacci, 73

harmonic, 177
limits of, 104
linear (=arithmetic), 13, 87, 115
monotone real, 103, 108
recursive formula (or definition) for, 73,

180, 181

two-dimensional, 116

Shamir, Adi, 222

Shanks, William, 503

Shwarz, Hermann Amandus, 535
shortest distance, 371-3
shortest paths, 371
shuffle

not-so-perfect, 273

perfect card, 273
side

of an angle, 444
of a line, 553
of a triangle, 553
of a polygon, 578

Sieve of Eratosthenes, 218
similar figures, 383,384,385,386,387-414,

536-40

angle measures in, 390,537
areas in, 537-8

arcs, 400-3

concept analysis, 383-386

directly similar, 386,408
distances in, 537-8
in E3

, 519

oppositely similar, 386,408
parabolas, 393

polygons, 396-9
volumes in, 537-8

weights in, 538-9

similarity
Fundamental Property of, 386
Fundamental Theorem of, 536^10
of parabolas, 393
and parallel lines, 419-27
of regular polygons with n sides, 398
and right triangles, 436

transformation, 386,387-97
and trigonometric ratios, 435-8

similarity of graphs, 391-6
of linear functions, 394-5
of exponential functions, 395
of parabolas, 393

Similarity Principle
arc-to-chord, 436

right triangle, 436

similarity transformation(s), 386,387-97,
408-13

analytic viewpoint, 413
betweenness preserved, 387
center of, 387
dilative reflection, 411

direct, 413

group of, 413

images under, 387

magnitude of, 387

opposite, 413

preservation properties, 387
ratio of similitude (=ratio of similarity),

386
size change (transformation), 388

spiral similarity, 408

types of, 408-14

similitude, 386
external center of, 400
internal center of, 400
ratio of, 386

simple closed curve, 128,533-4
simple-periodic decimal, 34-38
simultaneous (=system of) equations, 143-4,

150-3,157-8
sine, 435,438,445-6

difference formula, 461

origin of term, 457
sum formula, 461

sine and cosine table project, 475
sine function

algebraic properties of (identities for),
342-3,460-3

analytic properties of, 469-74

complex form of, 64

geometric properties of, 463-5

phase-amplitude form of, 464-5,467-8
sine wave, 89, 452, 453,465-8

amplitude, 465-8

frequency, 463
for length of day, 452-3

symmetry, 342-3
wave length, 463

Sines, Law of
for plane triangles, 438-40,442,491
for spherical triangles, 457

size change (=size transformation), 388

analytic description of, 413
center of, 388

magnitude of, 388
in E3 ,519

singularity of a real function, 91,94
slant height

of a cone, 529
of a pyramid, 528

Sloane, N.A., 180

slope, 493,572-4,577
slope-intercept equation for a line, 330,572
small circle of a sphere, 379
snake length, 395

solid, 512

pyramidal, 518

prismatic, 515

tetrahedron, 512

solstice, 450

solution, 140
solution set

of an equation, 142
of a system of equations, 143

solutions to equations, concept analysis,
140-5

solving equations, 140, 141-167
a * x = b, 146-8
a + x — b, 146-7
ax = b, 146-7
ax + b = cx + d, 149-50
cubics (history), 158

/(x) = k, 165-6

f(x) = g(x), 161-5

higher degree polynomial (history), 158-9
with matrices, 151-3

quadratics, 154—7

quartics (history), 158

solving inequalities, 167-173

f(x) < k, 170

f ix) < g(x), 169-70

linear, 167-9

test-point method, 172-3

solving a triangle
ambiguous case, 439

right triangles, 435

oblique triangles, 438-9

Sphaerica (Menelaus),456
sphere, 526

center, 526
distance on surface, 379-82

great circle of, 379

isoperimetric properties, 535
small circle of, 379

volume, 526-7,531,535
sphere inscribed in a cone project, 545
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spherical angle, 381

spherical cap, 527

spherical distance, 363,379-83
spherical Law of Cosines, 381-2,457
spherical triangle, 381

spiral similarity, 408 , 409-10,412
spring constant, 466

spring-mass system, 466-8

square
area of, 479 , 482,539
quadrature, 506-8

square prism, 515

square wave function, 455

squaring the circle, 508

squaring the circle project, 545
SsA Congruence Theorem, 348-50
SSA condition, 348-9,439
SSS Congruence Theorem, 347-8,565
SSS Similarity Condition, 397-8

stamp problem, 212-3,217
statement, 140

existential, 141

open, 140

universal, 141

Steiner, Jakob, 533

stereographic projection, 53 , 66

Stevin, Simon, 19

straight angle, 559

strength of objects, 538

strictly decreasing, 101 , 102

strictly increasing, 101 , 102

strictly monotone, 101

subfield, 261
subnormal (Leibniz), 130

subtangent (Leibniz), 130
successor operation, 190
sufficient condition(s), 291

for congruence of plane figures, 344-50
for triangle similarity, 397-8

sum formulas (trigonometry), 57,461
Sun Zi, 256

superposition, 295-7

supplement, 560 , 561

supplementary angles, 560 , 561

surd, 579

surd plane, 579
surface area, 528-46

of a cone, 529-30
of a prism, 528-9
of a pyramid, 528-30
of a sphere, 530-1
of a spherical cap, 552

symmetric figure, 334

point-, 340

reflection-, 334 , 335-8

rotation-, 339 , 340-1

translation-, 342 , 343

symmetric property
of a distance function, 367
of equality, 138
of implication, 138
of integer congruence, 249

symmetry, 333-43
center of, 339

glide reflection, 342-3

group, 338

line, 334

point, 340

reflection, 333-8

rotation, 339-41

translation, 342-3

Synopsis Palmariorium Mathesios (Jones),
503

synthetic division, 235

synthetic approach
compared to analytic approach, 578-80
to congruence, 556-64
to geometry, 276,548,552-4,556-71

system
of integer congruences, 256-9
of equations, 143-4,150-3,157-8

T
tangent (in a circle), 404—7

tangent (segment)(Leibniz), 130

tangent (in a sphere), 526

tangent (trigonometry), 435,460
Tartaglia, Niccolo, 47
taxicab distance, 363 , 364-5,367

circles in, 364

compared with Euclidean distance, 364

formula, 363

Taylor series. 447 , 448

Tchebycheff, Pafnuty L., 223

telephone poles, 423
terminal side of a directed angle, 306,444
terminating decimal, 34-6

test-point method for solving inequalities,
172-3

tetrahedral region, 511, 512 , 513^1,521-2
tetrahedron, 511, 512 , 550

interior of a, 513
median of a, 522
model for a finite geometry, 550

solid, 512
volume of a, 521-2

Thales of Miletus, 275,547
theorem, 283,547
Theudius, 277

Thompson, James, Sr., 432
three-variable volume formulas, 540

Torricelli, Evangelista, 372,429
Tower of Hanoi problem, 182-6
track problem, 217

tractrix, 581
traditional centers of a triangle project, 428
train problem (counting cars), 116
Traite elementaire de trigonometric rectiligne

et spherique et application de Valgebre a

la geometric, 458
transcendental number, 42-3,508

e, 42-3
77 ,42-3,508

transformation (see also individual types)
approach to geometry, 276
basic strategy, 311,319
of the complex plane, 65,304,311-2,

319-20,323,357
congruence (=isometry= distance-

preserving), 297-299, 300 , 301-343

distance-preserving (= congruence),
297-299, 300 , 301-343

geometric, 84
of graphs, 328-32
of the plane (=plane transformation), 298

strategy, 311,319
transformations of the complex plane

project, 65
transitive property

of equality, 138
of implication, 138
of integer congruence, 249

translation(s), 297-8,302,303,304,305-6,
409-10,515

analytic definition, 304
in the complex plane, 65,412
composites of, 304-5
of graphs, 329-30

group properties of the set of, 305
horizontal and vertical components

of a, 304

magnitude, 306
in R3

, 515

symmetry, 342,343
synthetic definition, 303
Two-Reflection Theorem for, 317

vector, 304-7
zero translation, 304

Translation Flexibility Theorem, 317

translation-symmetric figure, 342,343
transversal, 567

trapezoid, 294,353
area of a, 483-5

isosceles, 294,353
median of a, 485

tree diagram, 293

triangle(s), 553
AA similarity condition, 398
AAS triangle congruence, 565

area, 481-2,485-500,539
ASA area formula, 490
circumcenter of, 428,578
concurrence of altitudes, 578

congruent, 296,346-50,561
defined by vertices, 553
exterior angle of, 566

isosceles, 564
orthic (=pedal),374
orthocenter, 429,577
parallel lines in, 419-27

quadrature, 507

Reuleaux, 481
SAS area formula, 490
SAS triangle congruence, 346,561
SAS similarity condition, 384,397-8
sides of, 553

similar, 396-8
SsA triangle congruence, 348
SSS triangle congruence, 347,565
SSS similarity condition, 397-8

Triangle Congruence Axiom

(SAS Congruence), 561

Triangle Inequality, 55-6,366-7
triangular prism, 515

triangular pyramid, 518

triangular region, 478
area of, 478-9,484,500-1,507,512,

514,521
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triangulation, 440-1

Trigonometria (Pitiscus), 458

trigonometric functions, 87, 444 , 445-59

algebraic properties, 460-3

analytic properties, 469-74
circular functions and, 444
of a complex variable, 448-9

concept analysis, 444-8
exact values of, 447,462,475
geometric properties, 463-9

right triangle definitions, 435
uniform circular motion, 469-74
unit circle definitions, 445-7
values of, 447-8

wrapping function definitions, 445-7

trigonometric identities, 449,460-5,475
via complex numbers, 63

double-angle formulas, 462

half-angle formulas, 462

multiple-angle formulas, 462

product-to-sum formulas, 463

Pythagorean, 460
sum and difference formulas, 57,461

trigonometric ratios, 434-44
acute angles, 434-5,449
cosecant, 435

cosine, 435

cotangent, 435
obtuse angles, 437-8

secant, 435

similarity and, 435-8

sine, 435

tangent, 435

trigonometry and musical instruments

project, 474

trigonometry, 431-76

history, 431-2,439,440-1,447,456-9
indirect measurement, 440^1

truths, absolute and relative, 283

turn, 307
two-dimensional sequence, 116

two-napped cone, 524

two-point formula for line, 572
Two-Reflection Theorem

for Rotations, 315-6
for Translations, 316-7

two-stack problem, 217
two-variable area formulas, 539
two-variable volume formulas, 540

turn, 307
Tzolkin calendar, 211

u
Ueberweg, Friedrich, 282

unary operation, 83
undefined terms and relations, 547-53,547,561
uniform circular motion, 469-74

acceleration, 470
mathematical models of, 470-4

path,469
satellite orbits, 473
vector function for, 472-3

velocity, 469

unique factorization
for integers, 23,219-22,238
for polynomials, 239

unit conversion in formulas, 393
unit circle, 50

definition of trig functions, 445-7
under Minkowski distance, 367

United States population, 70,90
state populations, 120

units of distance, 361
universal quantifier, 141
universal statement, 141
universe for a variable, 140

unknown, 140

upper bound of a set, 268

upper bound for the nth prime problem, 223

upper Riemann sum, 504

V
value of a function, 68

van Ceulen, Ludolph, 503
variable

assigning meaning to, 137

dependent (=output),69
domain ^replacement set= universe)

of a,140
independent (= input), 69
use in equations, 135

Veblen, Oswald, 547-8,576
vector(s)

addition, 54,307
and complex numbers, 54-5

function for uniform circular motion,
469-74

length of, 55
norm of, 55
and translations, 304-7,515

velocity, 469-73
Venn diagram, 293

Verhulst-Pearl equation, 93

vertex (vertices)
of an angle, 444 , 559-63

of a directed angle, 444

o a polygon, 578
of a pyramidal solid, 518
of a ray, 557

vertical angles, 560

vertical asymptote of a function, 106
Vertical Asymptote Theorem, 107
vertical line, 89

vertical line test, 90

vibrations, mechanical, 465-9

Viete, Francois, 154,458,462-3,503
Viete’s Theorem (quadratic equations), 155

Virgil, 533

volume, 511-46
Cavalieri’s Principle, 513-4
of a cube

formulas, one-variable, 540

formulas, two-variable, 540

formulas, three-variable, 540

function, 513 , 514

history of formulas for, 511
of a box (=right rectangular

parallelepiped), 125-7,516-7,540
concept analysis, 511-4
of a cone, 525-6
of a cube, 511-22,540
of a circular cylinder, 524,540
of a cylinder, 523-4
of a parallelepiped, 516-7
of a polyhedra, 515-23
of a prism, 517
of a prismatoid, 527
of a pyramid, 522
of a regular tetrahedron, 511
of a sphere, 526-7,531,535
of a spherical cap, 527
of a tetrahedron, 521

volume-surface area relationship for a

sphere, 531
Voronoi diagrams project, 428

w
Wallis, John, 569

Weierstrass, Karl, 19-20

weights in similar figures, 538-9

Well-ordering property, 191-2

Wessel, Casper, 48

Wiles, Andrew, 212
width of a plane region, 481

wrapping function definitions of trig
functions, 445-7

Y
Yaglom, Isaac Moisevitch, 384

Young, John Wesley, 551

Young’s geometry, 551,581
Young’s geometry project, 580

z
z(= set or system of integers), 18,43,83
zero angle, 445
zero of a function, 50-1,91
zero multiple property, 15
Zero Product Property, 144
zero polynomial, 229
zero rotation, 307
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