
 

 

 



PRACTICAL NAVIGATION FOR 

SECOND MATES 

Including chartwork to cover the 

practical navigation and 

chartwork papers for 

D.O.T. certificates 

Class V, Class IV, and Class III 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Practical Navigation 

for Second Mates 
Including chartwork to cover the practical 

navigation and chartwork papers for 

D.O.T. certificatesClass V,  

Class IV, and Class III 

BY 

A. FROST, B.SC., MASTER MARINER, M.RI.N. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GLASGOW 

BROWN, SON & FERGUSON LTD. NAUTICAL PUBLISHERS 

4-10 D ARNLEY STREET 



 

Copyright in all countries signatory to the Berne Convention 

All rights reserved 

 First Edition -   - - 1955  

 Second Edition -  -  - 1969  

 Third Edition -   -  - 1974  

 Fourth Edition -  -  - 1977  

 Fifth Edition  -   -.  - 1981  

 Reprinted   -  -  - 1985  

 Reprinted   -  - 1991  

 Reprinted-  -  -  - 1994  

 Reprinted-  -  -  - 2001  

 

 

 

 

 

 

 

 

 

 

 

ISBN 0 85714 3978  

ISBN 0 85174 300 5 (Fourth Edition)  

ISBN 0 85174 22\ 4 (Third Edition)  

©2001- BROWN, SON & FERGUSON, LTD., GLASGOW, G41 2SD  

Printed and Made in Great Britain 



 

FOREWORD TO THE FIFTH EDDITION 

In this revision 'Practical Navigation for Second Mates' has been extended to include chartwork 

and tidal calculations. The intention in doing this was to provide a text for candidates preparing 

for the chartwork and practical navigation of the Department of Trade Class V and Class IV 

certificates. Worked examples of all problems and calculations encountered in these papers 

together with ample exercises for self examination, are included, and specimen papers similar 

to Class V 'Chartwork and Practical Navigation', Class IV 'Chartwork', and Class IV 'Practical 

Navigation' are provided.  

All practical navigation problems and tidal calculations used may be worked with the extracts 

from the Nautical Almanac, and the extracts from the Admiralty Tide Tables included. 

Chartwork exercises however, inevitably require the use of a chart. Such exercises have been 

set on Admiralty charts 1179, 5050 or 5051, as these particular charts are published as 

inexpensive instructional charts, which, although not suitable for navigation, are full size and 

authentic and entirely adequate for practice purposes.  

CARDIFF JUNE 1980       A. FROST  
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SECTION 1 

The work contained in this section is required for the 'Chartwork and Practical Navigation' 

paper for Department of Trade Class V certificate.  



 

CHAPTER I  

THE MEASUREMENT OF POSITION AND DISTANCE ON THE EARTH'S 

SURFACE  

Definition of terms used in the measurement of position  

Great Circle. A circle drawn on the surface of a sphere, whose plane passes through the 

centre of the sphere. It is the largest circle that can be drawn on a sphere, and given any two 

points on the sphere, there is only one great circle that can be drawn through those points. The 

shortest distance between those two points will lie along the shorter arc of that great circle. 

The exception is if the two points are at opposite ends of the same diameter, and in this case 

an infinite number of great circles can be drawn passing through the two points.  

Small Circle. Any circle drawn on the surface of a sphere, whose plane does not pass through 

the centre of the sphere.  

Geographical poles of the earth  

Those points at which the axis of the earth's rotation cuts the earth's surface.  

The measurement of position  

To define a position on any surface we require two axes of reference, usually at right angles to 

each other. The definition of a point is obtained by stating the distance of the point from each 

of these axes. Thus in the construction of a mathematical graph, we draw an x-axis and a y-

axis at right angles to each other and the co-ordinates of any position on the graph give us the 

distance of that position from the x-axis and from the y-axis. So defined, the position is 

unambiguous. On the earth's surface we use two great circles as the axes of reference, and we 

use angular distances instead of linear distances.  

The great circles used are:  

The Equator. A great circle on the earth's surface, the plane of which is at right angles to the 

axis of rotation of the earth. Every point on the equator is at an angular distance of 90° from 

each pole.  

The Prime Meridian. This is a semi great circle on the earth's surface which runs between the 

two geographical poles, and passes through an arbitrary point in Greenwich. Any semi great 

circle which runs between the poles is called a meridian. All meridians cut the equator at their 

mid point at right angles, and all meridians intersect at the poles.  

The position of any point on the earth is defined as an angular distance from these two circles, 

the two co-ordinates being called Latitude and Longitude.  

Parallel of Latitude. A small circle on the earth's surface, the plane of which is parallel to that 

of the equator.  

The Latitude of any point is the arc of any meridian contained between the equator and the 

parallel of latitude through the point. Thus all positions on the same parallel of latitude have 

the same latitude. The latitude of the equator is 0° and that of each pole is 90°. Latitude is 

named North or South of the equator.  



The Longitude of any point is the lesser arc of the equator contained between the prime 

meridian and the meridian which passes through the point. It is measured from 0° to 180° on 

either side of the prime meridian and named East or West.  

 

Latitude North, Longitude West    Latitude South, Longitude East  

 NGS =Prime Meridian                NPFS =Meridian through P  

 WFGE=Equator                Angle PCF or arc PF = Latitude of P  

 pp = Parallel of latitude through P               Angle FCG or arc FG = Longitude of P  

When sailing between any two positions on the earth's surface, a knowledge of the necessary 

change in latitude and change in longitude between the two positions is essential.  

The Difference of Latitude (d. lat.) between any two positions is the arc of a meridian which 

is contained between the two parallels of latitude through the positions. From figure 1.2, if the 

two positions are on the same side of the equator (latitudes same name), then the d. lat. will be 

the numerical difference between the two latitudes. If they are on opposite sides of the equator 

(latitudes different names), then the d. lat. will be the sum of the two latitudes.  

 

D. lat. is named according to the direction travelled. North or South.  

The Difference of Longitude (d. long.) between any two positions is the lesser arc of the 

equator contained between the two meridians which pass through the positions. If the 

longitudes of the points lie on the same side of the prime meridian as each other then the d. 

long. will be the numerical difference between the longitudes (longitudes same name). If they 

lie on opposite sides of the prime meridian the d. long. will be the sum of the two longitudes 

(longitudes opposite name). If, however, the d. long. found thus is greater than 180°, as the d. 

long. is the LESSER arc of the equator between the two positions, then the d. long. is found 



by subtracting this sum from 360° (see examples). The d.long. is named according to the 

direction travelled East or West.  

 

Note  

D. lats. and d. longs. are usually required in minutes of arc.  

They are therefore expressed thus in the following examples.  

Examples  

1. Find the d. lat. and d. long. between lat. 25° 46' N., long. 15
0
 28’ W. and lat. 52

U
 56' 

N., long. 39° 47' W.  

 A lat. =25° 46' N.  A long. = 15° 28' W.  

 Blat. =52° 56'N.  Blong. =39°47'W.  

 --  --  

 d.lat. =27° 10' N.  d. long. =24° 19' W.  

 60  60  

 --  --  

 == 1630' N.  = 1459' W.  

The degrees are multiplied by 60 to change them into minutes and the odd minutes are 

added on.  

2. Find the d. lat. and d. long. between lat. 44° 25' N., long. 75° 46' W., and lat. 36° 19' 

S., long. 09° 26' W.  

A lat. =44° 25' N .. A long. =75° 46' W.  

 Blat. =36° 19' S.  B long. =09° 26' W.  

 --  --  

 d.lat. =80° 44' S.  d. long. =66° 20' E.  



 60  60  

 --  --  

 =4844' S.  =3980' E.  

3. Required the d. lat. and d. long. made good by a vessel which sails from position A 22° 

10' S., 09° 15' W., to a position B, 15° 30' N., 29° 30' E.  

 A lat. =22° 10' S.  long.  =09° 15' W.  

 Blat. = 15° 30' N.  long.  =29° 30' E.  

 --   --  

 d.lat. =37° 40' N.  d. long. =38° 45' E.  

 =2260' N.  =2325' E.  

 ---  -----  

Notes  

1. The latitudes being of different names, they are added to obtain the d. lat.  

2. The longitudes being of different names, they are added to obtain the d. long.  

4. A vessel steams from position P 18° 40' S., 136° 40·6' W., to position Q 31° 15·2' S., 

126° 35'8' E. Find the d. lat. and the d. long.  

 Plat. = 18° 40'0' S.  long.  = 136° 40'6' W.  

 Q lat. =31° 15·2' S.  long.  = 126° 35'8' E.  

 d. lat. = 12° 35·2' S.  d. long. =263° 16'4'  

 =755·2' S.  360°  

= 96° 43'6' W. = 5803'6' W.  

Notes  

1. The vessel is steaming from a West longitude across the 180° meridian to a position in 

East longitude, and is therefore proceeding in a westerly direction.  

2. The d . long. could have been obtained by adding the differences of each longitude 

from 180°.  

5. A vessel steams on a course which lies between North and East, and makes a d. lat. of 

925'8' N., and a d. long. of 1392·6' E. The initial position was 25° 20-7' N., 46° 45·2' W. 

Find the D.R. position.  

 lat.  =25° 20-7' N.  long.  =46° 45·2' W.  

 d.lat.  = 15° 25,8' N.  d. long. =23° 12'6' E.  



 D.R.lat. =40° 46'5' N.  long.  =23° 32·6' W.  

Note  

The d. lat., having the same name as the latitude, is added to it, while the d. long. being of 

opposite name to the longitude, is subtracted from it.  

EXERCISE lA 

Find the d. lat. and d. long between the following positions  

 Latitude  Longitude  Latitude  Longitude  

1.  P 40° 10' N.  9° 25' W.  Q 47° 15' N.  21° 14' W.  

2.  A 35° 15' N.  22° 12' W.  B 50° 25' N.  11° 37'W.  

3.  X 10° 12' N.  5° 03' E.  Y 5° 18' S.  7° 18' W.  

4.  L 20° 40' S.  170° 09' E.  M 13° 06' N.  178° 51' E.  

5.  A 30° 03' N.  152° 43' W.  B 42° 24' N.  174° 01' W.  

6.  F 11° 31' N.  178° 00' E.  K 5° 14' S.  177° 00' W.  

7.  A 8° 42' S.  162° 41' W.  Z 7° 53' N.  135
0
 27{ E.  

8.  B 15° 20' S.  130° 35' E.  K 33° 10' N.  155° 40' W.  

9.  V 52° 10' S.  171° 08' E.  W 27° 02' S.  34° 02' E.  

10.  L 60° 40' S.  151° 23' W.  M 10° 57' S.  92° 47' W.  



 

EXERCISE 1B 

1. The initial longitude is 4° 30' W. and the d. long. is 104' E.  

Find the final longitude.  

2. Initiallat.=20° 50' S., long. = 178° 49' E., d.lat.=33° 14' N., d.long.=15° 37' E. Find the final 

position.  

3. Initiallat.=39° 40' N., long. =9° 21' W., d. lat.=3° 57' N.,  

d.long. =27° 07' E. Find the final position.  

4. Final position lat. = 30° 10,6' S., long. =4° 40,3' E., d. lat. was 72° 18·8' S., and d. long. 

was 38° 54,7' E. What was the initial position?  

5. A ship steered a course between N. and E. making a d.lat. of 38° 55,5' and a d. long. of 20° 

41,8'. If the final position was lat. 21 ° 10-4' N., long. 168° 18-7' W., what was the initial 

position?  

The measurement of distance  

The measurements and calculations required to find position on the earth's surface are in units 

of angular measure. Position on the celestial sphere and on the earth’s surface is defined in the 

same units of angular measure. It is convenient therefore, at sea, to use as a unit of linear 

distance, the length of one minute of arc of a great circle on the surface of the earth. The great 

circles used are the terrestrial meridians so that the latitude scale of a navigator's chart 

becomes his scale of distance, one minute of latitude being equal to one mile.  

The exact length of the mile however varies due to the fact that the earth is not a true sphere 

but an oblate spheroid. The earth is flattened at the poles and bulges at the equator due to the 

forces of its own rotation. A meridian and its opposite meridian form therefore an 

approximate ellipse rather than a circle.  

The nautical mile or 'sea mile' is defined as the length of a meridian which subtends an angle 

of one minute at the centre of curvature of that part of the meridian being considered. Figure 

1.4 shows that because of the flattening at the poles, the radius of curvature of the polar 

regions is greater than that at the equatorial regions. The linear distance represented by an arc 

of one minute is therefore greater at the poles than at the equator.  

The length of a sea mile at the equator is approximately 1842·9 metres.  

The length of a sea mile at the poles is approximately 1861·7 metres.  

This variation is of little or no significance in practical navigation at sea and a standard length 

close to the mean value is adopted. The International Nautical Mile is an adopted value of 

1852 metres.  

In practical navigation any unit of d'iat is taken as a nautical mile,  



 

so that the difference of latitude between two places on the same meridian is, when expressed 

in minutes of arc, equal to the distance between them in nautical miles. Units of d'lat and 

distance are consistent units and may be used as such in any navigational formula.  

The unit of speed at sea is the nautical mile per hour. This unit is called a knot.  

The equator is the one great circle on the earth's surface which is actually a true circle. One 

minute of arc of the equator is therefore of constant length, about 1855·3 metres. This unit is 

called a geographical mile.  



 

CHAPTER 2 

THE MEASUREMENT OF DIRECTION 

The three figure notation  

The observer is imagined to be at the centre of his compass and the direction of the north 

geographical pole is taken to be 000°. The observer's horizon is divided into 360°, and any 

direction from the observer is expressed as a number of degrees measured clockwise from the 

direction of north.  

Three figure notation is used to express:  

1.Course. The direction of movement of the observer.  

2. Bearing. The direction of an object from the observer.  

Any instrument designed for the measurement of direction is called a compass. To measure 

direction correctly the zero mark of the compass must point towards the zero of direction, i.e. 

the direction of the north pole.  

This is not always the case. If it is not then the direction that the compass zero points in must 

be ascertained in order to apply the necessary correction.  

The Gyro Compass  

Gyroscopic compasses are liable to small variable errors, which should never exceed one or 

two degrees.  

If the zero mark, or north point of the compass card points to the left (to the West) of true 

North then all indications of direction taken from the card will be greater than the true value.  

In this case the gyro is said to be reading high, and any compass error will be negative to the 

compass reading to obtain the true reading.  

If the north point of the compass card is pointing to the right,  

or East, of the true North direction, then all readings taken from the compass card will be less 

than the true value.  

 

In this case the gyro is said to be reading low, and any compass error will be additive to 

compass reading to obtain true reading.  

Methods of calculating the value of the error will be explained in a later chapter. (See 'The 



Azimuth Problem'.)  

The Magnetic Compass  

Variation  

The magnetic poles of the earth are not coincident with the geographical poles. The north 

point of the>-compass therefore will not point towards the true direction of North.  

The direction in which the compass needle aligns itself can be thought of as the magnetic 

meridian. The angle between the true meridian and the magnetic meridian is called the 

VARIATION, and this angle varies with position on the earth's surface. It is named WEST if 

the compass needle points to the left of true North, and EAST if the compass needle points to 

the right of true North.  

Deviation  

The compass needle will only align itself with the magnetic meridian if it is free from all other 

influences except the magnetic field of the earth.  

This is rarely so, particularly on a ship which is constructed of steel. The magnetism induced 

in the steel by the earth's magnetic field causes the compass needle to deviate from the 

magnetic meridian, by an amount which is called the deviation. This will vary for any 

particular vessel for a number of reasons such as course, angle of heel, position on the earth's 

surface. Deviation is named WEST if the compass needle points to the left of the magnetic 

meridian, and EAST if the compass needle points to the right of the magnetic meridian. The 

direction of the magnetic meridian is called Magnetic North. The direction indicated by the 

compass needle is called Compass North.  



 

Compass Error  

The actual error of the compass at any time will be the combination of the variation and the 

deviation. If they are of the same name then the error will be the sum of the two and it will be 

named as they are. If they are of different names the compass error will be the difference 

between the two and 'will be named as the greater of the two.  

Example 1  

 Variation  10° E.  

 Deviation  5° E.  

Compass error 15° E.  

Example 2  

 Variation  9° W.  

 Deviation  3° E.  

Compass error 6° W.  

EXERCISE 2A 

Find the compass error given  

1.Dev. 15° W., Var. 30° E.  6. Dev. 10° W., Var. 5° W.  

2.Dev. 14° E., Var. 5° E.  7. Dev. 21° W., Var. 4° E.  

3.Dev. 3° W., Var. 30° W.  8. Dev. 8° E., Var. 8° W.  

4.Dev. 5° W., Var. 25° W.  9. Dev. 5° W., Var. 50° W.  

 5. Dev. 6° W., Var. 20° E.  10. Dev. 3° E., Var. 35° E.  

We have defined three directions which we can call north.  

True North. The direction of the north geographical pole. Magnetic North. The direction of 

the magnetic meridian at any place .  

Compass North. The direction indicated by the north point of the compass.  

The difference between True North and Magnetic North is the variation.  

The difference between Magnetic North and Compass North is the deviation.  

The difference between True North and Compass North is the compass error.  

Any course or bearing can be denoted using any of these three directions of north.  

True Course or Bearing. The angle at the observer between the direction of True North and 



the direction being measured, measured clockwise from North.  

Magnetic Course or Bearing. The angle at the observer between the direction of magnetic 

meridian and the direction being measured, measured clockwise from North.  

Compass Course or Bearing. The angle at the observer between the direction of compass 

north and the direction being measured, measured clockwise from North.  

The angle indicated by the compass is the compass course or bearing and this must be 

corrected to true course or bearing, before use.  

If the compass error is west the compass course or bearing will be greater than the true course 

or bearing.  

 

FIG. 2.5 

If the compass error is east the compass course or bearing will be less than the true course or 

bearing.  

 

FIG. 2.6 

From which may be deduced the mnemonic:  

Error WEST, compass BEST Error EAST, compass LEAST  

Note  

Deviation is dependent upon course, or ship's head. For any particular ship's head the 

deviation will be the same for ALL BEARINGS.  

Example 1  

A vessel is steering 240° by compass. Deviation for the 

ship's head is 10° E. Variation for the place is 20° W. Find 

the true course.  

 

Compass course 240°  or  Variation  20° W.  

 Deviation  10° E.   Deviation  10° E.  



  ---    ---  

 Magnetic course 250°   Compass error  10° W.  

 Variation  20° W.   Compass course 240°  

  ---    ---                  FIG. 2.7   

 True course  230°   True course  230°  

Example 2  

Find the compass course to steer to make good a True Course of 130° if the variation is 20° 

W., and the deviation is 10° E.  

 

 True course  130°  or  Variation  20° W.  

 Variation  20° W.   Deviation  10° E.  

 Magnetic course 150°   Compass error  10° W  

 Deviation  10° E.   True course  130°  

  ---    ---  

 Compass course 140°   Compass course 140°  

 

FIG. 2.8 

Variation for any particular place is found either from the centre of the compass rose on the 

Admiralty chart of the area, or from the Admiralty variation charts.  

Deviation is obtained from a deviation card compiled for a particular compass by the compass 

adjuster, or by direct observation as explained in a later chapter.  

EXERCISE 2B 

Find the true course  

 Course Dev. Var. 

1. 226° C. 3°W. 16° W. 

2. 01O°C. lOW. 18° W. 



3. 358° C. 2° E. 15° W. 

4. 267° C. 4°W. 20° E. 

5. 034° C. 3° E. 15° W. 

6. 332° C. 4°W. 10° W. 

7. 116° C. 2°W. 8°W. 

8. 218° C. 3° W. 11° W. 

9. 084° C. 5°W. 17° E. 

10. 178° C. 6° E. 11° E. 

 

EXERCISE 2C 

Find the compass course  

 Course Dev. Var. 

1. 222° T. 4° E. 15° E. 

2. 356° T. 5°W. 20
0
W. 

3. 172° T. 3° E. 18° W. 

4. 200° T. 2° E. 1° W. 

5. 005° T. 1° E. 5° E. 

6. 086° T. 1° W. Nil 

7. 106° T. 2° W. 10° W. 

8. 173° T. 3° E. 8°W. 

9. 306° T. 2° W. 11° W. 

10. 185° T. 3° W. 10° W. 

Given the error and the variation to find the deviation  

If, when the error and variation are given, it is desired to find the deviation, then the variation 

must be subtracted from the error as the error is the sum of the two. The variation may be 

subtracted by reversing its name. The deviation is then named according to the greater.  

The following examples indicate the method:  



 

Examples  

 error 20" W.  error 6" E.  error 0" W.  

 var. 15° W. (E.)  var. 20° E. (W.)  var. 5° E. (W.)  

  ---  ---  ---  

 dev.  5° W.  dev. 14° W.  dev. 5° W.  

  ---  ---  ----  

  ---  ---  ---  

 error 10° E.  error 20° E.  

 var. 15° W. (E.)  var. 6° E. (W.)  

 ---  ---  

 dev. 25° E.  dev. 14° E.  

 ---  ----------  

EXERCISE 2D 

Find the deviation given  

1.error 3° E., var. 21° W.  6. error 34° W., var. 39° W.  

2.error 15° W'o var. 24° W.  7. error 2° W., var. 12° W.  

3.error 37° E., var. 34° E.  8. error 7° E., var. 9° W.  

4.error 11° W., var. 7° W.  9. error 24° W., var. 30° W.  

5. error 23° E., var. 25° E.  0 10. error Nil var. 5° E.  

Given the true bearing and the compass bearing of a body, also the variation, to find the 

deviation  

Remember that if the error is East, it is added to a compass direction to obtain the true 

direction; it will be noted that the latter must be numerically greater than the former. 

Therefore, if the error is to be found, the rule is:  

True greater than Compass-Error is East Compass greater than True-Error is West  

Example 1  

The sun bore 120° T. and 110° C., find the compass error, and if the variation was 10° W., 

find the deviation.  

bearing = 110° C. bearing = 120° T.  



Error = 10° E.  

 Var.  = 10° W.  

 Dev.  = 20° E.  

Note. Compass LeastError East  

 

Example 2  

The sun's true amplitude is W. 10° 20' S. and the observed amplitude W. 20° N. Find the 

compass error, and if the variation is 25° W., find the deviation.  

 W. 20° N.  =290°  

W. 10° 20' S.=259° 40'  

bearing = 290° 00' C. bearing = 259° 40' T.  

Error = 30° 20' W.  

 Var.  = 25° 0' W.  

 Dev.  = 5° 20' W.  

Note. Compass BestError West  

 

EXERCISE 2E 

Find the deviation  

  Compass              True  

 bearing bearing Variation 

1. 050° C. 060° T. 12° E. 

2. 010° C. 005° T. l1°W. 

3. 075° C. 060° T. 19°W. 

4. 140° C. 115° T. 24°W. 

5. 242° C. 248° T. 13° E. 

6. 201 ° C. 201° T. 8° E. 

7. 309° C. 322° T. 8° E. 

8. 037° C. 022° T. 12° W. 



9. 341 ° C. 320° T. 23°W. 

10. 289° C. 310° T. 33° E. 

11. 260° C. 294° T. 49° E. 

12. 134° C. 120° T. 21° W. 



 

13. 163° C. 200° T. 62° E. 

14. 219° C. 175° T. 40
0
W. 

15. 278° C. 262° T. 1l0W. 

Relative bearing  

Bearings measured by pelorus, which is a 'dummy' compass card whose zero mark is aligned 

with the vessel's fore and aft line, are said to be relative bearings, that is, relative to the ship's 

head.  

The relative bearing may be defined as the angle at the observer measured clockwise from the 

direction of the ship's head, to the direction of the point observed.  

A relative bearing is also obtained from measurements by radio direction finder. (see Chapter 

3).  

To convert a relative bearing to a true bearing  

In order to obtain a true bearing from a relative measurement, the vessel's true heading at the 

time of the observation must be applied. It is not suffici~nt to aPRly the ship's course steered, 

as at tIie moment of observatIon the vessel may be one or more degrees off course. The 

heading should be observed at the instant of the observation.  

True bearing=True ship's head+ Relative bearing 

 (-360° if necessary)  

Example 1  

A relative bearing of 105°, (object 105° on the starboard bow), was observed on a ship whose 

heading at that time was 085
0
 T. Find the true bearing.  

 Relative bearing  105
0
  

 True ship's head  _085 
0
T_.  

 True bearing  190
0
 T  

Example 2  

A relative bearing of 248
0
 was observed from a vessel whose true  

heading at the time was 176~. Find the true bearing.  

 Relative bearing  248
0
  

 True ship's head  _17_6_T_.  

 True bearing  424
0
  

   -360
0
  

---  

=064 
0
T  



 

EXERCISE 2F 

Fill in tbe blanks  

 Compass   Magnetic   True  

 Course   Course   Course  

 or   or   or  

 bearing  Dev.  bearing  Var.  bearing  

 I. 050° C.  -  056° M.  -  036° T.  

 2.  -  3° E.  220° M.  --  225° T.  

 3.   4° W.  280° M.  18
c
 W.  -  

 4.  
0030

 C.  -  358
0
 M.  -  013° T.  

 5.  -  4" W.  241
0
 M.  llo W.  -  

 6.  169° C.  3° E.  -  -  184° T.  

 7.  -  2° E.   20° E.  008° T.  

8.286
0
 C.  6

c
 W.   5' W.  -  

 9.  088° C.  -  091° M.  -  066° T.  

10.  -  4° E.  205° M  30° W  -  

11.  332
0 

C.   332 M.  --  0l4 
0
T.  

12.  180° C.  -  178° M.   178° T.  

The deviation table  

A deviation table and deviation curve is compiled, after correction of the compass, by direct 

observation of the residual errors and deviations. In subsequent use of the deviation table it 

should be remembered that it was compiled for a particular condition of the ship with respect 

to moveable structures, condition  



 

of loading, draft, etc., and may not be accurate for other conditions. It should be used only 

when the deviation is not available by direct observation.  

A deviation table is provided with the chartwork paper in Department of Trade examinations 

on which a deviation is given against compass heading at intervals of 10°. Deviations should 

be extracted using the compass heading as argument, interpolating between tabulated values. 

A sample deviation card is given which is used in examples and exercises to follow. The 

values included in the deviation column are rather large to be acceptable in practice but these 

values are used the better to illustrate the principles of interpolation required in examinations.  

To extract a deviation given the compass heading of the vessel Enter the deviation table with 

the given compass heading and extract the deviation, interpolating between tabulated values.  

Example  

A vessel is steering 113° C. Find the true course if the variation is 8°W.  

From deviation table;  

 compass course  deviation  

 110° C.  15° W.  

 difference 3° 113° C.   difference 3°  

 120°C.  12°W.  

deviation for 113° C= 15
o
 _ 

3
_

X
_

3
  

10  

 =15°      -1° almost  

       =14° W  

 Compass course  113° C.  

 deviation  14° W.  

 Magnetic course 099° M.  

 variation  8° W.  

 True course  091 ° T.  

To find the deviation from a deviation table given the true course and the variation  

Again the argument used in the deviation table must be the compass course. As yet however 

this is not known so that the following procedure should be adopted.  

1. Apply the variation to the true course to obtain the magnetic course.  

 



2. Extract from the deviation table the two values of compass course and of deviation which 

when combined will give two values of magnetic heading which 'straddle' the ship's magnetic 

course found 10 (1).  

3. Interpolate between the two values of deviation according to the value of the ship's 

magnetic course as compared with the two values, either side of this magnetic course. See 

example.  

4. Apply the deviation obtained to the magnetic course to give the compass course. By 

entering the deviation table with this compass course obtained, a value of deviation should be 

extracted which is the same as that used in (3).  

Example  

A vessel requires to make good a true course of 213° T. Using the deviation table provided 

find the compass course to steer if the variation is 91/2 ° W.  

(1) True course  213° T.  

 variation  91/2° W.  

Magnetic course 222
1
12° M.  

(2) From deviation table; Compass  

 course Deviation   Mag. Co.  

 210° C.  6° E.  =  216° M.                     . diff 61/2 °   

    222 1/2°M    

  diff. 3°                                        diff. 13°  

 220° C.  9° E.  =  229° M.  

(3) Interpolating between 216 and 229 magnetic for a magnetic course of 222 1/2°, gives;  

deviation  =6° E. +3x61/2  

         13 

    =6° +1·5° =7·5° E. 

(4) Magnetic course 222 1/2° M.  

 deviation  7 1/2 ° E.  

 compass course  215° C.  

EXERCISE 2G 

In the following cases, given the true course and the variation, using the specimen deviation 

table provided, find the compass course to steer.  

 



 

1.True course 100" variation 6° W.  

2.True course 024° variation 9° W.  

3.True course 352° variation 2° E.  

4.True course 262° variation 5° E. 5. True course 148° variation 12° W.  

Specimen deviation table  

 Ship's head                       Ship's head  

by compass Deviation by compass Deviatio 

000° 2°W. 180" lOW. 

010° 4°W. 1WO 2°E. 

020" 6°W. 200° 4°E. 

030° 7°W. 210° 6°E. 

040" 8°W. 220° 9°E. 

050° 10"W. 230° 11°E. 

060° 13°W. 240" 13°E. 

070° 15°W. 250° 15° E. 

080° 16°W. 260" 17°E. 

090" 19°W; 270" 20° E. 

100° 17°W. 280° 18°E. 

110" 15°W. 290° 15°E. 

120" 12°W. 300° 12°E. 

130° 10" W. 310° 9
0
E. 

140° 8°W. 320° 7°E. 

150° 6°w. 330" 5°E. 

160
0
 4°W. 340" 3°E. 

170
0
 3°W. 350" nil 

Wind and tide  

The direction in which a vessel progresses may differ from that in which the vessel is heading, 

due to the effects of wind and tide.  

The vessel may be assumed to move through the water in the direction in which it is steered, 

but a tidal stream, which is a horizontal movement of water due to differences in tidal height 

at different geographical positions, will carry the ship with it, and the resultant ship's motion 

will be that ofthe ship through the water and that of the water itself relative to the sea bed. It is 

necessary therefore to differentiate between the course steered and the course made good.  

Course steered  

This is the heading indicated by the lubber line of the compass, this being the direction in 

which the vessel is heading. Note that this is the course to which all relative bearings must be 

applied in order to convert to true bearings, irrespective of the direction in which the  



vessel is moving. Lines drawn on a chart to represent a course steered should be marked with 

a single arrow.  

Course made good  

This is the true direction of the ship's movement relative to the sea bottom. It may be found by 

the vectorial addition of the velocity of the ship through the water, and the velocity of the tidal 

stream. Lines drawn on a chart to represent a course made good should be marked with a 

double arrow.  

Rate of the tide  

This is the speed of the tide in nautical miles per hour or knots.  

Drift of the tide  

This is the distance moved by the tide in nautical miles, in a specified time interval.  

    drift of tide  

Thus rate oftide= 

                             time interval  

To find the course and speed made good given the ship's course IIteered and speed and 

the set and rate of the tidal stream  

Example  

Find the course and speed made good by a vessel steering 035° T. at 12 knots through a tidal 

stream setting 110° T. at 2.5 knots.  

Procedure (refer to figure 2.12)  

1. Layoff from a departure position the course steered (035°), IInd mark off a distance along 

this line equal to the vessel's speed. (It is often convenient to use an interval of one hour, but 

if appropriate IIn interval of half an hour or any other convenient interval may be used. The 

distance to be marked off along the course line will then he the distance steamed in that 

interval.) Mark this line with a single II rrow .  

2. From the position reached in (1), layoff the direction of the I idal stream or current, and 

mark off a distance equal to the rate of Ihe tide. (Or if the chosen interval is not one hour then 

mark off a distance equal to the drift of the tide in the chosen interval.)  

3. Join the position reached in (2), to the original departure position to represent the track 

along which the vessel will progress, I. c. the course made good. The length of this line will 

give the distance made good in the interval and hence the vessel's speed.  

Counteracting the tide  

The course steered may be adjusted for the effect of the tide in   



 

 

order that the vessel progresses in a required direction. To counteract a tide the vessel must 

adjust its course up into the tide so that the tide will carry the vessel back down onto its 

required course line again.  

To find the course to steer to counteract a given current, to make good a required course  

Example  

Find the course to steer to make good a course of 035° T, when steaming through a current 

setting 110
0 

T at 2·5 knots, if the ship's speed is 12 knots.  

 

 

 



Procedure (refer to figure 2.13)  

1. Layoff the course which it is required to make good from the ship's departure position to 

the destination. Mark this line with double arrow.  

2. From the departure position layoff the direction of the tide or current and mark off the drift 

of the tide for any convenient chosen interval. (One hour is usually convenient.) Mark this 

line with a treble arrow.  

3. From the position at the end of the tide found in (2), with compasses, describe an arc of 

radius the distance steamed by the ship in the chosen interval (the ship's speed if the interval 

used is one hour), to cut the course to be made good.  

 



 

4. Join the position where the arc cuts the course to be made good with the end of the tide. 

The direction of this line will give the course to be steered. Mark this line with a single arrow.  

5. Measure the speed which will be made good. This will be given by the length of the line 

which represents the course to be made good, from the departure position to the position 

where the arc described cuts this line.  

Note  

Although the vessel will progress along the course to be made good, the ship's head will be 

that of the course steered, so that any relative bearing will be with respect to the course 

steered. Particular note should be taken of this when finding the position where a point of land 

will be abeam. The ship will be on the course line made good but the beam bearing will be at 

right angles to the course steered, or ship's head.  

To find the distance and time at which the vessel will pass a point of land when abeam  

Example  

At 1000 hrs Lizard Point Lt. bore 000" T by 2·5 miles. Find the course to steer to make good 

a course of 050
0
 T in order to counteract a current setting 2800 T at 2 knots. Ship's speed 10 

knots. Find the distance off Black Head when abeam and the time when abeam.  

Figure 2.14 shows the construction to counteract the current. The course to steer is 059
0
 T, 

and therefore the beam bearing of Black Head will be 329
0
 T. This will not be at right angles 

to the course made good, that is the track along which the vessel progresses. The beam 

distance will therefore not be the least distance.  

From figure 2.14;  

 distance when abeam  =1·5 miles.  

 speed made good  =8·4 knots.  

distance to beam bearing=5 miles  

 time when abeam  =1000+-:-.4- hrs.  

=1000+0·6 =1036 hrs.  

To reach a position at a required time while counteracting a current To arrive at a 

position at a given time the vessel's speed must be adjusted so that;  

                      distance to steam to required position  

speed= 

                      required time interval  



 

This will give the speed which must be made good over the ground. If there is a current or 

tidal stream, the vessel's log speed or speed through the water may be more or less than the 

speed made good. As the speed through the water will be determined by the engine 

revolutions, it is this speed which must be found.  

Example  

A vessel observes Fastnet Rock to bear 3400 T. by 7 miles. She wishes to arrive off Cork, a 

distance of 48 miles, in 6 hours. A tidal stream is estimated to set 285
0
 T. at an average rate of 

1· 3 knots over the next 6 hours. Find the course to steer to make good a required course of 

075
0
 T., and the speed necessary to cover the 48 miles in six hours.  

Procedure (refer to figure 2.15)  

1. Having laid off the required course of 075
0
 T. and measured  



 

 



the distance to go to be 48 miles, the speed to make good can be calculated to be  

 48  
=8 knots.  

   6 

2. From the departure position layoff the current in the direction given (285
0
 T.) and mark off 

the rate (1·3 miles).  

3. From the departure position mark off the speed to make good, along the course to be made 

good.  

4. Join the end of the tide found in (2), to the end of the speed made good found in (3). The 

direction of this line will give the course to steer, and its length will give the speed to make 

good through the water, that is the speed to use when determining the engine revolutions to 

order.  

To find tbe set and drift of tbe tide between two observed positions  

The set and drift, or rate, of the tidal stream or current may be found if two observed positions 

are available, and the courses and distances steamed between the two observations are known. 

The difference between the D.R. position at the time of the second observation, and the actual 

position as observed, is due to the tide.  

Example  

At 0800 a point of land is observed to bear 120
0
 T. by 5 miles. At 0830 the same point of land 

was observed to bear 220
0
 T. by 6.5 miles. Find the set and rate of the current, if the course 

steered in the interval was 078
0
 T. speed 20 knots.  

Procedure (refer to figure 2.16)  

1. Layoff the two observed positions and label with their respective times.  

2. From the first observed position layoff the course steered, and the distance steamed in the 

interval between the observations, to find the D. R. position for the time of the second 

observation. Mark this line with a single arrow.  

3. Join the D.R. position found in (2) to the second observed position and mark the line with a 

treble arrow. Measure the direction to give the set of the current and the length to give the 

drift.  

To find tbe course to steer to pick up a point of land at a required angle on tbe bow at a 

given distance.  

This may be done by solving the right angled triangle P AB in figure 2.17 to find the beam 

distance PB. The angle PAB is the required angle on the bow and the side PAis the required 

distance.  



 

 

 

 



When the beam distance is found the required course can be drawn tangential to a circle of 

that radius centred upon the point of land. The solution of the triangle may be done by 

traverse table.  

 

Procedure  

1. Calculate the beam distance. If traverse tables are used, the tables are entered with the angle 

on the bow as the course angle, and the required distance off as the distance (hypotenuse). 

The beam distance is extracted from the departure (opposite) column.  

2. Draw a circle centred upon the point of land, of radius the beam distance found in (1).  

3. Draw the course line to steer from the departure position, tangential to the beam distance 

circle.  

4. Draw an arc of radius the given distance off, and centred upon the point of land, to cut the 

course line drawn. The intersection will give the position at which the point of land will be at 

the given distance and at the required angle on the bow.  

Effect of the wind. Leeway  

A vessel may be deviated from her course steered, or from her course made good due to the 

effect of the tide, by the wind. The change in a vessel's course angle due to the effect of a 

wind is called the leeway. The course made good due to the wind may be found by applying 

the leeway to the course steered in the direction in which the wind is causing the vessel to 

drift, that is down wind. The effect of the wind may be counteracted by applying the leeway 

to the course steered up into the wind.  



 

To find the effect of a tide and a wind, the leeway is applied to the courses steered before 

laying them on the chart.  

To allow for a tide and for the effect of leeway, the leeway is applied to the course to be 

steered, after allowing for the tide.  

Example 1  

Given a vessel's course is 135° T., wind S.W., leeway 5°, find the  

track.  

    Course     = 135° T.  

 Leeway    = 5°    (wind on the starboard side, subtract)  

   Track       = 130
0
T.  

Example 2 (refer to figure 2.18)  

Find the course to steer to counteract a current setting 085° T at 1·5 knots, and a S.W.'ly wind 

causing a leeway of 4°, in order to make good a course of 1200 T. Ship's speed 10 knots .  

EXERCISE 2H 

Find the track  

 Course  Dev.  Var.  Leeway  Wind  

l.  055° C.  3° E.  13° W.  4°  N.N.W.  

2.  140° C.  4°W.  10 
o
W.  5°  S.W.  

3.  246° C.  2° E.  15° E.  4°  N.W.  

4.  330° C.  3°W.  8°W.  3°  S.W.  

5.  104° C.  6° E.  12° W.  7°  N.E.  

6.  084° C.  2°W.  20° E.  5°  North  

7.  354° C.  5° W.  18° E.  6°  West  

8.  190° C.  Nil  22° W.  10°  E.S.E.  

9.  240° C.  3° E.  5° E.  8°  W.N.W.  

10.  280° C.  1° W.  25°W.  4°  N.N.W.  

EXERCISE 21 

1. Find the course to steer to make good a course of 160" T. on a vessel of speed 18 knots, 

steaming through a current setting 215° T. at 3 knots. What will be the speed made good in 

the direction 1600 T.?  

2. Find the course and speed made good if a vessel steams 305° T. at 12 knots through a 

current setting 243° T. at 2·5 knots.  



 



 

3. Find the set and rate of the current if a point of land is observed to bear 025° T. by 6 miles 

and 45 minutes later is observed to bear 300° T. by 12 miles, if in the interval the vessel was 

steering 095° T. at 20 knots.  

4. Find the true course to steer to make good a course of 350° T. on a vessel of speed 15 

knots, steaming through a current setting 005° T. at 2 knots, if a westerly wind is causing a 

leeway of 5°.  

5. Find the course and speed made good if a vessel steaming 176° at 17 knots through a 

current setting 020° T. at 3 knots, is experiencing a leeway of 5° due to an easterly wind.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 3  

POSITION LINES  

A position line is a line on the earth's surface which represents the locus of an observer who 

moves such that some item of observed information remains of constant value. Position lines 

generally used may take the form of part of a great circle, small circle, or hyperbola, 

depending upon the nature ofthe information observed, but in general, that part of the position 

line which lies near to the ship's O.R. position may be considered as, and represented on a 

chart as a straight line without any considerable error. If such a line is drawn on a chart, the 

observer may be assumed to be on that line. To fix the observer's position two, non coincident 

position lines must be drawn to intersect, the point of intersection defining the observer's 

position.  

Position lines obtained from bearings  

The most commonly used method of obtaining a position line at sea is to observe the bearing 

of a known and charted position. The most commonly used fix is that produced from two such 

position lines. This is not inherently the most accurate method of fixing but bearing 

information is in general the easiest to obtain. This may be done visually with a compass or 

by observing the direction from which radio waves radiated from a shore beacon, reach the 

observer by means of an aerial which has directional properties. In both cases the bearing 

measured will be the direction of the great circle which passes through the observer and the 

observed position, at the observer. Both a visual line of sight and a radio wave, follow a great 

circle path along the earth's surface.  

In the case of the visual bearing this measured bearing, corrected for any compass error, may 

be laid off on a mercator chart from the charted posItion of the point observed, as a straight 

line, and this line can be assumed to represent the position line. The error incurred in doing 

this is negligible over the short distances over which visual bearings are taken.  

In the case of a bearing observed by radio direction finder, errors may be considerable if this 

is done due to the longer path length of the radio wave, and to the longer distances on the 

chart over which the bearing is laid off. To maintain errors within tolerable limits radio OfF 

bearings are corrected for the half convergency, which may be considered to be the difference 

between the great circle  



 

bearing of a point, and the mercator or rhumb line bearing which is produced on the chart by 

laying off a straight line. This is illustrated In figure 3.1  

The half convergency may be found by the approximate formula;  

                                                     d'longx sine mean latitude  

 half convergency  =   

    2  

Alternatively it may be obtained from a half convergency table provided in Burton's or Nories' 

nautical tables.  

 

Direction of the half convergency correction  

The appearance of a great circle on a mercator chart is a curve which is concave towards the 

equator. The mercator bearing always lies on the equatorial side of the great circle bearing 

therefore, and the correction to the great circle bearing is always applied towards the equator. 

This is illustrated in figure 3.2 which shows the four possible cases of;  

a.westerly bearing in north latitude,  

b.easterly bearing in north latitude,  

c.westerly bearing in south latitude, d. easterly bearing in south latitude.  

Example  

From a ship in O.R. position 44° 10' S. 144° 50' E., a OfF station bore 055°. If the position of 

the OfF station is 42° 53' S. 147° 14' E., find the rhumb line bearing.  



 

D.R. position 44° 10' S. 144° 50' E. Mean lat. =43° 31' S.  

D/F station  42° 53' S. 147° 14' E.  

 d'lat.  = 1° 17' N. 2°24' E. =d'long.  

  =77'  =144'  

144x sine 43° 31'  

 half convergency  =   

  2  

 =49·6' = ¾° approx.  

 great circle bearing  055°  

 
1/2

 conv.  3/4°  

 rhumb line bearing 054 ¼°  

 



 

The position circle  

If the information observed is that of distance from a known and charted object or point of 

land then the position line will take the form of a small circle centred upon the position of the 

object observed and of radius the distance measured. Such information may be readily 

obtained by radar observation. Position lines obtained by this method are inherently more 

accurate than those obtained from bearing information. This is due to the limitations of the 

instruments used for taking bearings, be they visual or by radar, and also to the fact that 

whereas the effect of an error in bearing, measured in terms of a distance error, increases as 

the position line diverges from the position observed, an error in range is constant, and does 

not increase with distance from the object observed.  

The vertical sextant angle  

Distance information may be obtained by observing the angle subtended by the top of a 

vertical structure or land formation of known height, and the sea foreshore at its base. The 

marine sextant is generally used for such an observation. The vertical angle subtended varies 

as the distance- of the observer from the object, which can be readily found.  

 

The vertical sextant angled observed is illustrated in figure 3.4.  

This is considered to be equal to angle LCD without undue error. The trian~le LCD, which is 

right angled at C can then be solved to find the distance CD.  

By plane trigonometry CD=CL Tan vertical angle.  

Note that the distance must be measured on the chart from the position of the highest point 

observed, that is in figure 3.4 from the position ofthe lighthouse, and not from the foreshore. 

Solutions for the distance off, tabulated against vertical angle and the height of the object 

observed, are given in nautical tables.  

Heights of lights and topographical features given on Admiralty charts are expressed above 

Mean High Water Springs. For accurate  



distances by this method these heights should be adjusted for the height of the tide as shown 

in Chapter 15, before entering vertical angle tables. In practice the uncorrected heights are 

used as the unknown error will always put the vessel closer to the position observed than its 

true position. This will in most cases fix the vessel closer to the danger and leave the 

navigator with a margin of safety. This will not be the case however if the danger lies on the 

side of the vessel away from the position observed.  

The accuracy of this method depends upon the base of the object at sea level being visible. At 

distances greater than that of the sea horizon for the observer's height of eye, the base will not 

be visible and the angle measured will be that subtended by the top of the object and the sea 

horizon. If this is the case vertical sextant angle tables will not be valid.  

Horizontal sextant angles  

A position circle is obtained if the angular distance between two known and charted objects is 

measured by an observer. This information may be obtained with a marine sextant but is also 

readily obtained to acceptable accuracy by taking the difference between the compass 

bearings of the two objects. The advantage of using compass bearings in this way rather than 

to produce a fix by cross bearings, is that any unknown compass error will have no effect on 

the position line obtained. A fix may be produced by two horizontal angles obtained from 

compass bearings of three objects, independent of compass error, and the true bearings 

obtained from the chart after the fix is determined will, on comparison with the compass 

bearings observed, give the error of the compass.  

The angle subtended by the chord of a circle at the circumference of the circle is the same at 

all points on the circumference. A circle may therefore be drawn a chord of which is formed 

by the straight  

 



 

line between the two points whose horizontal angle is known. The observer will lie 

somewhere on that circle.  

In figure 3.5 angle ACB=2 x angle AFB  

 =2x measured horizontal angle.  

(the angle on a chord at the 

centre of a circle is twice that at 

the circumference.)  

Also in triangle ACB, angle CAB=angle CBA  

180°- ACB  

= 

 2  

180°- (2 x AFB) 

= 

 2  

 =90°- AFB  

Thus to find the angles LCBA and LCAB, the measured horizontal angle is subtracted from 

90°. (If the measured angle is less than 90°.)  

Procedure (refer to figure 3.5). To be followed if the measured angle is less than 90°.  

1. Join the charted positions of the two points between which the horizontal angle has been 

obtained, with a straight line. (AB)  

2. Construct the angles LCBA and LCAB at the positions observed on the side of the line on 

which the observer lies. The values of LACB and LCAB have been shown to be 90°-

horizontal angle observed. The point of intersection of the two lines AC and BC so formed 

will be the centre of the required circle.  

3. Draw a circle centred on C to pass through the two positions between which the horizontal 

angle is known, A and B. This circle is the position circle.  

4. Repeat for a second horizontal angle to produce an intersection of two position circles.  

5. If required, measure the true bearings of the points observed, from the chart and compare 

with the compass bearings to find the compass error.  

Example  

The following compass bearings were observed. Find the ship's  

position and also the error of the compass.  

 Great SkeUig lighthouse  304° C.  

 Bolus Head  029° C.  

Great Hog Island (Scarriff) 074° C. Highest point (829) observed.  



Refer to figure 3.6 and to the procedure outlined above for the construction.  

Ship's position=51° 41·8' N. 10° 24·8' w.  

 Great Skellig Lt. Bolus Hd.  Scarriff  

True bearing  310° T.  035° T.  080° T.  

Compass bearing  304° C.  029° C.  074° C.  

 ---  ---  ---  

Compass error  6° E.  6° E.  6° E.  

Note  

By checking the compass error with the three bearings a check is provided that the 

construction has been done correctly.  

Horizontal angle measured greater than 90°  

In this case the observer lies on the circumference of the circle on the opposite side of the 

chord of the circle to the circles' centre.  

In figure 3.7  

angle LACB=3600- LAFB (the horizontal angle)  

and angle LCBA=angle LCAB=180°-(3600- LAFB)  

2  

=90°-180°+ LAFB  

= LAFB-90°  

Thus the angles LCBA and LCAB are found by subtracting 90° from the horizontal angle 

measured.  

Procedure  

This is the same as for the case of the horizontal angle less than 90° except that the angles 

LCBA and LCAB are laid off on the straight line joining the two positions, on the opposite 

side of the line to the observer's position. See example in figure 3.8.  

Example  

The following compass bearings were observed. Draw a position  

line by horizontal angles.  

 Galley Head. Lt.  050° C.  

 Castle Haven Lt.  295° C.  

 Horizontal angle  115°  



Construction angles 115°-90°=25° See figure 3.8 for construction.  



 

 

 

Notes  

If the observed horizontal angle is 90°, then the centre of the circle lies on the straight line 



which joins the two positions between which the angle has been measured. The chord of the 

circle is in fact a diameter of the circle.  

A poor angle of cut will result if the two position circles almost coincide. If all the observed 

positions and the vessel's position also, lie on the circumference of the same circle, then the 

two position circles constructed will coincide and a fix cannot be obtained. When choosing 

features to observe for horizontal angles the vessel's D.R. position should be compared with 

the positions to be observed to check for this condition.  

The transit bearing  

One of the most useful and easily obtained position lines is that from observation of two 

known and charted objects which lie on the same bearing from the observer. Such objects are 

said to be in transit. A straight line drawn on the chart through the two positions will represent 

the charted position line. Observation of a transit does not require a compass but if the 

compass bearing is noted as the two objects come into line, a compass error may be readily 

obtained by comparison with the true bearing of the transit taken from the chart. If a compass 

bearing of some other prominent object is observed at the same time as the transit, then the 

accurate compass error obtained from the transit may be used to correct this compass bearing. 

An accurate fix may be obtained in this way very quickly, and with practice this method of 

fixing can be used to good effect in confined navigational waters where plenty of coastal 

features and beacons are available.  



 

 

Example  

From a vessel entering Bantry Bay, Sheep Head Lighthouse was observed to be in transit with 

Three Castle Head bearing 168
0
 by compass. At the same time Black Ball Head was observed 

to bear 264%0 by compass. Find the ship's position.  

Procedure (refer to figure 3.9)  

1. Draw a straight line through Sheep Head Lighthouse and Three Castle Head, and produce it 

into Bantry Bay. Measure the true direction of this bearing from the chart compass rose.  

2. Compare the true bearing of the transit with the compass bearing to obtain the compass 

error.  

3. Using the compass error obtained in (2) correct the compass bearing of Black Ball Head to 

true .•  

4. Layoff the true bearing of Black Ball Head to cross the transit bearing at the ship's position.  



Note  

A compass error obtained at the time of observation by this means or by any other means 

should always be used in preference to one taken from a deviation card and compass rose, or 

to one taken at some earlier time.  

The use of the transit bearing for leading marks  

The transit bearing is used to mark the direction of approach through a navigable channel. 

Beacons erected to provide a transit bearing are called leading marks or leading lights. A 

vessel navigating in the channel maintains the leading marks in line to keep herself in the 

channel and on the correct approach.  

Very often this technique may be used by the navigator in close waters even though leading 

marks are not provided, by selecting natural prominent features or charted buildings. The 

technique is also very useful when keeping a check on anchor bearings. At anchor there are 

invariably enough natural topographical features to choose transits, which tell at a glance 

whether the vessel is dragging or not. The swing of the vessel around her anchor should not 

be mistaken for a dragging.  

Position circle by rising and dipping distance  

When making a landfall at night a first position may very often be obtained by observing a 

light which just appears above the horizon. In clear weather the loom of a light may very 

often be seen long before the actual light itself is seen. If a bearing is then taken when the 

actual light just appears or rises, then a position may be obtained by crossing this bearing with 

a position circle obtained  



 

 

from a distance off. The height of the light must be obtained from the chart. The accuracy of 

such a position is acceptable as a first landfall position, but the distance may be approximate 

for a number of reasons.  

The distance of the sea horizon is given by the formula 2·08.J'11, where h is the height of the 

observer's eye in metres. The formula gives the distance in nautical miles. The constant 2·08 

includes allowance for an estimated refraction for normal atmospheric conditions. Abnormal 

refraction however may cause inaccuracy.  

Figure 3.10 shows that the distance at which a light will first rise above the horizon will be 

given by:  

2·08 Jh+2'08 JH where h ::::;height of eye in metres.  

H ::::; height of light above sea level in metres.  

 

The solution of this formula may be obtained from nautical tables, from the table giving the 

distance of the sea horizon against height of eye. The distance is taken out in two parts, one 



for the observer's height of eye and one for the height of the light.  

It should be remembered that the heights of lights on charts are given above mean high water 

springs, and unless this height is adjusted for the height oftide, the distance obtained will be 

usually too small.  

Ranges of lights  

Nominal range-This is the range given against the light on Admiralty charts, and also in 

Admiralty Lists of Lights. It is the visible range based upon its intensity, which is measured in 

candelas, and upon a meteorological visibility of 10 nautical miles.  

Geographical range-This is the maximum range at which it is possible to see the light as 

dictated by the curvature of the earth. This will depend upon the observer's height of eye and 

upon the height of the light above sea level. A formula for the geographical range was given 

when discussing the rising and dipping of lights.  

The actual range at which the light may be seen may be more or  



 

less than the nominal range depending upon the prevailing atmospheric conditions and the 

meteorological visibility. The range at which the light may be seen under any particular 

meteorological visibility is called the luminous range. This may be obtained from a luminous 

range diagram which is given in the introduction to each volume of the Admiralty List of 

Lights. This is reproduced in figure 3.11.  

The nominal range obtained from the chart is entered at the top margin of the diagram. Going 

vertically down from this point until the cross curve which is labelled with the estimated 

meteorological visibility is reached, and then across to the left hand border scale gives the 

expected luminous range.  

Example  

A light of nominal range 25 miles is estimated meteorolgical visibility of 20 miles would be 

seen at a luminous range of 42 miles.  

The light will only be seen at the luminous range if the observer has sufficient height of eye. It 

will be seen at the luminous range if the geographical range is greater than the luminous 

range. If the luminous ran~e is greater than the geographical range then the light will be seen 

rIsing or dipping at the geographical range.  

Note  

The luminous range obtained from the diagram in this way is only approximate and may vary 

with different atmospheric conditions and conditions of background lighting from shore etc. 

The luminous range should only be used as a guide to when a light may be expected to be 

seen, and not to establish a position circle when it is seen. This may only be done when the 

light is seen rising or dipping.  

Danger angles  

The vertical sextant angle or the horizontal sextant angle may be used as a danger angle to 

enable the navigator to maintain a required distance off a navigational hazard.  

The vertical sextant angle of an elevated point increases as the observer's distance from it 

decreases. If the distance inside which the observer does not wish to go is used to enter the 

distance by vertical sextant angle tables, then the vertical sextant angle corresponding to that 

distance may be extracted. Monitoring of the vertical sextant angle of the elevated point as the 

vessel passes, to ensure that it does not attain a greater value than that extracted for the 

minimum distance, will ensure that the vessel does not go closer than desired to the danger.  

This technique may be used to advantage when rounding or passing a point which is suitable 

for observation of vertical sextant angle, at a small distance off. The time required to fix the 

ship by  



 



 

other methods to monitor the distance off may take too long to give adequate warning when 

navigating close to.  

Example  

It is required to pass the point of land shown in figure 3.12, at a distance not less than 5 

cables. A lighthouse of height 35 metres lies 4 cables inland from the outlying danger. Find 

the danger angle to set on a sextant to observe the vertical angle subtended by the light.  

 

A horizontal angle may be used in the same way if there are beacons or charted buildings 

available which are suitable for horizontal angle observation. Figure 3.13 shows an outlying 

danger with two suitable marks, one on either side of the danger. A minimum distance may be 

chosen, and a point marked on the chart offshore from the outlying danger by this distance. 

The horizontal angle can then be measured from the chart by drawing lines from this point to 

the two objects to be observed, and measuring the  

angle between them. Monitoring of this angle as the vessel passes the danger will ensure that 

the vessel does not go inside the circle shown in figure 3.13.  

Hyperbolic position lines  

A hyperbolic position line is obtained from measurement of the difference in the distances 

from the observer to two fixed points. Invariably this informatoin is obtained by means of 

radio navigational aids, and the fixed points are the positions of the radio transmitters. The 

operator may make the necessary measurements with the receiving equipment without being 

aware of the underlying principles, and furthermore the position lines must be overprinted on 

navigational charts, as the hyperbolic shape is not easily drawn by the navigator. A series of 

charts is produced for each hyperbolic navigational system which are overprinted with 

hyperbolae which are representative of the position line at suitable intervals, between which 



the navigator must interpolate to find his particular position line. The charted hyperbolae are 

labelled with values in the same units which are displayed by the receiving equipment. 

Navigational aids which give hyperbolic position lines include the Decca Navigator, Loran, 

Omega, and Consol.  

In order to qualify for a Department of Trade Class V, Class IV or Class III certificate the 

candidate must hold an Electronic Navigational Aids certificate which covers the use of all 

radio navigational aids. A description of the principles and operation of these aids is therefore 

not appropriate here. Candidates will however be expected to be able to plot position lines 

from information derived from these navigation I aids, in particular the Decca Navigator, 

which is the only one ofthe aids mentioned which give accuracy consistent with all coastal 

navigation requirements.  



 

CHAPTER 4 mE SAILINGS  

In this chapter the problems of calculating the course and distance between two positions on 

the earth's surface are considered.  

Parallel salling  

To be used when finding the distance to steam between two positions which are in the same 

latitude.  

The distance measured along a parallel of latitude between any two given meridians decreases 

as the meridians converge towards the poles, being maximum at the equator. This distance, 

i.e. the distance measured along a parallel of latitude between two given meridians, is called 

the departure, and is expressed in nautical miles. There is therefore' a relationship between 

departure, difference of longitude, and latitude.  

The exact relationship can be seen as follows:  

 

In the figure let the circle represent the earth, C its centre, QQ' the equator, LL' a parallel of 

latitude (}O, PP' the earth's axis and F the centre of the small circle LL'.  

D and E are two positions on the parallel LL' with PAP' and PBP' the meridians through these 

two places. CA, CB and CD are radii of the earth.  

By circular measure, the length of an are, which subtends any given angle at its centre, is 

proportional to its radius.  

Thus -g_~=_~A_C where DE is the departure and BA is the d.long. Therefore _D_E=_D_F  

BA AC  

and as DC and AC are both radii of the earth:  

DE_DF -BA---D-C  

Thus  -~A_E=cosine LFDC  

Thus  Departure - Cosine Latitude.  

D. !,png.  



The finding of distance between any two positions on the same parallel is, merely the 

application of this formula.  

Example 1  

Find the distance to steam between the two positions:  

A 51° 20' N. 48° 30' W. and B 51 ° 20' N. 38° 10' W.  

 d. long.  = 10° 20' E.=620'  

and Departure = d. long. x coso latitude  

Departure=620xcos. 51° 20' = 3.87·4  

Distance = 387·4 miles  

Example 2  

Number  Log  

620  2·79239  

coso 51 ° 20'  1·79573  

 2.58812  

In what latitude will a d. long. of 3° 40' correspond to a departure  

of 120 nautical miles?  _  

sec. lat. = d. long .. in mins. dep. 10 M.  

_220  

-12-0  

= 1·8333 Latitude=56° 56!' N. or S.  

 



 

Example 3  

A vessel steams 090
0
 T. from long. 35° 25' W. to long. 28° 53' W.  

How far did she steam if the latitude was 41° 20·5' N.?  

Initial long. =3Y 25' W.  

 Final long  ~28Q 53' W  

d. long. = 6° 32' E.  

=392' E.  

dep. in M.  

= d. long. in mins. x coso lat. = 392 x coso 41
0
 20·5'  

= 294· 3  

Dist. steamed = 294· 3 M.  

 

Number  Log  

392  2·59329  

coso 41 ° 

20·5'  
9·87552  

 2·46881  

Example 4  

A vessel steams from a position in latitude 60°, in a direction 000° T. for a distance of 90 

miles. She then steams 90 miles 090° T., 90 miles 180
0
 T. and 90 miles 270° T. How far is she 

from her initial position?  

Note  

The distance steamed in a northerly direction gIves a d. lat. or 90' N. or 1 30' N. She will 

arrive thererore in latitude 61 Q 30' N. at the end of the first leg. The same d. lat. is made 



good on the southerly leg. She will therefore arrive back in the same latitude of 60° N. A 

distance of 90 miles in the higher latitude will, however, give a larger d. long. than 90 miles in 

the lower latitude, and she will not reach her initial longitude when sailing on the westerly 

leg. Her distance from her initial position will be the difference in the departures for the two 

latitudes corresponding to the d. long. made good when sailing east.  

 

Thus in latitude 61 ° 30'  

 dep.  =d. long. coso lat.  

 90  =d.long.xcos. 61° 30'  

d.long.=90xsec. 61° 30' . = 188·62  

Thus in latitude 60°  

 dep.  = 188·62 x coso 60°  

= 94· 31  

Thus distance from initial position = 94·31 - 90 = 4·31 miles  

Number  Log  

90  1·95424  

sec. 61 ° 30'  0·32134  

 2·27558  

coso 60°  1·69897  

 1·97455  

Example 5  

Two vessels 45 nautical miles apart on the parallel of 40° 30' N. steam 180° T., at equal 

speeds, until the distance between them is 55 nautical miles. How far did each steam?  

d.long. in mins.  

= dep. in M. x sec. lat. = 45 x sec. 40° 30'  

As both vessels steam 180° T., their d. long. is the same on both parallels.  

sec. lat. d. long .. in mins. dep. 10 M.  



_ 45 x sec. 40° 30' 55  

_9 x sec. 40° 30' 11  

New Lat.=21° 39·6' N.  

 

Example 6 At what rate in knots is a place in latitude 50° 56' N. being carried around by the 

earth's rotation?  

In 24 hours any place is carried round through 360°. This can be thought of as the d. long. 

Thus in one hour the d. long is 15°.  



 

Thus distance in miles moved in one hour=departure  

and dep. = 15 x 60 x coso 50° 56' =900xcos. 50" 56'  

= 567·2  

Thus speed = 567·2 knots  

Number  _ Log  

900  2·95424  

coso 50° 56'  1·79950  

 2·75374  

EXERCISE 4A  

1. In what latitude will a departure of 300 nautical miles correspond to a d. long. of 6° 40'?  

2. On a certain parallel the distance between two meridians is 250 M., while the d. long. 

between the meridians is 12° 30'. What is the latitude?  

3. In latitude 50° 10' N. the departure between two meridians is 360 nautical miles. What is 

the d. long.?  

4. A vessel steams on a course of 090° T. from P in lat. 23° 30' N., long. 59° 10' E. to A in lat. 

23° 30' N., long. 65° 30' E. How far did she steam?  

5. From lat. XC N. a vessel steams 000° T. 50 M., and then 090° T. 100 M. If the difference of 

longitude is 185', find lat. X.  

6. From lat. 44° 15' N., long. 10° 20' W. a vessel steamed 270° T. for 550 nautical miles, and 

then 180° T. for 753 nautical miles. Find her final position.  

7. On a certain parallel, the distance between two meridians is 150 nautical miles. On the 

Equator, the distance between the same two meridians is 235 nautical miles. What is the 

latitude of the parallel?  

8. The distance between two meridians in lat. 48° 12' N. is 250 M. What is the angle at the 

pole?  

9. A vessel steams 470 nautical miles along the parallel of XC N. from long. 15° 35' W. to the 

meridian of 27° 20' W. What is the latitude of X?  

10. From lat. 39° 00' N., 33° 10' W. a vessel steamed 270° T. at 10 knots for 3 days 8 hours. 

In what D.R. position did she arrive?  

EXERCISE 4B  

1. The distance between two meridians is 427 nautical miles in lat. 50° 20' N. What is the 

angle at the pole?  



2. Two ships on the parallel of 17° S. are 55 nautical miles apart. What would be their 

distance apart if they were on the parallel of 40° N.?  

3. Two ports, A and B are in the Northern Hemisphere. On the parallel of A, the distance 

between their meridians is 250 M., on the parallel of B it is 350 M., and on the Equator it is 

400 M. What are the latitudes of the ports?  

4. At what rate does an observer in lat. 50° 20' rotate? (Answer to be in knots.)  

5. A vessel in latitude 48° 30' N. steams 270° T. at 10 knots for 24 hours. By how much is the 

longitude changed?  

6. In lat. 50° 20' N. a vessel steams from long. 15° 46' W. to long. 31° 18' W. What distance 

was made good?  

7. A ship steams 090° T. for 200 nautical miles in lat. 49° 10' N.  

By how much will her clocks have to be advanced?  

8. The distance between two meridians in the Northern Hemisphere is 240 M. On the Equator 

it is 400 M., and in the Southern Hemisphere it is 360 M. What is the d. lat. between the two 

parallels?  

9. In what latitude is the departure in nautical miles fivesevenths the d. long. in minutes?  

10. In lat. 48° 30' N. a vessel is in long. 34° 30' W.; at noon L.A.T. the course is set 270
0
T., 

and the following day at noon L.A.T. she is in long. 40° 30' W. What was the vessel's average 

speed? 11. Two vessels 200 nautical miles apart on the same parallel steam 180° T. to the 

parallel of 20° N., where their d. long. is found to be 5° 10'. How far did each steam?  

12. A vessel leaves lat. 52° 21' N., long. 30° 20' W., and by steering 270° T. at 10 knots for 24 

hours, arrives in lat. 52° 21' N., long. 36° 00' W. Find the set and drift.  

Plane sailing (Mean Lat Sailing)  

To be used to find the course and distance between two positions which are not in the same 

latitude, and when the distance is small.  

Given the latitude and longitude of the two positions we can obtain the d. lat. and the d. long. 

between these positions.  

The factors d. lat. and distance are measured in the same units and can be graphically 

represented as the two adjacent sides of a right-angled triangle. The angle between them can 

be made to represent the course, thus: ...  

 



 

The appropriate one of the above triangles to be used will be decided by the direction of the d. 

lat. and the d. long., and hence the quadrant in which the course lies.  

To solve this triangle for course and distance, we need to know two other arguments of the 

triangle. We know d. lat., but we also need to know the length of the third side.  

The length of the third side can be thought of as the departure between the two positions, and 

there will be one value of length which will give, when used to solve the triangle, the correct 

values of course and distance. We can calculate a value for departure by the parallel sailing 

formula:  

dep.=d. long. x cosine latitude.  

But which latitude do we use in this formula. There is no readily apparent choice as the two 

positions are in different latitudes. The correct latitude to use would be that latitude which 

will give the required correct value of departure, but as yet we have no way of knowing this 

latitude, and as an approximation to it we use the numerical mean latitude between the two 

positions. (Hence the name Mean Lat. Sailing.)  

,  

Noh:  

The inaccuracy due to the use of the mean latitude means that this method is only suitable for 

problems in which the d. lat. and therefore the distance is fairly small.  

Proccdure  

1. From the two positions given calculate the d. lat. and the  

d.long., and also the value of mean latitude.  

2. Using the mean latitude in the parallel sailing formula, find the departure.  

3. Solve the plane sailing triangle, using departure and d. lat. to find course and distance, thus:  

 

From the triangle, ddel
P
. = tan. course . at.  

and distance=d. lat. x sec. course  

Example 1  

Find the course and distance between the following positions.  

 A  37°01'N.  9°00'W.  



 B  36° II' N.  6° 02' W.   36° II' N.  

    t d. lat.  25'  

 d.lat.  50' S. d. long. 2 58' E.  

  =178'  meanlat. 36° 36'N.  

dep. =d. long. x coso lat. = 178 x coso 36° 36' = 142·9  

 ~  t  

d. lat. = an co.  

142·9  

tan co. = -5-0-  

= 70° 43'  

dist.=d.lat.xsec. co. =50xsec. 70° 43' =151-4  

Number  Log  

178  2·25042  

coso 36° 36'  1 ·90462  

 2.15504  

Number  Log  

142·9  2·15504  

50  1·69897  

 0·45607  

Number  Log  

sec. 70° 43'  0·48114  

50  1·69897  

 2·180II  

Answer: course=S. 70i E., distance = 151-4 miles. Example 2  

The course and distance from A to B is 055° T. 720 nautical miles. Find the d. lat. and 

departure made good.  



 



 

d. lat. =dist. x coso (course) =720xcos.55° =412·96 =6° 53' N.  

dep. =dist. x sin. (course) =720 x sin. 55° = 589,8 M.  

D. lat.=6° 53' N., dep.=589·8 nautical miles  

Number  Log  

720  2·85733  

coso 55°  9,75859  

 2·61592  

Number  Log  

720  2·85733  

sin. 55°  9·91337  

 2·77070  

Example 3  

From lat. 50° 28' N., a vessel 'steamed 156° T. 1550 nautical miles. Find the latitude in which 

she arrived.  

d. lat. =dist. x coso (course) = 1550 x coso 24°  

= 1416'  

=23° 36' S.  

Initiallat. =50° 28,0' N. d. lat. =23° 36,0' S .  

Finallat. =26° 52·0' N.  

[Numb«  Log  

1550  3·19033  

coso 24°  9·96073  

 3·15106  

Example 4  

A vessel steers 327° T. and makes a departure of 396,7 nautical miles. How far did she steam?  

Dist. =dep. x cosec. (course) = 396,7 x cosec. 33° =728·4 M.  

Dist. steamed = 728-4 nautical miles  



Number  Log  

396·7  
2· 

59846  

cosec. 

33°  

10·2638

9  

 2.86235  

EXERCISE 4C  

1. Find the course and distance between the following positions; A 35° 12' N. 178° 12' W.  

B 37° 06' N. 17r 00° E.  

2. A vessel leaves position 45°12' N. 161° 12'W. and steams 213°  

T.for 406 miles. Find the position arrived at.  

3. Find the course and distance between the following positions.  

P 5°21' N. 168° 17'E. Q 16° 38'S. 153°48'W.  

4. From position 40°30' S. 175° 45'E. a vessel steams 050~. for 506 miles. Find the arrival 

position.  

5. Find the course and distance between the following positions.  

 X' 7°45' N.  80030'W.  

Y 41°00' S. 178°15'E.  

The middle latitude  

The plane sailing gives inaccurate results due to the uncertainty in the value of the departure 

used to solve the plane sailing triangle. The inaccuracy is acceptable over short distances of 

up to a few hundred miles.  

The correct value of departure to use in the plane sailing triangle is that value which will give 

the correct value for the course between the two positions being considered. As an 

approximation the departure used was obtained from the parallel sailing formula, usmg the 

numerical mean latitude, thus;  

departure=d'longxcosine mean latitude  

. It can be shown that the correct value of departure is obtained if the latitude used in this 

formula is the middle latitude given by the formula;  

 

where I" and 1
5
 are the latitudes of the positions concerned.  



In practice this middle latitude may be found by applying a correction to the numerical mean 

latitude, the correction being obtained from nautical tables. Thus the correct departure is given 

by;  

departure=d'longx cosine middle latitude.  

If this departure is used to solve the plane sailing triangle then more accurate values of course 

and distance are obtained. These  



 

methods are not often used however because there is an alternative method of finding course 

and distance which involves less calculation than plane sailing or middle latitude sailing, but 

gives the same accurate results as middle latitude sailing. This alternative method is called 

Mercator Sailing.  

Mercator sailing  

To be used when finding course and distance between two positions which are in different 

latitudes. It is accurate for large d. lats. and distances and is in practice employed in 

preference to the alternative methods as it involves less calculation.  

If we draw a right-angled triangle on a mercator chart, such that the hypotenuse represents the 

rhumb line distance between the two positions on the chart, and one side represents the 

meridian through one of the positions, then the third side will lie along the parallel of latitude 

through the other position. The angle between the meridian and the hypotenuse will represent 

the course. The longitude scale on a mercator chart is a constant scale, so if we express the 

two sides opposite and ~djacent the course in units of this scale, then we can find the course 

by:  

d. - an. co.  

a J.  

The side opposite the course, i.e. the side lying along the parallel of latitude, will be the d. 

long.  

To express the adjacent side, i.e. the side along the meridian, a value called the meridional 

parts for the latitude is tabulated in nautical tables.  

Meridional parts for any latitude is the length along a meridian, on a mercator chart, measured 

in units of the longitude scale, between the Equator and the parallel of latitude in question.  

If we extract the meridional parts for each of the latitudes concerned and take the difference 

between them, then this 'difference of meridional parts' (d.m.p.) will be the length of the side 

of the triangle which lies along a meridian, adjacent to the course angle, and measured in units 

of the longitude scale.  

 

v  

In the triangle ~ long. tan. course .m.p.  

We have thus found the course without using the factor departure and have avoided the 

inaccuracy whicQ. was encountered in plane sailing.  

We can now revert to the plane sailing triangle with a knowledge of course and solve for 

distance by  



dist. = d. lat. x sec. course.  

Procedure  

I. Write down the latitude and longitude of the positions, and against each latitude the 

meridional parts for that latitude from the nautical tables. Calculate d. lat., d. long., and the 

d.m.p.  

Note  

The rule for finding d.m.p. is the same as that for finding d. lat., i.e. same name take the 

difference and different name take the sum.  

2. Calculate the course by dd long. tan. course.  

.m.p.  

3. Calculate the distance by dist.=d. lat. x sec. course.  

Example 1  

By Mercator Sailing find the true course and distance from A, lat. 49° 10' N., long. 12° 30' 

W., to B, lat. 25° 15' N., long. 26° 50' W.  

 A, lat.=49° 10' N.  M.P.  =3379'6  long. =12° 30'W.  

 B, lat.=25° 15' N.  M.P.  = 1556·6  long. =26° 50'W.  

 d.lat. =23° 55' S.  D.M.P. = 1823·0  d.long. = 14° 20'W.  

 =1435' S.  --  =860' W.  

 



 

t ( ) --- d. long. an. course -- D.M.P.  

860  

-182-3  

Course =S.25° 15·3' W.  

distance=d. lat. x sec. (course) =1435xsec. 25° 15·3' = 1586·7 M.  

Number  Log  

860  2·93450  

1823  3·26079  

 9·67371  

Number  Log  

1435  3'1568~  

sec. 25° 15·3'  10·04363  

 3·20048  

Course=205° 15·3' T., Oist.= 1586·7 M.  

Example 2  •  

A vessel steams 040° T. for 2300 miles from position 39° 37' S. 47° 28' W. Find the arrival 

position.  

d. lat. =dist. x coso course (from the plane sailing triangle)  

= 2300 x cOS. 40° =1761·9  

=29° 21,9'  

Number  Log  

2300  3·36173  

coso 40°  1,88425  

 3·24598  

initiallat.  39° 37' S.  m.p. 2577·82  

d. lat.  29° 21,9' N.  

arrivallat. 10° 15·1' S.  m.p.  614·25  



d.m.p. 1963·57  

d. long. = d.m. p. x tan. course (from mercator sailing triangle) = 1963·57 x tan. 40°  

= 1647·6  

= 27° 27,6' E.  

Number  Log  

1963·57  3·29305  

tan. 40°  1,92381  

 3·21686  

initial long. 47° 28·0' W.  

d. long.  27° 27,6' E.  

final long. 20° 00'4' W.  

final position 10° 15·1' S. 20° 00'4' W.  

EXERCISE 40  

I. Find the O.M.P. between the following pairs of latitudes:  

 540° 00' N.  5 20° 10' N.  553° 15' S.  5 22° 18' S.  

(a) I 50° 00' N. (b) I 10° 35' S. (c) I 24° 47' S. (d) I 39° 53' N.  

2. Find the true course and distance from lat. 20° 14' N., long. 22° 17' W., to lat. 11° 35' S., 

long 41° 05' W.  

3. Calculate by mercator sailing method the true course and distance from A, lat. 40° 10' N., 

long. 09° 45' W., to B, lat. 10° 15' N., long. 18° II' W.  

4. By using mercator sailing calculate the true course and distance from P, lat. 4-1 ° 13' N., 

long. 173° 50' W., to Q, lat. 07° 50' S., long. 79° 55' W.  

5. A vessel steams 210° T. 750 nautical miles from 29° 30' N., 162° 20' E. In what position 

did she arrive?  

6. From lat. 10° 12' S., long. 35° 05' W., a vessel steers 017° T. and arrives in long. 28° 29' W. 

What was the distance steamed and the latitude reached?  

7. A vessel steams 225° T. 800 M., and then 135° T. 800 M. from lat. 10° 00' S., long. 00° 00'. 

In what position did she arrive?  

8. A vessel steams 065° T. 1850 M. from lat. 20° 12' N., long. 178° 40' E. Find the latitude 

and longitude of the position in which she arrives.  

9. Calculate the true course and distance from 05° 20' N., 79° 05' E., to 24° 20' S., 112° 03' E.  



10. Calculate the true course and distance from 37° 03' N., 13° 20' E., to 31 ° 20' N., 29° 55' 

E.  

EXERCISE 4E  

The following problems are typical of those encountered in Class V Practical papers  

1. From the following information find the O.R. position by  

mercator sailing.  

initial position 50" 33' N. 7 "25' W. course 237
0
 T.  

distance steamed 1008 miles.  



 

2. Find by mercator sailing the true course and distance from 48° 11' S. 169°50'E. to 23°36' S. 

161°42'W.  

3. Find the course and distance to steam by plane sailing from a position off Ushant (48°20'N. 

5° 12'W.) to a position off San Sebastian (42° 30' N. 2° 00' W.).  

4. Find by plane sailing the course and distance from a position offUshant (48° 20' N. 5° 12' 

W.), to a position off Cork (51°44' N. 8° lO'W.).  

5. Find by plane sailing the D.R. position if a vessel steams from a position off Esbjerg (55° 

28 'N. 7° 50' E.), on a course of248°T. for 95 miles.  

6. Find by plane sailing the D.R. position if a vessel steams 355°T. from a position off Cape 

Villano (43° 10' N. 9°30' W.), for 18 hours 36 minutes at 9 knots.  

7. Find the course and distance by mercator sailing between the following positions.  

a 52° 35' N. 2°38' E.  

b 59°15' N. 4° 30' E .•  

8. A vessel leaves a position 43° 50' N. 9° 00' W. and steams 328° T. for 440 miles. Find by 

mercator sailing the D.R. position at the end of the run.  

9. Initial position 60° 40' N. 0° 30' W. Course 160° T. Distance steamed by log 150 miles. 

Find by mercator sailing the D.R. position at the end of the run.  

lO. A vessel steams a course of 090
0
 T. for 145 miles from an initial position 57° 50' N. 3° 30' 

W. Find the D. R. position at the end of the run.  

CHAPTER 5  

mE TRAVERSE TABLE AND mE TRANSFERRED  

POsmON LINE  

The traverse tables are tabulated solutions of plane right angled triangles. A table is provided 

for each value of the acute angles from 1 ° to 89° at 1 ° intervals, each table giving values of 

the three sides for a hypotenuse value from 1 unit to 600 units. By interpolation and 

extrapolation any right angled triangle may be solved with the traverse tables.  

Traverse tables in nautical tables are specifically designed to solve the formulae associated 

with the parallel sailing and plane sailing problems, and columns are headed accordingly.  

Description of tables  

There is one table for each whole number of degrees of the acute angles in the right angled 

triangle from 1° to 45°. To avoid unnecessary repetition, values of angles between 45° and 

89° are listed at the foot of the table which is given for the angles complement. Separate 

column headings are given at the foot of each column to be used when the angle required is 

listed at the bottom of the page. Three columns are given with each table these being headed, 

hypotenuse, adjacent, and opposite. The length of the adjacent and opposite sides of the 



triangle are given for each value of the hypotenuse between 1 and 600. To facilitate the 

solution of the parallel sailing formula to solve the right angled triangle shown in figure 5.1 

which corresponds to the parallel sailing formula;  

 departure  ..  

 d'l  -cosme latitude.  

ong  

Alternative coulmn headings are given for the hypotenuse and the adjacent columns. The 

hypotenuse column is also headed d'long, and the adjacent column is also headed departure. 

In this case the table degree headings will represent degrees of latitude.  

To facilitate the solution of the plane sailing problem the alternative headings distance, d'lat. 

and departure are given to the hypotenuse, adjacent and opposite columns respectively. In this 

case the table degree headings will represent the course angle in the plane sailing triangle.  



 

 

Solution of the paraDel sailing formula departure  

 d'l  cosine latitude.  

ong.  

Procedure  •  

1. Locate the table which is headed with the whole number of degrees of the latitude given.  

2. In the column headed d'long_ (hypotenuse column), locate the value of the d'long. given.  

3. Read off the value of departure against the required value of d'long. from the column 

headed departure (adjacent column).  

4. If the latitude given is not a whole number of degrees, repeat for the next highest value of 

whole number of latitude and interpolate between the two results according to the number of 

minutes in the latitude.  

Example 1. Find the departure for a d'iong. of 138' in latitude 38°.  

1.Enter table 38°.  

2.Go down the d'long. column to locate 138. 3. Against 138 extract a departure of 108· 7'.  

Example 2. Find the departure in latitude 65° 40' for a d'iong. of 39·4'.  

1.Enter the table headed 65° (at foot of the page).  

2.Locate a d'long. of 39·4' in the column headed d'long.  

3. Against 39·4, interpolating between 39 and 40, extract a de£arture of 16·6. (Interpolation 

may be facilitated by mentally shifting the decimal place and locating a d'long. of 394. This 

gives a departure of 166. The decimal place can now be replaced to give departure 16-6).  

4.Repeat for a latitude of 66°. This gives a departure of 16·0.  

5. Interpolate between 16·6 and 16·0 for a latitude of 65° 40'answer must lie two thirds of the 

way from 16·6 towards 16·0. The required departure is therefore 16·2'.  

To solve the plane sailing triangle  



The headings distance, d'lat. and departure are used, and the table degree headings are used as 

the course angle. The course should be expressed in quadrantal notation. In practice the 

problem is usually required to be solved with the course and distance known, in order to find 

a D.R. position. In this case the d'lat. and departure are easily extracted against the distance 

steamed. The tables are a little more difficult to use if the d'lat. and departure are known and it 

is requir8d to find the course and distaI1,j::e. In practice this problem is usually done by 

calculation for accuracy, but it is possible to ~et a quick solution by the traverse table by 

finding the table in which the values of d'lat. and departure appear against each other. The 

distance can then be taken against these values and the course from the table heading. If 

interpolation is required, this may take some practice. (See example 3.)  

Example 1  

Given course 148° T., distance 520 miles. Find the d. lat. and dep.  

Course 148° becomes S. 32° E. in quadrantal notation.  

Steps  

1.Find the page headed 32°.  

2.Move down the page in the dist. column to 520.  

3. Take out the d. lat. and dep. from the appropriate columns. Answer. Course S. 32° E. and 

dist. 520 M., d. lat.=441' S.,  

dep.=275·6 M. E.  

The course being in the S. E. quadrant indicates that the d. lat. is named S. and the departure 

is named E.  

Example 2  

Given course S. 62° W., dist. 47·4 M., find the d. lat. and dep.  

Steps  

1. Note that the angle is greater than 45° and will therefore be at the bottom of the page.  

2. The dist. column is the same whether we are dealing with the top or bottom of the page, but 

the columns headed d. lat. and dep. are reversed, since we are concerned with complementary 

angles.  



 

3.Turn to the page where the angle is 62°.  

4. Shift the decimal point on the distance given, and look up 474 in the dist. column. This 

makes the task easier.  

5. The d. lat. is 222·5 and the dep. is 418·5. Having multiplied the distance by 10, it will be 

necessary to divide these by 10 to arrive at the correct relationships for a distance of 47-4 

miles.  

Answer. Course S. 62° W. and distance 47-4 M. give d. lat. 22·25' S. and dep. 41·85 M. W.  

Example 3  

Given d. lat. = 339-6' N., dep. = 295·2 M. W., to find the course  

and distance.  

Steps  

1. Note that the d. lat. being greater than the dep. the angle will be less than 45°, and will 

therefore be found at the top of the page. Also, the values are near one another, so that the 

angle is approaching 45°.  

2. Open the table at about 35~, and look down the d. lat. and dep. columns. The given values 

are found to be widely separated, so turn over a few pages, to 39°, and again look up the 

values. Here they are much closer, so continue to turn over the pages until they are found as 

near together as possible-this will be on the page headed 41 ° .  

Answer. With d. lat. 339·6' N. and dep. 295·2 M., W., course= N. 41° W. Dist=450 M.  

The values may not always be found so easily as in the examples shown. It may be necessary 

to (1) interpolate or (2) use aliquot parts. Interpolation for the factors dist., d. lat. and dep. can 

be quite accurate, since we are dealing with similar triangles; but for angles, the interpolation, 

though not exact, is within practical limits.  

To change d. long. into departure and vice versa  

Example  

Find the departure corresponding to a d. long. of 58,5' in latitude 50° 24' N.  

Under angle 50°, look up 585 in the dist. column, and this gives  

376·0 in the d. lat. column.  

Similarly, angle 51 ° and dist. 585 give 368·2 in the d. lat.  

column.  

The dep. corresponding to the d. long. of 58·5 will therefore lie between 37,6 and 36,82. The 

interpolation is carried out thus, and, with practice it can be done mentally.  

for angle 50° and dist. 585, d. lat. = 376·0 for angle 51° and dist. 585, d.lat.=368·2  



diff. for 1 ° = 7·8  

 multiplied by 0·4  0-4  

 diff. for 0·4°  3·12  

:. angle 50·4° and dist. 585 give d. lat. 376·0-3·12=372,9. Answer. In lat. 50° 24' N., d. long. 

58·5', dep.=37·29 M.  

To solve the plane sailing problem Example  

A vessel steering 240° T. at 15 knots leaves a position 30° N. 179° 15' W. Find the position of 

the vessel after 24 hours.  

Course 240° = S. 60° W., distance = 24 x 15 = 360 m.  

Procedure  

1.Turn up the page in the traverse table headed 60°.  

2. Using the column names at the foot of the columns, move up the distance column to 360.  

3. Extract the d. lat. and the departure from the appropriate columns named so (d.lat.=180·O' 

dep.=311·8).  

4. Apply the d. lat. to the initial latitude and calculate the mean la t.  

5. Enter the page headed with the mean lat., and using the headings d. long. and dep. go down 

the dep. column to 311·8 and extract the d. long.  

6. Apply d. long. to the initial longitude.  

 lat. left  30° 00,0' N.  

 d. lat.  3° 00'0' S.  

 arr. lat.  27° 00·0' N.  

 t d. lat.  1° 30·0'  

mean lat. 28° 30'0' N.  

Note  

Direction of d. lat. and d. long taken from the name of the course F  



 

 position left  30° 00·0' N. 179° 15,0' W.  

 d. lat.  3° 00,0' S. 5° 54,7' W.  

arrival position 27° 00·0' N. 174° 46·3' E.  

The solution of the mid lat. problem is exactly the same except that the correction to 

mean lat. is applied before taking out d. long.  

Example  

Find by use of traverse table the course and distance from A lat. 46° 30' N., long. 15° 45' 

W. to Blat. 43° 50' N., long. 25° 28' W.  

 A lat. 46° 30' N.  long. 15° 45' W.  A lat. 46° 30' N.  

 Blat. 43° 50' N.  long. 25° 28' W.  Blat. 43° 50' N.  

 d.lat. 160' S.  d. long. 583' W.  2)90° 20' N.  

  ,  mean lat. 45° 10' N.  

M. lat. 45° 00', d. long. 583' gives dep. 412·2 M. lat. 46° 00', d. long. 583' gives dep. 

405·0  

diff. 7·2 ... For M. lat. 45° 10', d. long. 583' dep.=411·0. From traverse table, with d. lat. 

160' S., dep. 411' W. (By inspection) co. S. 68io W. dist. 441 miles.  

.I  

Note  

If the mid lat. had been used the distance would have been 442 miles.  

If set and drift is required, this will be found by calculating the course and distance 

between the position by dead reckoning and the position by observation. The method is, 

therefore, the same as shown in the example.  

Note  

If the solution of any triangle is required where the length of one of the sides is greater 

than the range of lengths given in the tables, then a solution can be found by dividing 

each known side by some convenient factor, usually 2. Then the length of any side found 

must be multiplied by the same factor.  

EXERCISE SA  

Traverse table  

1.True co.=N. 25° E. dist. =238 M.  Find the d.lat. and the dep.  

2.True co. = S. 100 E. dist. = 333 M.  Find the d. lat. and the dep.  



3.True co.=N. 40
0
W. dist. =505 M.  Find the d. lat. and the dep.  

4.True co.=S. 70
0
W. dist. =214 M.  Find the d. lat. and the dep.  

5.True co.=306°  dist. = 176 M.  Find the d. lat. and the dep.  

6.True co.=065°  dep. = 173·3 M.  Find the d. lat. and the dist.  

7.True co. = 148
0
  d. lat. = 386-7'  Find the dep. and the dist.  

8.Dist.  =436 M. dep. =262-4 M.  Find the course and the d. lat.  

9.d.lat. =447·6' N. dep. = 198·3 M.E. Find the course and the dist.  

10.d. lat. =351'1' S. dep. =229·3 M.W. Find the course and the dist.  

11.d. lat. = 44,6' N. dep. = 14·5 M.E. Find the course and the dist.  

12.d.lat. =312·3' S. dep. =231·1 M.W. Find the course and the dist.  

13.d. lat. =308·5' N. dep. =367·7 M.W. Find the course and the dist.  

14.d. lat. =855·0' S. dep. =380·8 M.E. Find the course and the dist. 15. True co.=036° 

dep. =723·0 M. Find the dist. and the d.lat.  

EXERCISE 5B To change dep. into d. long. by inspection Find the d. long, given  

1.dep. =354·8 M.  lat. =50° 00' N .  

2.dep. =261·8M.  lat. =35°oo'N.  

3.dep. =246·0 M.  lat. =42° 30' N .  

4.dep. = 197·0 M.  lat. =38° 12' N.  

5.dep. =348-4 M.  lat. =27° 00' N.  

6.dep. =361·2 M.  lat. =75° 00' N.  

7.dep. =294·6 M.  lat. =52° 00' N.  

8.dep. =326·9M.  lat. =36°30'N.  

9.dep. =444-4 M.  lat. = 19° 15' N.  

 10. dep.  =258·7 M.  lat. =50° 45' N.  

EXERCISE 5C To change d. long. into dep. by inspection Find the dep., given  

1.d. long. =260-4'  lat. =40° 00'  

2.d. long. =351,3'  lat. =48° 15'  



 

3. d. long. = 58·1'  lat. =56° 00'  

4. d. long. = 37·6'  lat. =25° 00'  

5. d. long. =667·0'  lat. =47° 30'  

6. d. long. = 44,4'  lat. = 35° 15'  

7. d. long. =518·5'  lat. = 36° 30'  

8. d. long. = 114,8'  lat. = 58° 30'  

9. d. long. =534,7'  lat. =67° 30'  

10. d. long. = 329-4'  lat. = 17° 30'  

EXERCISE 5D To find the course and distance  

By inspection of the traverse table, find the course and distance  

 From   Th  

 1. A lat.  50° 40' N.  B. lat. 40° 50' N.  

 long. 40° 50' W. ,  long. 50° 40' W.  

 2. Plat.  35° 10' N.  Q lat.  37° 50' N.  

 long. 27° 18' W.  long. 31° 08' W.  

 3. D lat.  25° 15' S.  E lat.  22° 47' S.  

 long. 156° 44' E.  long. 159° 53' E.  

 4. Slat.  37° 53' N.  T lat.  38° 10' N.  

 long. 177° 50' W.  long. 177° 50' E.  

 5. L lat.  10° 10' N.  M lat.  09° 00' N.  

 long. 34° 40' W.  long. 29° 10' W.  

6. Find the set and drift, given  

D.R. pos. lat. 50° 13' N., long. 15° 15' W. Pos. by obsn. lat. 50° 28' N., long. 14° 44' W.  

7. Given initial position, lat. 40° 40' N., long. 4° 04' W.; course 214° T., dist. 100 M., find 

the D.R. position.  

8. Find the true course and distance from 47° 06' N., 39° 10' W., to 48° 53·5' N., 27° 04' 

W.  

9. Find the true course and distance from lat. 22° 33' S., long. 96° 48' E., to lat. 19° 43' S., 



long. 92° 46' E.  

10. Find by inspection of the traverse table the course and distance from 18° 35-7' N., 39° 

53' E. to 22° 45,5' N., 37° 15,5' E.  

Running up a D.R.  

The traverse tables are used to find the D.R. position when more than one course and 

distance has been steamed since the last observed position. This problem is very quickly 

solved if the  

intermediate alter course positions are not required, by tabulating the d'lats. and 

departures for the individual courses and distances. These are then added (or subtracted if 

of opposite name), to find the total d'lat. and departure. The d'lat. is then applied to the 

initial latitude and the mean latitude found. The total departure is then converted to 

d'long. and applied to the initial longitude.  

Example 1  

A vessel observes her position to be 40° 30' N. 35° 15' W. She  

then steams the following courses and distances:  

056° T. distance 45 miles 020° T. distance 20 miles 335° T. distance 35 miles 300° T. 

distance 50 miles  

Find the D.R. position.  

  D. fat.   Departure  

Course  Distance      

  N.  S.  E.  W.  

N. 56° E.  45  25·2   37·3   

N. 20° E.  20  18·8   6,8   

N. 25° W.  35  31·7    14·8  

N. 60° W.  50  25·0    43·3  

  
100·

7  
 44·1  58·1  

     44·1  

 d.lat.=100·7 N.  dep.=14·0W.  

initial latitude  40° 30·0' N.  

d.lat.  1 ° 40,7' N.  

arrival latitude 42° 10-7' N.  



mean latitude =41° 20,3' N. dep.14·Ogivesd.long.=18·6'W. initial position 40° 30·0' N. 

35° 15' W.  

 1 ° 40,7' N.  18·6' W.  

arrival position 42° 10-7' N. 35° 33,6' W.  

If during the steaming of the courses a current is estimated to be setting this can be 

treated as just another course with the drift as the distance, and the d. lat. and departure 

found summated with the other courses.  



 

Example 2  

A vessel steamed the following courses and distances:  

165° distance 50 miles  

072° distance 63 miles  

112° distance 84 miles  

256° distance 58 miles  

A current set 300° T., drift 10 miles. If the initial position was 46° 19' N. 37° 47' W., find the 

final position and the course and distance made good.  

  D. lat.  Dep.  

Course  Distance      

  N.  S.  E.  W.  

S. 15° E.  50   48·3  12·9   

N. 72° E.  63  19·5   59·9   

S. 68° E.  84   31·5  77·9   

S. 76° W.  58   14·0   
56·

3  

N. 60° W.  10  5·0    8,7  

  24·5  93·8  150·7  65·0  

   24·5  65·0   

Resultant d. lat. and dep. 69,3 S. 85·7 E.  

Initial latitude  46° 19,0' N.  

D.lat.  69·3' S. Mean lat. =45° 44·3' N.  

 D. long.  = 121,7' E.  

Arrivallatitude 45° 09-7' N.  

Initial position 46° 19·0' N. 37° 47,0' W.  

 69·3' S.  2° 01·7' E.  

Arrival position 45° 09,7' N. 35° 45,3' W.  

From tables  with d. lat. 69·3' S. dep. 85,7' E.  



course=S. 51° E. dist.=llOmiles  

Information required may vary somewhat, and each problem must be carefully considered. In 

some problems the set and drift of the current is asked for. To find this an observed position at 

the end of the traverse must be given and this should be compared with the D.R. calculated.  

EXERCISE 5E  

1. Find by traverse table the vessel's position at the end of the  

fourth course;  

Initial position 46° 45' N. 45° 30' W.  

First course 202° T. by 72 miles Second course 272° T. by 72 miles Third course 33r T. by 

36 miles Fourth course 050° T. by 36 miles  

2. Find by traverse table the vessel's position at the end of the  

third course;  

Initial position 60° 30' N. 16° 45' W.  

First course 213° T. by 64 miles Second course 306° T. by 72 miles Third course 082° T. by 

80 miles  

3. Find by traverse table the ship's position at the end of the third  

course;  

Initial position 39° 25' N. 9° 38·5' W. First course 262° T. by 9 miles Second course 169° T. 

by 146 miles Third course 109° T. by 144 miles  

4. Find by traverse table the position at the end of the third  

course;  

Initial position 12° 12' S. 50° 58' E. First course 296°T. by 60 miles Second course 237°T. by 

55 miles Third course 215°T. by 101 miles  

5. A vessel observes a noon position 37° 54' N. 178° 29' E. The course is then 230°T. at 15 

knots until 1800 hrs when an SOS is received from a position 37° 15' N. 179° 35' W. If speed 

is increased to 16 knots what is the course to be steered to the distress and what will be the 

ETA.  

6. Find by traverse table the course and distance between the following positions.  

A 51°30'N.176°42'W. B 50° 19' N. 179° 35' E.  

7. Find by traverse table the course and distance between the following positions.  

A 54°30' N. 37° 30'W. B 52°15' N. 42° 15'W.  

8. A vessel obtained a noon position 34° 06' S. 172° 09' E. She then steamed the following 

courses and distances;  



 

First course 321°T. by 75 miles Second course 037°T. by 52 miles  

 Third course  137°T. by 110 miles  

A current was estimated to have set 260
0
T. by 20 miles in the interval. Find the EP at the end 

of the third course.  

TRANSFERRING THE PosmON LINE  

If a position line is observed at some initial time, a position line valid for some later time may 

be found by moving the observed line in the direction made good by the vessel and by the 

amount of the distance steamed. The position line so found is referred to as a transferred 

position line and a fix may be produced by crossing it with another position line observed at 

the later time. The accuracy of the transferred position line depends upon the reliability of the 

course and distance used for running up.  

Transferring the position line may be done by taking any point on the original position line 

and using it as a departure position. The course and distance may then be applied to this 

position (a) by laying off the course and distance on the chart from this point, or (b) by 

applying the course and distance by traverse table. The transferred position line is then drawn 

through the position obtained by running up, in the same direction as the original position 

line. The first method is normally used when coasting and navigating by the methods of 

chartwork, when the time intervals involved are small. The second method is normally used 

when out of sight of land and navigating by astronomical methods. The time intervals 

involved are usually longer, of the order of a few hours.  

The mooing fix  

This is the name given to the fix produced by crossing an observed position line with a 

position line transferred or run up from an earlier observation.  

Example  

At 0800 hrs Galley Head was observed to bear MooT. At 0840 it was observed to bear 310° 

T. Find the position of the vessel at 0840 if the course and distance made good in the interval 

was estimated to be 075°T., 8 miles.  

Procedure (refer to figure 5.2)  

1. Layoff the two position lines given by the two bearings at 0800 (040°) and 0840 (310°), 

from the charted position of the point observed. Mark the lines with single arrows.  

2. From any convenient point on the first position line, layoff the course and distance made 

good (075° by 8 miles).  



 



 

3. Draw the transferred position line through the position reached in (2), parallel to the first 

position line (040), to cut the second position line (310). Mark the transferred position line 

with double arrows. This point of intersection gives the position of the ship at the time of the 

second bearing.  

4. The position at the time of the first bearing may be found if required by transferrin~ the 

course and distance made good, through the second position, to cut the first bearing.  

The mooing fix with tide  

Any tide estimated to set in the duration of the running fix may be allowed for by laying off 

the set and drift from the end of the course and distance, before transferring the position line.  

Example  

At 1300 hrs Old Head of Kinsale Lt. Hse. was observed to bear 030°T. and at 1330 hrs the 

same lighthouse was observed to bear 295°T. Find the position at 1330 if the vessel steered 

080
0
T. at 16 knots in the interval and a tide was estimated to set 1000T. at 3 knots.  

Procedure (refer to figure 5.3)  

1. Layoff the two position lines given by the bearings at 1300 and 1330.  

2. From any convenient position on the first bearing line layoff the course steered and the 

distance steamed.  

3. From the end of the course and distance layed off in (2), layoff the direction of the tidal set 

and the amount of the drift (1000T. by 1'5').  

4. Layoff the transferred position line through the end of the tide, parallel to the first position 

line (0300), to cut the second position line (295°). This intersection gives the vessel's position 

at the time of the second observation.  

Note  

The course and distance made good in the interval is given by the line joining the original 

departure position selected, and the end of the tide. To find the position at the time of the first 

observation, this course should be transferred through the position at the time of the second 

observation, to cut the first position line.  

The running fix with leeway  

If the vessel is making leeway during the interval of the running fix, this should be applied to 

the course steered before laying off from the first bearing.  



 



 

Transferring a position circle  

The general principles of the running fix apply, irrespective of the form that the position lines 

take. To transfer a position circle however it is easiest to transfer the centre of the circle, that 

is the position whose distance has been observed. The transferred position circle is then drawn 

centred upon this transferred position obtained.  

Example  

The distance from Wolf Rock Lt. Hse., bearing approximately north west, was observed by 

vertical sextant angle to be 3·0 miles. Forty-five minutes later the distance by vertical sextant 

angle of the same lighthouse was observed to be 3·4 miles. Find the position at the time of the 

second observation if the vessel was steering mOoT. in the interval and made good 4 miles by 

log.  

Procedure (refer to figure 5.4)  

1. Layoff the course and distance made good in the interval (030 by 4 miles), from the 

position of the pQint observed (Wolf Rock). 2. Draw the transferred position circle, radius 3·0 

miles, centred upon this transferred position.  

3. Draw the second position circle, of radius 3·4 miles, centred upon the position of Wolf 

Rock itself, to cut the transferred position cIrcle. The intersection will give the position at the 

time of the second observation.  

Running up the position line by traverse table  

When navigating out of sight of land, position lines are obtained by astronomical observation. 

The time intervals between observed position lines when using the running fix method may be 

as long as two or three hours. The small scale charts used for ocean navigation are not suitable 

for transferring the position line by plotting so that in practice the traverse table is used. The 

method is the same as that described for solving the plane sailing problem, that is applying the 

course and distance steamed to an initial position to find a D.R. position at the end of the run. 

The position line may be transferred by using any position on the line to which the course and 

distance is applied. The position obtained gives a position through which the transferred 

position line may be drawn.  

Example  

At 0930 an astronomical observation gave a position line running 025°/205° passing through 

position 42° 30' N. 32° 08' W. Find a position through which to draw the transferred position 

line at 1200 hrs if in the interval the vessel steered 075°T. and made good 35 miles.  



 

Procedure  

1. Enter the traverse tables with the course and distance, and extract the d'lat. and departure.  

2. Apply the d'lat. to the initial latitude to obtain the latitude at 1200 hrs.  

3. Calculate the mean latitude and convert departure into d'long.  

4. Apply the d'long. to the initial longitude to give the longitude at 1200 hrs.  



 

Initial pos. 42° 30·0' N. 32° 08' W.  mean lat.=42° 34·5' N.  

d'lat.  9·1'N.  45·9'E. = d'long. (departure=33·8')  

hrspos.  42°39·1'N. 31°22.1'W.  

Transferred position line runs 025°/205° through 42° 39·1 N. 31° 22·1'W.  

This problem is discussed further in the chapter devoted to plotting the astronomical position 

line.  

Doubling the angle on the bow  

This problem is a special case of the running fix method, which enables a fix to be obtained 

with a minimum of construction and plotting. It requires the time at which a point of land or 

beacon has a certain relative bearing expressed as an angle on either bow, and also the time 

when the same point is twice that angle on the bow, to be observed. It also requires a 

knowledge of the course steered and the distance run in the interval between the observations 

and a negligible effect from tide or wind ..  

In figure 5.5, () and 2 ()are the relative bearings observed.  

and angle BAP+angle APB=2 ()(external angle of a triangle is equal to the two internal and-

opposite angles).  

thus angle APB= ()and the triangle is isosceles.  

thus AB=PB  

We can conclude therefore that the distance of the vessel from the point of land observed at 

the second observation, is equal to the distance run in the interval between the two 

observations.  

 

Procedure  

1. Note the time when a point of land or beacon is at any convenient angle on the bow.  

2. Note the time when the same point of land or beacon is at twice the angle on the bow.  

3.Calculate the distance run between the observations.  

4. Layoff the bearing of the second observation after converting to a true bearing by 

application of the ship's head. Mark off the observed position at a distance from the point 



observed equal to the distance run calculated in (3). This gives the vessel's position at the me 

of the second observation.  

EXERCISE 5F  

1. A point of land is observed to bear 205°T. from a vessel steering 248°T. at 15 knots. Forty-

eight minutes later the same point of land was observed to bear 147°T. Find the distance off 

the point at the time of the second observation.  

2. A lighthouse was observed bearing 050°T. from a vessel steering 100
0
T. After running for 

7 miles by log the lighthouse was observed to bear 000°T. Find the distance off the lighthouse 

at the time of the second observation.  

3. A vertical sextant angle observation of a lighthouse gave a distance off of 6·8 miles. After 

steaming 174°T. for 40 minutes at 11 knots the vertical sextant angle was observed to be the 

same as at the first observation, while the lighthouse 054° by compass. Find the true bearing 

and distance from the lighthouse at the time of the second observation.  

The following questions are set on the Admiralty Instructional chart No. 5051 (Lands End to 

Falmouth).  

4. At 0800 Wolf Rock Light was observed to bear 048°T. from a vessel steering 085°T. at 16 

knots. Twelve minutes later Wolf Rock was observed to bear 337°T. If a tide was estimated to 

set 155°T. at 3·5 knots in the interval, find the latitude and longitude ofthe vessel at the time 

of the second observation.  

5. At 2000 hrs. Tater-Du light was observed to bear 338°T. from a vessel steering 250
0
T. at 

18 knots. Thirty minutes later Wolf Rock was observed to bear 260°T. If a tide was estimated 

tD set 145°T. at 2·5 knots in the interval, find the ship's position at 2030.  

6. Lizard Pt. Light was observed to bear OlSOT. from a vessel steering 270
0
T. at 16 knots and 

making 5° leeway due to a northerly wind. 1 h 18m later Wolf Rock was observed to bear 

335°T. If a tide was estimated to set 11 O°T. at 1·0 knot in the interval, find the ship's 

position at the time of the observation of Wolf Rock.  

7. At 1200 hrs. a vessel observes Bishop Rock Lt. Hse. (position 49° 52·2' N. 6°26·5' W.), to 

bear035°T. The vessel then steams 278° for 3 hours at 15 knots. Find by traverse table a 

position through which to draw the transferred position line at 1500 hrs., and its direction, in 

order to cross it with an observation of the sun.  



 

CHAPTER 6 TIDES  

Tides and tidal streams are the result of gravitational attractions of astronomical bodies, 

mainly the sun and the moon. The tide raising forces of these bodies causes a horizontal 

movement of water such that tidal waves are produced directly underneath the tide raising 

body, and also on the opposite side ofthe earth to the body. Vanation in the height of water at 

any place on the earth will occur as the earth rotates with respect to these tidal waves, 

producing two high waters in each rotation. The hi~hest high waters will occur when the sun 

and the moon are in line wIth the earth, that is at new moon and at full moon. The solar tide 

then reinforces the lunar tide. Such tides are called spring tides occurring approximately once 

in two weeks. At first and third quarters the solar  

tide decreases the height ofthe lunar tide. Such tides are called neap tides.  

The magnitude of tidal effects are relatively small unless they are  

increased by resonance in ocean basins or by the modifying effects of land and sea bed 

formations. This occurs to a marked extent in the North Atlantic which responds to semi 

diurnal components of the tide raising forces, and in which large tides are produced by the 

funneling effect of coastline shapes.  

Tidal streams  

Tidal streams are the horizontal movements of water due to the tide raising forces. In 

European waters they are of a semi diurnal nature directly related to the vertical tIdal 

variations. Their directions and rates can therefore be predicted with reference to times of 

high water at chosen locations. These predictions are made available to the navigator by:  

a.Tidal information on Admiralty charts. b. Tidal stream atlases.  

Currents  

These are horizontal movements of water caused by meteorological conditions, or by flow of 

water from river estuaries. They' are not periodic as are tlie tidal streams and those currents 

which are due to local meteorologial conditions are not included in tidal predictions. 

Consistent strong winds may therefore modify the streams predicted to a marked extent. The 

largely permanent effect of the flow of water from rivers is included in tidal stream  

predictions.  

84  

Tidal information on Admiralty charts  

Selected positions on Admiralty charts are chosen for which to give tidal stream information. 

These positions are marked by a magenta diamond with an identifying letter inside. At some 

convenient place on the chart a table is given for each tidal diamond, each table being headed 

by its appropriate identifying letter. The tables give the direction, and the spring and neap 

rates for each hour of the tidal cycle. The hours are referred to the time of high water at some 

standard port which mayor may not appear on the chart. Many charts are referred to high 

water Dover. Information is given from 6 hours before H.W. to 6 hours after H. W. at hourly 

intervals. In order to relate the information to the ship's zone time the zone time of high water 



at the chosen standard port must be obtained from Admiralty tide tables.  

To find the direction and rate at points between the tidal diamonds some interpolation 

between the tables is necessary together with some personal judgement as to the likely effect 

of the coastline shape on the direction of the stream. In this respect it should be remembered 

that tidal streams tend to flow parallel to coastlines and into and out of estuaries, although this 

may not be the case especially near the turn of the tide. To facilitate this tidal arrows are 

shown on charts showing the approximate mean direction of the flood (an arrow with 

feathers), and the ebb (an arrow without feathers), or a current (a wavy arrow). (See chart 

booklet 5011 for abbreviations and symbols on Admiralty charts.  

Tidal stream atlases  

These are published by the Hydrographer to the Navy in a series of 11 booklets to cover the 

coastal waters of the British Isles. Each booklet contains chartlets of the covered area for 

hourly intervals from 6 hours before H. W. Dover to 6 hours after H. W. Dover. The times of 

high water Dover may be obtained from Admiralty Tide Tables Vol. I (N.P.200). On each 

chart let the direction of the tidal stream for that hour is shown by arrows, the length and the 

boldness of the arrows indicating approximately the strength of the stream. Figures are given 

against some arrows which show the mean neap and spring rates at that place. These are 

shown thus:  

11,24  

meaning that the mean neap rate is 1·1 knot and the mean spring rate is 2·4 knots. 

Interpolation or extrapolation between these figures can be done by taking the range at Dover 

for that day and comparing it with the neap and spring ranges. An interpolation diagram is 

included with fun instructions to facilitate this.  

Tides  

The term tide refers to the variation in the level of the water  



 

 

surface due to the tide raising forces. The following terms will be used with reference to tidal 

prediction.  

Chart datum  

This is an arbitrary level below which charted soundings are expressed.  

Height of tide  

This is the height of the water surface at any instant above the level of chart datum. Thus the 

actual depth of water is given by the sum of the charted sounding and the height of tide above 

chart datum. Note that it is possible to have a negative height of tide although in general chart 

datums are chosen such that they rarely occur.  

Mean high water springs (M.H. W.S.)  



This is the height above chart datum, which is an average of the heights of all the two 

successive high waters at spring tides, throughout the year. This will vary from year to year as 

the maximum declination of the moon varies over an 18·6 year cycle. The value of M.H.W.S. 

is therefore averaged over the 18·6 year cycle. The average maximum declination of the moon 

over this 18·6 year cycle is 23%°.  

Mean low water springs (M.L.W.S.)  

This is the height, which is an average of the two successive low waters at sRring tides 

throu~hout a year when the average declination of the moon is 231/2 .  

Mean high water neaps (M.H.W.N.)  

This is the height above chart datum which is an average of the two successive low waters at 

neaR tides, throughout a year when the average declination of the moon is 231/2°.  

Mean low waterneaps(M.L.W.N.)  

This is the height above chart datum which is an average of the two successive low waters at 

neaR tides, throughout a year when the average declination ofthe moon is 23%°.  

Height of tide above low water  

This is the height of the water surface at any instant, above the level of the nearest low water. 

This height can be found from the tide tables. The height of the low water is added to the 

height above low water to give the height of tide above chart datum.  

Drying height  

This is the height of a point on the sea bed which lies above the level of chart datum. Such a 

point will dry out when the hei~ht of tide above chart datum on a falling tide is equal to its 

drying heIght.  



 

Highest astronomical tide. Lowest astronomical tide (H.A.T. L.A.T.)  

These are the highest and the lowest levels which can be predicted to occur under any 

combination of astronomical conditions, under normal meteroiogical conditions.  

 

Prediction of tidal times and heights  

Soundings on Admiralty charts are expressed below chart datum.  

This is an arbitrary reference level chosen such that there will rarely be less water than is 

indicated on the chart. The level of chart datum may differ between charts, but are at present 

being standardised to approximate to lowest astronomical tide, which is the lowest level 

which can be predicted to occur under any combination of astronomical conditions under 

normal meteorological conditions. The relationship between chart datums at various places 

and the L.A.T. are shown in Table V in the front of the Admiralty Tide Tables Vol. 1. For 

comparison of chart datums between charts of different areas Table III in the tide tables is 

consulted. This gives the height of chart datums at various places relative to the ordnance  

datum (Newlyn) which is the datum for the land levelling system of England, Scotland and 

Wales. For chart datums at places outside these countries the reference is the datum used in 

the respective countries. Because of differences in chart datums there may be differences in 

soundings on different charts of the same area. The level of the chart datum is shown on 

Admiralty charts in the titles .  

. In all cases however tidal predictions for ports are referred to the chart datum established at 

that port and whIch is used on the largest scale chart of it. The total depth of water at any 

point is therefore the sum of the sounding shown on the chart, and the tidal height above chart 

datum predIcted from the tide tables.  

Tidal calculations  

Candidates for Class V and Class IV certificates are required to be able to use the Admiralty 

tide tables Volume I (European Waters), in order to predict times and heights of high and low 

waters, and to predict the height of tide at times between high and low water.  



The tides of European waters are of a semi diurnal nature, that is there are two high and two 

low waters each lunar day. Part I of A IT Vol. I gives the predictions of the times and heights 

above chart datum of these hIgh and low waters for a number of selected ports which are 

called Standard Ports. For each standard port there is also a tidal curve plotting the tidal height 

between higo and low water, against the interval of time from the nearest high water. Part II 

of toe tide tables gives tidal predictions for a large number of ports which lie between the 

chosen standard ports. These are called secondary ports as their tidal information is given in 

the form of time and beight differences between the seconoary port and one of the standard 

ports.  

To find times and heights of high and low water at a standard port  

These may be extracted directly from Part I of A IT Vol. I for the regl!ired standard port, and 

for toe required date (see extracts from A IT Vol. I). Note that the times given are in the zone 

time for that area in which the port lies. The difference between the zone time used and 

G.M.T. is given at the top of each page. The sign attached to this time difference is 

appropriate to correct the tabulated zone times to G.M.T. Thus iftfie time zone is~iven as -

0100, then the times tabulated are 1 hour ahead of G.M.T. The time zone used for the British 

Isles is G.M.T., but care must be taken when British Summer Time is being kept. Similarly 

care must be taken that the time kept in any other country is in fact the time zone used in the 

tables.  

Example (refer to extract from A IT Vol. I)  

Find the times of high and low water at Avonmouth on the morning of 29th January 1980, and 

the depth of water at these times at a place off A vonmouth where the charted sounding is 4· 2 

metres.  



 

FromAIT H.W.0505 Ht.U·4m  

L.W.1140 Ht. 2·0m  

Depth of water= charted sounding+ height of tide depthatH.W. = 11·4+4·2 =15·6m 

depthatL.W. = 2·0+4·2 = 6·2m  

To find the height of tide at times between high and low water (Standard Port)  

This is done with the aid of the tidal curves given with each standard port. There is one curve 

for neap tides and one for springs. For times between springs and neaps mterpolation between 

the curves must be done (see examples).  

Procedure  

1. Extract from A IT Vol. I Part 1 the times and heights of the high and low waters that 

'straddle' the time for which the prediction is required. This time should be exp,ressed in the 

same zone time as the tidal predictions for the standard port.  

2. SUDtract the height of low water from the height of high water to obtain the predictea 

range.  

3. Take the difference between the time required for prediction and the time of high water. 

This is the interval from high water. Note whether the interval is positive (falling tide) or 

negative (rising tide).  

4. Compare the predicted ran~ with the mean spring and neap ranges given on the tidal curve. 

-This will determine wl1ether the spnng curve or the neap curve should be used or whether 

inteTP-olation between the two is necessary.  

5. Enter tidal curve or curves with the interval from high water along the horizontal axis and 

go vertically to meet the tidal curve. From this point go across to oBtain the factor.  

6. Multiply toe factor by the predicted range found in (2). If the predicted range is between the 

spring and neap ranges the factor is found by interpolating between the spring and neap 

factors. If the predicted range is above the spring range then Hie spring factor should be used. 

If the predicted range is Delow the neap range then the neap factor should be used. The factor 

multiplied by predicted range gives the height above low water.  

7~ Add on the height of the low water to obtain the height of tide above chart datum.  

Example  

Find the height of tide at Avonmouth at 1530 G.M.T. on 9th April 1980, ana hence the depth 

of water at a place \\-IIt:re the rh<ortpr! "nl1nr!ina i" ?() mptrp"  

From AITH.W.1245 Ht.1O·0m  

 L.W.19Ol Ht._3_·_5m_  ...  .....................................1  

 6·5m  =predicted range  ......... 2  



time H.W.1245 reqUired time _5_3_0  

interval from H. W. 0245+ (falling tide)  ............................ 3  

From tidal curve  Spring range=12·3m  

Neap range= 6·5m  

 Predicted range= 6· 5m (use neap curve)  . 4  

From neap curve factor=0'59 (see tidal curve for Avonmouth) .. 5  

Height above L. W. =0·59x 6·5 =3·8  ................................. 6  

 L. W.  =3·5  

Height above chart datum  =7·3 metres  ........................ 7  

Charted sounding  =_2·_0  

Depth of water  =9·3 metres  

To find the time at which there will be a given del?th of water between high and low 

waters at a standard port, on a given tide  

With this problem it is first necessary to determine the height of tide which corresponds to the 

given depth of water. This will require consideration of the charted sounding. The problem is 

often given in the form of a required clearance under a vessels keel. In this case the ship's 

draft must be given. The draft and the clearance will be the required depth of water.  

Procedure  

1. Extract the times of high and low waters for the tide specified, and the heights.  

2. Subtract the height of low water from the height of high water to obtain the predicted range.  

3. Ascertam the height of tide above chart datum required to produce the given depth of water 

(subtract the charted sounding).  

4.Subtract the height ofL.W. to give the height above L.W. 5. Find the factor from:  

height above L. W. factor= ------predicted range  

6. Compare the predicted range with the spring and neap ranges to determme whicll curve to 

use or whether interpolation between both curves is necessary.  

7. Enter appropriate curve or curves with the factor and extract the interval from H.W. by the 

reverse process to that described in the previous example.  

8. If necessary interpolate between the intervals from H.W. from spring and neap curves, as 

indicated by the comparison between the predicted range and the spring and neap ranges.  



 

9. Apply interval from H.W. to the time of high water found in  

(1).  

Example  

Find the time when a vessel of draft 6·5 metres will have a clearance of 1·0 metre over a 

shoal of charted depth 1·0 metre off A vonmouth, on the rising tide of the morning of 

23rd February 1980.  

From A IT 23rd Feb. H. W. 1219  Htl1·0m,  

 L.W.0611  Ht. 2·2m ................ 1  

  pr. range 8·8m  ................ 2  

Draft  6·5m  

Clearance  1·0m  

Required depth  7·5m  

Sounding  _1·_0m_  

Ht. above cht. datum 6·5m ............................  ................. 3  

Height ofL.W.  _2·_2m_  

Height above L.W. 4·3m .........•...................................... 4  

F ht. above L. W. actor = ------  

pdctd. range  

4·3  

 =-8.-8 =0·49  ........................................................ 5  

Spring range 12·3  

 predicted range 8·8  .............................. 6  

Neap range 6· 5  

From spring curve  interval from H.W. =-2h 50m  

From neap curve  interval from H.W. =-3h20m  .......... 7  

interpolating between springs and neaps for a predicted range of  

8·8m  interval from H.W.=-3h 09m  ........... 8  

Time ofH.W.  12hl.9m  



Interval from H.W. -03h 09m  

Time required  09h 10m  ........................................ 9  

Secondary ports  

Part II of A IT Vol. I gives tidal information for a large number of secondary ports. This 

information is given as time and height differences between the secondary port and some 

convenient standard port.  

High and low water time dift'erences  

The time differences between high or low water at the secondary port and high or low 

water at the standard port varies between springs and neaps. There are two values given 

which should be taken as the maximum and minimum differences. These are tabulated 

against the time of high or low water at the standard port which will depend mainly on 

the neap-spring cycle. If the time of high or low water at the standard port falls between 

the times tabulated then the time differences must be interpolated.  

Figure 6.3 shows an extract from Part II of AIT Vol. I. The standard port is Milford 

Haven.  

Example  

Find the time of high water at Ilfracombe if the time of high water at Milford Haven is 

0330.  

 

Produced from British Admiralty Tide tables with the sanction of the Controller, H .M. 

Stationery Office and of the Hydrographer ofthe Navy.  

T~me diffe~ence for 0l00} 2.5 hrs. -0030}  

Time reqUIred  0330   15 mins.  

Time difference for 0700  -0015  

Thus for 0330 the time difference is: -(0030- 2.56X15) =-(0030-6)  

= - 0024 mins.  

Time H. W. Milford Haven 0330  

 Time difference  -0024  

 Time H.W. Ilfracombe  0306  

Height differences  



Differences in tidal height between secondary port and standard port are tabulated for 

M.H.W.S., M.H.W.N., M.L.W.S., and  

 



 

M.L.W.N. The differences between the mean spring and mean neap levels should be assumed 

to vary linearly and can be found by interpolation. For levels outside the mean range the 

height differences are found by extrapolation. The level of the required tide at the standard 

port should be compared with the mean spring and neap levels gIVen for the standard port in 

Part II for interpolation purposes.  

Example (refer to figure 6.3)  

The height of H.W. at Milford Haven is 6·0 metres. Find the height ofH.W. at Ilfracombe.  

Difference for M.H.W.S.  

M.H. W.S. leveI7.0} 1.01 difference +2'2~  

 RequiredH.W.6·0  1·8   0·5  

 M.H.W.N.leveI5·2   difference +1·7  

 .  1·0xO·5  

 dIfference =+(2'~  1.8)  

=+(2·2-0·3) =+1·9  

H.W. Milford Haven 6·0 metres  

 Difference  + 1·9  

 H.W. Ilfracombe  7·9 metres  

Example  

Find the times and height of high and low waters at Watchet (A IT 531) on 12th February 

1980.  

Standard Port  H.W.  L.W.  H.W.  L.W.  

(Avon mouth)  0242  0859  1524  2148  

dffferences  -0037  -0049  -0039  -0057  

-- -- -- --  

Secondary Port  

(Watchet)  0205  0810  1445  2051  

Standard Port  

heights  9·8  3·5  10·3  3·2  

differences  -1·5  +0·1  -1·5  +0·1  



Watchet heights  -8·-3  -3·-6  -8-'8  -3·-3  

Note  

Care should be taken in problems like this that a high or low water at the standard port on the 

preceeding or the following day does not produce a high or low water at the secondary port on 

the day in question, after the differences are applied.  

To find the height of tide at a secondary port at a time between high and low water  

Unless indicated otherwise in the tide tables the tidal movements at a secondary port are 

similar enough to those at the standard port for the tidal curve given for the standard port to be 

used for the secondary port also. After finding the times and heights of the high and low 

waters at the secondary port the problem is similar to that for a standard port. The spring and 

neap ranges for the secondary port must be found to compare with the predicted range to 

determine which curve to use.  

Procedure  

1. Extract the times of the high and low water on either side of the required time for the 

standard port, and the heights.  

2. Apply the time differences to obtain the times of high and low water at the secondary port. 

Apply the height differences, interpolating between spring and neap ranges, by comparing the 

heights at the standard port with the mean spring and neap heights given in Part II for the 

standard port, as explained previously. This gives the heights at the secondary port.  

3. Subtract the height of low water at the secondary port from the height of high water to 

obtain the predicted range.  

4. Take the difference between the required time and the time of the high water to find the 

interval from H. W.  

5. Apply the secondary port spring and neap height differences to the heIghtsofM.H.W.S., 

M.H.W.N., M.L.W.N andM.L.W.S. for the standard port to obtain these values for the 

secondary port.  

6. Subtract the height ofM.L.W.N. from that ofM.H.W.N. to obtain the neap range, and 

subtract the height of M.L.W.S from that ofM.H.W.S. to obtain the spring range. Compare 

these with the predicted range to determine whether to use the spring curve or the neap curve 

or whether interpolation is necessary between the two.  

7. Enter the tidal curve given for the standard port with the interval from high water and 

extract the factor. Interpolate if necessary between the spring and neap factors.  

8. Multiply the factor by the predicted range to obtain the height above L. W.  

9. Add on the height of low water to the height above L. W. to obtain the height above chart 

datum.  

Example  

Find the heightoftide atClevedon(ATT 528) at1000G.M.T. on 16th March 1980. What will be 

the under keel clearance of a vessel of draft 8·1. metres, when passing over a shoal of charted 



depth 3·4 metres?  



 

Standard port  H.W. Height  L.W. Height  

(Avonmouth)  0654  13·9  1417 0·4  .......... 1  

Differences  -0018  -0·4  -0024 -0·0  .......... 2  

Clevedon  -06-3-6 -1-3·-5  -13-5-3 -0-·4  

0·4  

 13·1 = predicted range  ......... 3  

High Water Clevedon 0636 Required time _1000_  

Interval from H.W.+ 0324  .................................................. 4  

M.H.W.S. M.H.W.N. M.L.W.N. M.L.W.S.  

A vonmouth  

 mean levels  13·2  10·0  3·5  0·9  

Cleve don  

 differences  -0·4  -0·2  +0·2  0·0  

Clevedon  --  --  --  --  

 mean levels  12·8  9·8  3·7  0·9  ......... 5  

  0·9  3·7  

-- --.  

 Spring range=11·9  6·1=neap range  ..................... 6  

Predicted range=13·1 use spring curve  

From spring curve for A vonmouth factor =0·46  ............... 7  

Height above L.W.=0·46x13·1  =6·0 ....................... 8  

HeightofL.W.  =_0·_4  

Height oftide above chart datum  = 6·4  ..................... 9  

Charted sounding  =_3·_4  

Depth of water at 1000 G.M.T.  =9·8  

Vessel's draft  =8·1  

Underkeel clearance  =1·7 metres  



To find the time between high and low water at a secondary port, when there will be a given 

depth of water on a given tide  

Procedure  

1. Extract the times and heights of the high and low water of the given tide for the standard 

port.  

2. Apply the time and height differences to obtain the times and heights of the high and low 

water at the secondary port. Find the predicted range.  

3. Apply the secondary port spring and neap height differences to the helghtsofM.H.W.S., 

M.H.W.N., M.L.W.N. andM.L.W.S. for the standard port to obtain these values for the 

secondary port. 4. Subtract the height of M.L. W.N from that of M.H. W.N. to  

obtain the mean neap range, and subtract the height of M.L. W.S. from that of M.H.W.S. to 

obtain the mean spring range for the secondary port. Compare these with the predicted range 

at the secondary port to determine which tidal curve to use or whether to interpolate between 

the two.  

5.Ascertain the required height of tide above chart datum.  

6.Subtract the height ofL.W. to obtain the height above L.W.  

7.Find the factor from factor ~~~~?~~~ ~~~~  

8. Enter the tidal curves for the standard port and extract the interval from H. W. Interpolate if 

necessary between the spring interval and the near interval.  

9. Apply interva from H.W. to the time of high water at the secondary port to obtain the 

required time.  

Drying heights  

A drying height is a 'sounding' on a chart of a point which lies above the level of chart datum. 

The height of the point above chart datum will give the height of tide above chart datum when 

the point dries on a faIling tide or covers on a rising tide.  

Example  

A vessel is berthed at Watchet alongside a quay with a drying height of 1·5 metres. Find the 

time when the vessel wi1\ take the ground on the falling P.M. tide on 28th January 1980 if the 

vessels draft is 3·8 metres.  

 H.W.  Height  L.W.  Height  

Standard port  

(Avonmouth)  1638  11·1  2301.  2·2 ...... 1  

Differences  -0042  -1·6  -01.08 +0·1  

-- -- ----  

Watchet  1556  9·5  2153  2·3  ...... 2  



2·3  

 -7 ·-2= predicted range  ..... 2  

M.H.W.S. M.H.W.N. M.L.W.N. M.L.W.S.  

A vonmouth  

mean levels  13·2  10·0  3·5  0.9  

Watchet  

differences  -1·9  -1·5  +0·1 +0·1  

Watchet  --  --  --  

mean levels  11·3  8·5  3·6  1·0  ...... 3  

 1·0  3·6  

-- --  

Spring range=  10·3  4·9= neap range  

Predicted range=  7·2 interpolation necessary  ................ 4  



 

 Vessel's draft  3·8 metres (depth of water when taking  

ground)  

 Drying height  1·5  

Ht. above chart datum -5-·3  ................................................ 5  

Ht. of L. W.  2·3  

Ht. of tide above L.W. 3·0  .................................................. 6  

3·0  

Factor=-=0·42  ..................................................................... 7  

7·2  

From spring curve interval fromH.W. =+ 3h 37m  

From neap curve interval from H.W. =+ 3h 30m reqd. interval  

Required interval from H.W.  + 3h 33m  ................... 8  

Time of high water  15h 56m  ................... 9  

Time when vessel will take the ground  19h 29m G.M.T.  

Charted heights  

Heights of terrestrial objects such as lighthouses and topographical features are expres.sed 

above Mean High Water Springs. If these heights are required accurately above the water 

level, such as for observation of accurate distance by vertical sextant angle, then a correction 

must be applied equal to the height of M.H.W.S. above or below the water surface.  

Example  

Find the correction to apply to the charted height of a lighthouse at a place where the level 

ofM.H. W.S. is13·2, and the height oft ide above chart datum is found to be 9·5 metres.  

 



//  

From figure 6.4 the correction may be seen to be the height of M.H.W.S. minus the height of 

tide.  

Thus:  

Actual height=Charted height+ M.H. W.S. - Height of tide.  

If the height of tide is greater than the height of M.H. W.S then Actual height=Charted height-

(Height of tide- M.H. W.S.)  

EXERCISE 6A (Standard Port)  

1. Find the times (G .M. T.) and heights of high and low waters at A van mouth on 27th 

February 1980.  

2. Find the height of tide above chart datum at a place off Avonmouth at 0924 B.S.T. on 31st 

March 1980.  

3. Find the depth of water beneath the keel <1f a vessel of draft 5.8 metres when passing over a 

shoal of charted depth 2 metres, at 1 715  

B.S. T. on 29th April 1980 off A vonmouth.  

4. Find the depth of water over a rock of drying height 1· 5 metres at the P.M. high water on 

26th January 1980. Will this rock dry during the following tide?  

5. Find the earliest time (B.S.T.) that a vessel of draft 6·5 metres can pass over a shoal of 

charted depth 2·5 metres with a clearance of 2·0 metres on the rising tide of the morning of 

20th April 1980.  

6. A vessel is aground off A van mouth with her for'd section on a sandbank of charted drying 

height 1·0 metre. At what time (G.M.T.) can she expect to float off on the P.M. rising tide of 

9th March 1980 if the for'd draft is 8·0 metres?  

7. Find the height of a lighthouse near Avonmouth, above the water surface, at 0800 G .M. T. 

on 11 th January 1980, if the charted height of the light is 48 metres.  

EXERCISE 6B (Secondary Ports)  

1. Find the times and heights of all high and low waters at Sharpness Dock on 29th January 

1980.  

2. Find the depth of water at a place off Sharpness Dock where the charted defth is 2·5 

metres, at the high water on the afternoon of12th March 980, and the time G.M.T.  

3. Find the clearance under the keel of a vessel at anchor off Watchet at 0830 (G.M.T.) on 

27th April 1980 if the charted depth is 3·2 metres, and the vessel's draft is 5·5 metres.  

4. Find the correction to charted soundings at a place off Weston-super-Mare at 1200 G.M.T. 

on 1st February 1980.  

5. Find the time (B.S.T.) when there will be 13·0 metres of water  



 

over a place where the charted depth is 5 metres, at Beachley on the rising tide on the morning 

ofl9th April 1980.  

6. Find the latest time that a vessel can pass over a shoal off Watchet of charted depth 1 metre 

on the falling tide of the evening ofl st January 1980, if the vessel's draft is6 metres and a 

clearance of 0·5 metres is required.  

7. Find the height of tide above chart datum at Bristol (Sea Mills) at 1500 G.M.T. on 15th 

January 1980. What would be the charted sounding at a place which was just drying at this 

time?  

CHAPTER 7  

THE CELESTIAL SPHERE AND THE NAUTICAL ALMANAC  

The celestial sphere  

The concept of the celestial sphere is one in which all astronomical bodies are considered to 

lie on the surface of a sphere of infinite radius, which is concentric with the terrestrial sphere. 

This concept is acceptable to the navigator as he is concerned only with the measurement of 

angles subtended at the centre of the sphere, and the fact that astronomical bodies lie at 

different distances from the earth is of little consequence in the measurement of these angles. 

The motion of the closer bodies and the motion of the earth will cause these bodies to exhibit 

a movement on the celestial sphere relative to the bodies which can be considered to lie at 

infinitely great distances, that is the stars.  

An astronomical body may have its position defined with reference to the celestial sphere, or 

with reference to the terrestrial sphere. The latter is required in order to use the body for 

observation to find an observer's terrestrial position. The terrestrial position of the body is 

defined by the latitude and longitude of the point on the earth's surface where a line joining 

the body to the earth's centre cuts the surface. This point is called the body's Geographical 

Position (G.P.). The position of a G.P. changes rapidly with the rotation of the earth so that it 

is convenient to define position on the celestial sphere by coordinates which change relatively 

slowly.  

Definition of position on the celestial sphere Equinoctial  

This is the great circle on the celestial sphere which lies in the same plane as the earth's 

equator. It may sometimes be referred to as the celestial equator.  

Celestial poles  

These are the points on the celestial sphere at which the earth's axis of rotation when 

produced, meet the celestial sphere. The north and south celestial poles will be 90° removed 

from all points on the equinoctial.  



 

Celestial meridians  

These are semi great circles which terminate at the celestial poles, cuttin~ the equinoctial in a 

right angle in the manner of terrestrial meridIans. They are sometimes referred to as Hour 

Circles.  

Declination  

This defines the position of a celestial body with respect to the equinoctial. It may be defined 

as the arc of the celestial meridian which passes through the body, contained between the 

equinoctial and the body. It is measured north or south of the equinoctial in the manner of the 

terrestrial latitude. The declination of a celestial body will be equal to the latitude of its 

geographical position at all times.  

The declination of the sun varies between 23° 27' N. and 23° 27' S. approximately. The period 

of the variation is one year, the period of the earth's revolution around the sun. The variation 

is caused by the earth's axis of rotation being inclined to the plane of its annual orbit around 

the sun at an angle of 66° 33' approximately. The plane of the equator and equinoctial is 

ther~fore inclined to the plane of the earth's orbit by 23° 27'. The plane of the earth's orbit is 

called the ecliptic plane and the inclination of the equinoctial to the ecliptic plane is called the 

obliquity of the ecliptic. The intersection of the two planes, both of which are orientated in 

space in a constant plane (except for small long term changes), defines a constant direction in 

space. The point of their intersection which is occupied by the sun when going from south to 

north declination is called the First Point of Aries. The passage of the sun through the first 

point of Aries marks the beginning of the Spring season on earth.  

Sidereal hour angle  

This is the arc of the equinoctial measured westwards from the first point of Aries to the 

meridian which passes through the body being considered.  

The declination and the sidereal hour angle (S.H.A.) define a position on the celestial sphere 

in the same way as latitude and longitude define a position on the terrestrial sphere. (Note that 

although the declination is equal to the latitude of the G.P., the S.H.A. is not equal to the 

longitude of the G.P. This is because, due to the earth's rotation within the celestial sphere, the 

meridian of Greenwich does not always coincide with the meridian of Aries, whereas the 

plane of the equinoctial is always coincidental with the plane of the equator by definition.)  

If small long term movements of the first point of Aries are neglected the S.H.A. and 

declination of a fixed point on the celestial sphere remain constant. Stars lie at such vast 

distances that they almost constitute fixed directions in space. The S.H.A. and  



 

declination of stars exhibit slow changes due to the stars own movement in space and due to 

the long term movements of Aries referred to previously. The changes are in the order of 

minutes of arc over a period of months.  

The sun appears to move completely around the celestial sphere, relative to the stars and 

relative to the first point of Aries due to the earth's annual motion in orbit around the sun. This 

motion causes the S. H.A. of the sun to decrease by approximately 1 ° per day, that is by 360° 

per year. The inclination of the earth's axis causes the declination to vary from 23° 27' S. to 

23° 27' N. and back again in the same period. The maximums are reached on December 22nd 

and June 21st respectively, and the sun's declination goes to zero on March 21st and 

September 23rd.  

Planets exhibit movements on the celestial sphere relative to the stars due to their own orbital 

motion around the sun and also due to the earth's motion around the sun. Planets S.H.A. and 

declinations therefore have slow changes throughout the year.  

The moon, because of it proximity to the earth exhibits, a relatively rapid decrease in S.H.A. 

This is due to the moon's orbital motion around the earth in the same direction as the earth's 

orbital motion around the sun. This amounts to approximately 13° per day. The inclination of 

the moon's orbit to the equinoctial also produces a rapid change of declination. This varies 

between limits which are themselves variable, but may be as much as 28%OS. and 28%ON., 

and as little as 18%OS. to 18%ON. The declination will change between these limits in 

approximately two weeks.  

Definition of a celestial body's position on the terrestrial sphere The longitude of the 

geographical position of a celestial body changes by 360° each day as the earth rotates. The 

longitude of the  



 

G.P. is called the body's Greenwich Hour Angle (G.H.A.). This may be defined as the arc of 

the earth's equator measured westwards from the meridian of Greenwich to the meridian 

through the G. P. This is the same as the longitude except that whereas longitude is measured 

from 0
0
 to 18ooE. and W. of Greenwich, the G .H.A. is measured continually westwards from 

0
0
 to 360".  

The G.H.A. may be found if the S.H.A. is known and the longitude of the first point of Aries 

is known (G .H.A. Aries). The G.H.A. of Aries will also change by 360
0
 each time the earth 

rotates within the celestial sphere, and may be found at arty instant from the nautical almanac. 

The G .H.A. of a celestial body may therefore be found from the relationship:  

G.H.A.=S.H.A.+G.H.A. Aries (see figure 7.2). (if greater than 360
0
 subtract 360")  

 

The Nautical Almanac  

The Nautical Almanac is published by Her Majesty's Stationery Office as publication N.P. 

314 and provides all astronomical data necessary for use in marine astronomical navigation.  

The arrangement of the information in the almanac may be divided into sections as follows.  

1. Altitude correction tables. These will be explained in full under the chapter heading of 

'Correction of Altitudes'.  

2. The list of selected navigational stars, giving the S.H.A. and declination of each star for 

each month of the year.  

3. The Pole Star Tables. These will be described fully under the chapter heading 'The Pole 

Star Problem'.  

4. The daily pages and increment tables. These are the most important pages of the almanac 

and allow the navigator to pick out  

the G.H.A. and the declination ofthe sun, moon, four navigational planets, and each of the 

selected stars, for any second of Greenwich Mean Time throughout the year.  

Arrangement of the daily pages  

Each double page contains data for three days. This is arranged in columns headed Aries, 

Venus, Mars, Jupiter, Saturn, Sun and Moon. The column for each body contains the G.H.A. 



and declination (except for Aries) for each hour of G. M. T. for the three days contained on 

the double page. The increment tables allow easy interpolation between the hourly figures to 

obtain the values for each second ofG.M.T. These are found by adding an increment to the 

value ~iven for the hour of G.M.T. The increment is extracted from the Increment tables by 

entering the table headed with the number of minutes in the G.M.T., and extracting the 

increment from that table against the seconds of the G.M.T. down the page. There are three 

tables given, one for sun and planets, one for Aries and one for the moon. These are given 

because of slight variations in the rate of change of the G .H.A. Care should be taken to use 

the appropriate column.  

Corrections to the increment. The 'v' correction  

The mean rate of increase of G.H.A. of the sun is 15
0
 per hour, and it is upon this value that 

the sun's increment table is based. Variations from the mean rate of change are small and are 

allowed for in the hourly figures given in the daily pages. The sun's increment requires no 

correction.  

The rate of increase of G.H.A. of the planets, is with the exception of Venus always greater 

than 15
0
 per hour. That of Venus may be slightly greater or slightly less. The sun's increment 

table is used however for the increment to planets G.H.A. The increment may be in error 

however if the hourly increase in G.H.A. is not exactly 15
0
 as assumed by the increment table 

figures. The difference is allowed for by the 'v' correction. The difference between the 

assumed value of 15
0
 per hour in the increment table and the actual hourly change as 

indicated by the hourly figures in the daily pages is given in the daily pages, at the foot of 

each of the planet's columns as 'v'. This is a mean figure for the three days. A more accurate 

figure may be obtained by noting the actual change in G.H.A. over the hour in which the 

requiredG.M.T.lies. The actual 'v' correction to apply is a proportion of this value depending 

upon the number of minutes in theG.M.T. (If the minutesofthe G.M.T. given is 30, then only 

half of the 'v' value is applied.) The 'v' correction may be found by entering the 'v' correction 

table given with each of the increment tables using that one which is given with the table 

headed with the minutes in the G.M.T. The 'v' value from  



 

the daily pages is located and the correction is extracted against it. (Correction is in bold 

type.) This correction is added to the increment, unless in the case of Venus, the 'v' value from 

the daily pages is given a negative sign, in which case it is subtracted from the mcrement.  

The rate of change of the moon's G .H.A. varies between 14° 19' and 14° 37' per hour. The 

moon's increment table is based upon the least value of 14° 19'. Any excess over this value is 

taken care of by a 'v' correction in the same manner as the planets. The correction is always 

positive for the moon. The variation in the hourly change of G.H.A. for the moon makes it 

necessary to give a 'v' value in the daily pages for each hour of G.M.T. This is given against 

each hourly value of G .H.A.  

The rate of change of G.H.A. of Aries is constant of value 15° 02·46' per hour, and this is the 

value upon which the Aries increment table is based. There is therefore no 'v' correction 

required for Aries.  

Declination  

The declination for each body i~ given for each hour of G.M.T. against the value of G.H.A. 

The rate of change of declination is usually small enough to allow for mental interpolation 

between the hourly values. However this may be done by the interpolation tables (the same 

table as for interpolating the 'v' value). The difference between hourly values of declination is 

given as value 'd' in the daily pages. 'd' is given once for the three days for planets at the foot 

of each planet column, and once for the three days for the sun. These are mean values and a 

more accurate value may be obtained by inspecting successive hourly values of the 

declination. In the case of the moon the change of declination over one hour is large enough 

and variable enough to require a 'd' value for each hour of G.M.T. and this is given against the 

declination value in a column headed'd'.  

The correction to apply to the hour value of declination is obtained by entering the increment 

interpolation tables ('v' or 'd') with the value from the daily pages and extracting the correction 

against it. The si~n of the 'd' correction must be inferred by noting whether the declmation is 

increasing or decreasing over the hour in which the given G.M.T. lies.  

Example  

Required the G.H.A. and declination of the sun on 5th January  

1980, at 18h45m 17sG.M.T.  

 G.H.A. at 18h  88°41'4'  dec.  22°38·7'S.  

 Incr.  11° 19·3'  'd' corr.  -0·2'  

 G.H.A.  100°00·7'  dec.  22° 38·5'S.  

Notes  

l. The G.H.A. for 18h 00m is obtained from the daily page for the date of G.M.T.  

2.The declination is taken out at the same time.  

3. The increment is for 45m 17s, and is taken from the Interpolation Tables. Turn to the page 



headed 45m, and proceeding down the page to 17s, the increment will be found under the 

column headed Sun. The increment is always added.  

4. The correction to the declination is found by proceeding down the column headed v or d 

correction to the value of d, as found at the foot of the column headed 'Sun' on the daily page 

and taking out the quantity abreast of it. Note from the values of the declination whether d is 

plus or minus.  

To find the G.O.A. and declination of the moon  

The method is similar to that for the sun, except that the v correction must be applied to the 

G.H.A. Follow the steps in the example.  

Example  

Find the G.H.A. and declination of the moon on 7th January 1980 at 19h 34m 36s G.M.T.  

G.H.A. for 19h 222°28'9' decfor 19h 6° 24·4' N. 'v' =15,2  

Incr.  8° 15·4' 'd' corr.  -5·3' 'd' = 9·2  

'v'corr.  8·7  6°19'1'  

G.H.A.  230° 53·0'  

Note  

The v value of 15·2 is extracted against the G.H.A. value for 19h and the actual correction to 

apply is obtained. from the v or d interpolation table for 34m against 15·2. Similarly the 

increment to declination of -5· 3 is obtained against 9·2.  

(d correction is particularly important in the case of the moon as the declination is changing 

rapidly.)  

To find the G.H.A. and declination of a planet  

Follow the same steps as for the moon, but the increment for minutes and seconds of time is 

found in the interpolation tables by using the sun table.  

Example  

18th September 1980 at 21h 35m 45s G.M.T. Find the G.H.A. and declination of the planet 

Venus.  



 

G.H.A.for21h 178°48'7' dec.for21h 16° 18·2'N. 'v' "'{}·3  

 Incr.  8° 56·3'  "'{}·4  'd' 0·6  

  187° 45·0' dec.  16° 17·8' N .  

...{}·2'  

G .H.A.  187° 44'8'  

Note that the v is minus.  

To find G.H.A. of a star  

In order that G.H.A. information need not be given for every star a value of sidereal hour 

angle (S.HA.) is given for selected stars once on each three day page. This is the angular 

distance of the star west of the first point of Aries, and as the direction of the first point of 

Aries and the direction of the stars are, over short periods of time, constant then the S.HA. of 

a star is fairly constant.  

The list of selected navigational stars down the right hand side of the left hand page contains 

the value for S.HA. If the star is not contained in this list it will be found in the fulIlist at the 

back of the almanac, where a value is given for each month.  

Now, if the S.H.A. of the star is the angular distance west of the first point of Aries, if we 

knew the angular distance of the first point of Aries west of Greenwich, then we could add 

them together and obtain the angular distance of the star west of Greenwich, i.e. the G.H.A. of 

the star.  

Thus: S.HA.*+G.H.A.<r'=G.HA.*  

The G.H.A. of the first point of Aries is given every hour in the extreme left hand column of 

the almanac and an interpolation table is given to find values at times between the hours 

exactly as for the sun.  

Note  

If the G.H.A.* as found exceeds 360° then this amount should be subtracted.  

Example  

Required the G.H.A. of the star Canopus 17, at 16h 50m 108 G.M.T. 7th January, 1980.  

G.H.A. for 16h  346°22'9'  

Incr.  12° 34·6'  

G.H.A.  358° 57·5'  

S.H.A. *  264° 06·9'  

 ~~ 04·4'  ~:~opus is listed on the daily  



 -  ________ pages. The declination and the  

G .H.A. *  263° 04·4' S.H.A. are taken from that list.  

 

Exercise  

Find the G.H.A. and declination ofthe sun on:  

1. 7th January, 1980, at lOh 50m OOs G.M.T.  

2.18th September, 1980, at 15h 40m OOs G.M.T.  

3.19th December, 1980, at 11h 58m 25s G.M.T.  

4.26th June, 1980, at 17h 58m 34s G.M. T.  

5. 30th September, 1980, at O4h 15m 47s G.M.T.  

Answers  

 G .H.A.  Dec.  

 1. 341°00'4'  22°26·7'S.  

 2. 56° 30·0'  1° 38·6' N.  

 3. 000° 17·5'  23° 25·3' S.  

 4. 88°55·8'  23°20·1'N.  

 5. 246° 26·7'  2° 50·4' S.  

Exercise 1  

Find the G.H.A. and declination of:  

1.The moon, 8th January, 1980, at 02h 50m 208 G.M.T.  

2.The moon, 19th September, 1980, at 08h 50m 408 G.M.T.  

3.The moon, 19th December, 1980, at O6h 35m 42s G.M.T.  

4.Venus, 18th September, 1980, at 11h 45m 108 G.M.T.  

5.Mars, 18th September, 1980, at21h 51m20s G.M.T. 6. Jupiter, 8th January, 1980, at 20h, 

31m 20s G.M.T.  

Answers  



 G.H.A.  Dec.  G.H.A.  Dec.  

 1. 336° 41·8'  5° 11·8' N. 4. 40° 09·3'  16° 23'3' N.  

 2.202°06'1'  19°31·8'S. 5. 104°41'3'  16°30.6'S.  

 3. 134° 12·5'  13° 51·5'N. 6. 253°26'7'  8° 54.6'N.  



 

LOCAL HOUR ANGLE (L.H.A.)  

This is the arc of the equinoctial contained between the meridian of the observer and the 

meridian of the celestial body. It is always measured westwards from the observer to the body 

and expressed in degrees and minutes of arc.  

Clearly the difference between the L.HA. and the G.HA. of any body will be the longitude of 

the observer.  

 

Thus from the figure:  

L.HA.=G.H.A.- W'ly longitude. L.H.A. = G.H.A. + E'ly longitude.  

To find the Local Hour Angle (L.H.A.) of a body  

First find the G.H.A. of the body, and then apply the longitude of the observer.  

Note  

If the longitude is west and the G.H.A. of the body is less than the longitude then 360° should 

be added to the G.HA. before subtracting the longitude.  

Example  

Find the L.H.A. of the sun at 23h 10m 48s G .M. T. on 7th January  

1980, if the longitude of the observer is 153° 20' E.  

 G.H.A.23h  163°26·8'  

 Incr.  2° 42·0'  

 G.H.A.  166°08·8'  

 Long. E.+ve  153°20·0'  

 L.H.A.  319° 28·8'  

Example 2  

Find the L.H.A. of the moon on 1st October 1.980 at 15h 31m 29s G.M.T. to an observer in 

longitude 1500 42·0'W.  

 G.H.A.15h  130° 04·4' 'v'=8·8  



 Incr.  7° 30· 7'  

 'v' corr.  4·6'  

 G.H.A.  137° 39·7'  

+360  

497° 39·7'  

 Long. W.-ve  150°42·0'  

 L.H.A.  346° 57·7'  

Exercise  

Find the L.H.A. in each ca.1Ie  

-- - ~- --- ---

-  
  

Date  G.M.T.  Body  Longitude  

1. 1.9th Dec. 1980  08h 35m 308  Sun  125°1O·0'E.  

2. 1.8th Sept. 

1980  
21h 58m 57s  Sun  72°18·3'W.  

3. 18th Sept. 1980  03h 50m 41.s  Aries  
14001O·2'W

.  

4. 17th Dec. 1980  
20h 1 Om 

408  
Arcturus  

1.64° 1.6·2' 

E.  

5. 1.8th Dec. 1980  21h 10m 14s  Kochab  38°20·2'W.  

6. 19th Sept. 1980  18h 30m 408  Sun  
1.62° 20·0' 

W.  

7. 26th June 1980  
20h OOm 

12s  
Aries  17° 33·0' W.  

8. 30th Sept. 1 

980  
20h 31 m 208  Betelgeuse  

162° 00·0' 

W.  

Answers  

1. 74° 44·6'  2. 78° 57·4'  3. 274° 43·4'  4. 33go 50·8'  

5.144°10'9'  6.296°56.0'  7.1.97°35.5'  8. 67°02·3'  

TO FIND TIMES OF MERIDIAN PASSAGE  

Meridian passage of a heavenly body occurs when the body, in its movement across the 

heavens due to the daily rotation of the earth, crosses the observer's meridian. At this point the 



body bears due north or due south and the altitude reaches a maximum. Observation of the 

altitude at meridian passage provides a quick and easy method of finding the observer's 

latitude (see Chapter 11 , The Meridian Altitude Problem). It is necessary to calculate the 

G.M.T. ofthe meridian passage in order to extract the declination from the almanac, and also 

to know approximately at what time to take the observation. The exact time is not necessary 

for observation as the practice is to watch the altitude with a sextant until it reaches a 

maximum and starts to decrease. The maximum altitude is then taken as the meridian altitude. 

The time is not required for the calculations. The accuracy to which the time is required in 

order to extract the declination will depend upon how  



 



 

meridian passage on a day for which there is no passage at Greenwich, then the figure given 

for that day (the time of mer pass on the following day), should be used in the manner 

described. The longitude correction will bring the time back into the day in question.  

Example  

To find the G.M.T. of the moon's meridian passage  

7th January, 1980. Find the G.M.T. of the moon's meridian passage to an observer in 

longitude ISO" 10' W.  

 L.M.T. mer. pass. 7th long. 0°  03h 44m  

 L.M.T. mer. pass. 8th long. 0°  04h 26m  

 difference  42m  

 corr. from table 11=  18m  

 L.M.T. mer. pass. 7th long. 0° .  03h Mm  

 Long. corr.  18m  

 L.M.T. mer. pass. 7th long. 150° 10' W. 04h 02m  

 Long. in time   10h Olm  

  G.M.T.  14h 03m(7th)  

Example  

29th September, 1980, find the G.M.T. of the moon's meridian passage to an observer in 

longitude 94° 37' E.  

 L.M.T. mer. pass. 29th long. 0°  04h 09m  

 L.M.T. mer. pass. 28th long. 0°  03h 13m  

 difference  56m  

 corr. from table II =  15m  

 L.M.T. mer. pass. 29th long. 0°  04h 09m  

 Long. corr.  15m  

 L.M.T. mer. pass. 29th long. 94° 37'  03h 54m  

 Long. in time   06h 18m  

  G.M.T.  21h36m(28th)  

To find the time of meridian passage of a planet  



At the bottom right hand corner of the left hand page in the daily pages the L.M.T. of 

meridian passage of the four planets is given once for the three days. The figure refers to the 

middle day of the page. The difference in the times for successive days may be several 

minutes so that to obtain the time of meridian passage fOf any meridian other than the 

Greenwich meridian, to the nearest minute, a longitude correction must be applied in the same 

way as described for the moon. This correction will never amount to more than a few minutes. 

Inspection of the declination figures for the planets will show that the changes are slow and 

will never amount to any significance over a few minutes. In practice therefore it is sufficient 

to take the L.M.T. given for the day in question, interpolating between the three days on the 

page, and, ignoring the longitude correction, apply the longitude. in time to obtain the G.M.T.  

Example (with longitude correction)  

Find the G.M.T. of meridian fassage of Saturn on 7th January,  

1980 to an observer in longitude 79°W.  

 L.M.T. mer pass 8th  04h 45m  

 L.M.T. mer pass 5th  04h57m  

By inspection  

 L.M.T. mer pass 7th  04h 49m  

 L.M.T. mer pass 8th  04h 45m  

 Difference   4m  

 L  . d  .  4x179°  

  ongltu e correctlon=  --_ =2m  

360°  

 L.M. T. mer pass 7th  04h 49m  

 Longitude correction  2m  

L.M.T. mer pass 7th 179°W. 04h 471]1  

 Longitude in time  11 h 56m  

 G.M.T.7th  16h43m  

(correction negative-west longitude with times becoming earlier. See instructions with Table 

II).  

Example without longitude correction (same example is used) By inspection from almanac  

L.M.T. mer pass 7th long. 0° 04h 49m  

 Longitude in time  11 h 56m  

 G.M.T.7th  16h45m  



 

To find the time of meridian passage of a star  

The method which is recommended here for finding the time of meridian passage of a star 

may also be used with any of the other bodies, if preferred.  

At mendian passage the body concerned is on the same meridian as the observer. The G.H.A. 

of the body, which it will be remembered is the longitude of the body's geographical position, 

must therefore be equal to the longitude of the observer. As the G.H.A. is expressed from 0° 

to 360° westwards from Greenwich, then if the longitude is east it may be subtracted from 

360° and then said to be equal to the G.H.A. It only remains to extract from the Nautical 

Almanac the exact G.M.T. at which that particular G.H.A. occurs, from the daily pages which 

list G.H.A. against G.M.T. In dealing with stars it will be necessary to apply the S.H.A. of the 

star to its G.H.A. to give the G.H.A. of the first point of Aries, which is listed in the daily 

pages. This is given by:  

G.H.A. cy> =G.H.A.*-S.H.A.*  

Note  

When using this method a problem arises as to what will be the date at Greenwich when the 

required meridian passage occurs on the observer's meridian, on the date given in the 

question. The date given always refers to the date at the vessel. The Greenwich date may be 

the same, or it may be one day later if the observer is in west longitude, or one day earlier if in 

east longitude. When extracting the G .M. T. from the almanac for the appropriate value of G 

.H.A. at meridian passage, it must be extracted on such a date that when the longitude in time 

is applied to it to get the L.M.T., then the date at the observer is the date required by the 

problem. In practice this will not arise as the Greenwich date will be known, but in the context 

of an examination question this point should be given careful consideration (see Example 3).  

Example 1  

Find the G.M.T. and L.M.T. of meridian passage of the star Capella to an observer in 

longitude 45° 18'W. on 2nd October, 1980.  

 G.H.A. Capella  45°18'  

 S.H.A. Capella  281°11·1'  

 G.H.A. cy>  124°06·9'  

G.H.A. cy> 07h2nd 116°09·1' (by inspection of almanac)  

 Increment  7° 57 ·8' =31m 46s (from Aries  

increment tables)  

 G.M.T. mer pass  07h 31m 46s2nd  

 Longitude  03h 01m 12s  

 L.M. T.  04h 30m 34s 2nd  



Note  

By inspection of the almanac the value of G.H.A. next less than the reqUIred G.H.A. should 

be extracted, mentally checking at this point that the application of the longitude in time will 

give a local date required by the question.  

Example 2  

Find the time of meridian passage of the moon over the meridian of 78° 45' E. on 18th 

December, 1980.  

G.H.A. moon=E. Long.-36O° 281°15'  

G.H.A. moon15h18th  269°01·0' (' I f  d "I  

 °  ,'v va ue rom aI y  

!n,crement  12 14.0, pages 7.8 correction  

v corr.  -6·6 from increment table  

Increment corrected  12° 07·4' for 50 minutes=6·6)  

From increment table for moon an increment of 12° 07·4' corresponds to 50m 49s.  

G.M.T. 15h50m49s 18th  

Long.  5h 15m  

L.M.T.  21h05m49s 18th  

Note  

Adequate accuracy is obtained by neglecting the 'v' correction. In this case the increment 

of12° 14·0' would have given 51 m 16s. The G.M.T. would therefore have been 15h 51m 16s. 

In practice the error of a few seconds would be negligible. The other method described for the 

moon in fact only gives the times to the nearest minute.  

Example 3  

Find the G.M.T. and L.M.T. of meridian passage of the star  

Antares to an observer in longitude175°30' E. on 8th January1 980.  

 G.H.A. Antares  184°30'  

 S.H.A. Antares  112° 57·7'  

 G .B.A. cy>  71 ° 32·3'  

G.H.A. cy: 21h7th 61°35·3'  

 Increment  9° 57·0' =39m 42s  

I  



 

G.M.T. 21h39m42s 7th Jan.  

 Long.  11 h 42m  

 L.M.T.  33h21m 42s  

 =  9h21m42s 8th Jan.  

Note  

The date at Greenwich is one less than the date at ship in east longitude in this example. Had 

the G.H.A. for 21h on 8th been extracted, the L.M.T. would have fallen on the 9th. By 

extracting the G .H.A. for 21h on 7th the L.M. T. is on the required date.  

EXERCISE  

Find to the nearest second the G.M.T. of meridian passage in the  

following examples.  

1.Jupiter, 26th June, longitude SooW.  

2.Canopus, 19th September, longitude 40
0
E.  

3.Moon, 18th December, 10ngitudelOSoW. 4. Procyon, 28th June, longitude 169° SO' E. S. 

Spica, Sth January, longitude124° 30' W.  

Answers  

1. 19h 30m 09s 26th June  2. 03h SOm 41s 19th Sept.  

3. 04h 34m 17s 19th Dec.  4. 01 h S3m 38s 28th June  

S. 14h 44m 41s Sth Jan.  

To find times of lower meridian passage (Lower transit or meridian passage below the pole)  

If the body is visible above the horizon when it crosses the observer's lower meridian, latitude 

may be found readily by observation of altitude at this occurrence (see Chapter U). The 

declination is required and therefore the G .M. T. of lower meridian passage.  

Sun and planets  

It is sufficiently accurate for practical purposes to add 12 hours to the time of upper meridian 

passage given in the almanac, and to proceed as described for upper meridian passage.  

Moon  

The L.M.T. of lower meridian passage is extracted from the almanac and treated in the same 

way as described for upper meridian passage.  

Stars  



At lower meridian passage the G.H.A. of the body is 180° different from the observer's 

longitude. The G.M.T. when such G.H.A. occurs is extracted from the daily pages in the same 

way as for upper meridian passage.  

TO FIND TIMES OF SUNRISE, SUNSET, MOONRISE AND MOONSET  

The G. M. T. of sunrise and sunset, and moonrise and moonset is required to solve the 

amplitude problem in which the compass error is obtained by observation of the sun or moon 

at rising or setting. The declination is required in the problem hence the requirement for the G 

.M. T. (see Chapter 8, The Amplitude Problem).  

To find times of sunrise or sunset  

The time of sunrise and sunset is given on the right hand side of the right hand page in the 

daily pages. It is given once for the three days on the page, the figure referring to the middle 

day. In moderate latitudes the times will change little over three days, so that the figure given 

for the page may be used without interpolation. In higher latitudes the daily change may be 

such that interpolation between the three days may be necessary for accuracy. No significant 

error will be caused in practice if this is not done. The times vary with latitude so that the 

argument latitude must be used to extract the time, interpolating between the latitudes 

tabulated. The interpolation is not linear and may be done with the aid of Table 1 on the page 

immediately following the increment tables. Full instructions are given with this table. The 

change of the times with latitude are usually small and in practice no significant error will be 

caused by interpolation mentally assuming linear changes.  

The times contained in these columns are local mean times (L.M.T.), and may be taken to be 

for any meridian. The longitude in time must be applied in order to obtain G.M.T. (see Times 

of Meridian Passage).  

Example  

Find the G.M.T. of sunrise on 19th September to an observer in  

D.R. position SOON. 16So 24' W.  

L.M.T. sunrise SOON. 19th OSh42m  

 Longitude in time (W)  11h 02m  

 G.M.T.  16h44m 19th  



 

Example  

Find the time of sunset on 26th June 1980 to an observer in position 55° S.l72° 30' E.  

L.M.T. sunset 55°N. 27th 17h 12m (interpolating between  

L.M. T. sunset 55°N. 24th 17h 17m  54°and 56°)  

L.M.T. sunset 55°N. 26th 17h 14m (interpolating between  

Longitude in time (E.)  11 h 30m  27th and 24th)  

G.M.T.  05h 44m 26th  

To find times of moonrise and moonset  

The times of moonrise and moonset are tabulated against latitude in the same manner as those 

for sunrise and sunset. The times are given for each day however due to the large differences 

between daily figures and the variations in the daily differences. For the same reasons the 

times, which are local mean times, cannot be taken as L.M.T. for any meridian, but only for 

the meridian for which they were calculated, the Greenwich meridian. In order to find the 

L.M.T. for any other meridian a.Jongitude correction must be applied as described for the 

time of meridian passage of the moon. Again this longitude correction is given by:  

longitude  

 daily differencex  360  

After correction for longitude, the longitude in time must be applied in order to give the 

G.M.T. Thus the procedure is:  

1. Extract the L.M. T. tabulated for the date in question, interpolating for latitude using Table 

1.  

2. Extract the L.M. T. for the folIowing day if in west longitude, or the preceding day if in 

east longitude, and thus find the daily difference.  

3. Find the longitude correction from Table II or by the formula given above.  

4. Apply the longitude correction to the L.M. T. extracted for the day in question as explained 

in (1). This is normally added if in west longitude and subtracted in east longitude. This only 

applies if the times are getting later each day, as is usually the case. If the times are getting 

earlier each day then this rule is reversed, and the correction subtracted if in west longitude 

an~ added if in east longitude. In all cases the result wilI lie between the times extracted in (1) 

and (2).  

5. Apply longitude in time, +ve for west longitude and -ve for east longitude, to obtain the 

G.M.T.  

Example  

Find the G.M.T. of moonrise on 9th January to an observer in position 21 ° 30' S.l00oE.  



L.M.T. moonrise 9th Long. 0°  23h37m (interpolating for  

L M T moonrise 8th Long 00  23h 01 m latitude between  

 ....   20° and 300)  

Difference   36m  

Longitude correction  =36x  -~~-O = 10m  

L.M.T. moonrise 9th Long. 0°  23h 37m  

Longitude correction  10m  

L.M.T. moonrise 9th Long.100oE. 23h 27m  

Longitude in time (E.)  06h 40m  

G.M.T.  16h47m 9th  

Example  

Find the G.M.T. of moonset on 26th June 1980 to an observer in position 33°N.1700W.  

L.M.T. moonset 26th Long. 0°  03h 24m (using Table Ifor  

L. M. T. moonset 27th Long. 0°  04h 08m i~~~~ltng for  

Difference   44m  

Longitude correction  =44x  _17_0 = 21m  

360  

L.M.T. moonset 26th Long. 0°  03h24m  

Longitude correction  21 m  

L.M.T. moonset 26th Long.1700W. 03h 45m  

Longitude in time (W.)  11h20m  

G.M.T.  15h 05m 26th  



 

CHAPTER 8  

COMPASS ERROR BY ASTRONOMICAL OBSERVATION  

(The Azimuth Problem and the Amplitude Problem)  

The compass error may be found by observing the compass bearing of an astronomical body 

and comparing it with the true bearing found for the instant of observation, by calculation. 

The Azimuth problem may be used with any body which is visible above the horizon, except 

for bodies which are close to the zenith, when the observation of bearing is inaccurate. The 

Amplitude problem is used when the compass bearing of a body is observed at the moment of 

rising or setting.  

The calculation of the true bearing requires the solution of the PZX triangle for the angle Z 

(see Chapter 12 for an explanation of the PZX triangle). The solution may be obtained quickly 

and easily with the use of the ABC tables contained in nautical tables (Nories' or Burton's). 

These are tables which can be used for the solution of any spherical triangle, just as the 

traverse tables may be used for the solutIOn of any plane right angle triangle. The ABC tables 

are specifically designed however for the solution of the astronomical triangle for the angle Z, 

and are headed accordingly. The arguments are the known values of latitude declination and 

hour angle (L.H.A.).  

The angle Z in the PZX triangle is the angle contained between tne observer's meridian and 

the direction of the body. This is also a definition of the bearing (see Chapter 2). The angle Z 

however is called the azimuth and is measured from 0° to 1800 from the direction of the 

elevated pole (north if in north latitude and south if in south latitude), to the east or west 

depending upon whether the body is rising or setting. The azimuth therefore is merely the 

bearing of the body expressed and named according to a different set of rules.  

Converting azimuth to bearing is therefore an easy matter. If the azimuth is named north then 

the bearing will be the same as the azimuth if named E, and 360° - azimuth if named west. If 

the azimuth is named south, the bearing will be 180° - azimuth if named E, or 180° + azimuth 

if named W.  

Examples  

 North Lat.   South Lat.  

 Azimuth  Bearing  Azimuth  Bearing  

 N. 40° E.  040
0
  S. 40° E.  140

0
  

 N. 140
0
 E.  140

0
  S. 140

0
 E.  040

0
  

 N. 40
0
 W.  320°  S. 40° W.  220

0
  

 N. 140
0
 W.  220

0
  S. 140

0
 W.  320

0
  

When a body is on the observer's meridian the L.H.A. is 000° and when it lies to the west of 

the meridian the L.H.A. is between 000° and 180°. As the body passes to the eastwards of the 

meridian and commences to rise the L.HA. increases from 180° to 360°, when it is again on 

the observer's meridian.  



Figure 8.1 shows a body with aN. declination and an observer in a higher N. latitude. As the 

body rises the azimuth or bearing of the body is N.E'ly and increases, bearing 090° when it 

crosses the Prime Vertical (WZE). It will pass to the south of the observer, bearing 180° when 

the L.H.A. is 360° (or 000°). Subsequently, as the body moves to the west, the bearing 

continues to increase, being 270° when it again crosses the Prime Vertical and finally it sets 

bearing N.W'ly.  

 

Figure 8.2 shows an observer in N. latitude and a body with a S. declination. It will be noted 

that the body rises, bearing S.E'ly and sets, bearing S. W'ly, so that the range of azimuth is 

less than in the previous case.  

Figure 8.3 shows an observer in N. latitude and a body with a  



 

 

 

higher N. declination. The body bears N.E'ly when rising and N. W'ly when setting, but in this 

case the body passes to the N. of the observer bearing 000° when the L.H.A. is 360° (or 000°). 

It will be noted that as the body rises it moves first to the right, reaching a maximum azimuth 

atM after which the bearing moves to the left until it reaches a maximum westerly azimuth at 

M l' It then moves to the right again before setting.  

If a body has a declination of 0°, it will rise bearing due east and set, bearing due west. The 

L.H.A. on rising will be 270° and on setting the L.H.A. will be 90°.  

Inspection of the figures will show, therefore, that when the latitude and declination are of the 

same name, the L.H.A. (E) of the body on rising and the L.H.A. on setting will be greater 

than 90°.  

If the latitude and declination are of opposite names the L.H.A.(E) on rising and L.H.A. when 

setting will be less than 90°.  

Steps in the problem  

1.Ascertain the G.M.T. and date from the time given.  

2.Take out the necessary elements from the Nautical Almanac: for the sun-the declination and 

G.H.A.  



for a star-the declination, *S.H.A. and G.H.A. 'Y'  

3. Using the appropriate time formula, derive the L.H.A. of the body. If the L.H.A. is greater 

than 180° it may be found more convenient to subtract this from 360° to obtain L.H.A.(E).  

4. Using ABC tables, with L.H.A. and latitude take out the quantity.A, interpolating as 

necessary. If the L.H.A. is less than 90° name this opposite to the latitude. With L.H.A. and 

declination take out the quantity B interpolating as necessary. Name this the same as the 

declination.  

Add the two quantities, A and B, if they are the same name. otherwise take the lesser from the 

greater to obtain the quantity C. Name this according to the greater.  

From the C table against the latitude take out the azimuth.  

Name this according to the quantity C and the L.H.A.  

An example should make this clear.  

L.H.A. 48° 45' Latitude of observer 40° 42/ N. Declination of body 16° 20/ S., to find the 

True Bearing.  

L.H.A. 48°, lat. 40° 42/ N., A=0·774 L.H.A. 49°, lat. 40° 42/ N., A=0'751 :.L.H.A. 48° 45/, 

lat. 40° 42/ N.  

 A=0'757 S.  1  

L.H.A. 48°, dec. 16° 20/ S., B=0·396 L.H.A. 49°, dee. 16° 20/ S., B=0'390 :.L.H.A. 48° 45/, 

dec. 16° 20/ S., B=0·391  

i.e. A 0,757 S. (named opposite to lat.) B 0·391 S. (named same as dec.)  

C 1·148 S.  

 Lat.  Hour Angle  

  48°  49°  

\.     

 40°  0·76  0,73  

 41 °  0,78  0,76  

S.     

 Dec.  Hour Angle  

  48°  49°  

B     

 16°  0·39  0·38  

 17°  0-41  0-41  



 

C 1,14, lat. 40° 42/, AZ.=49·2° C 1,16, lat. 40° 42/, Az.=48·7° ... C 1,148, lat. 40° 42/, 

AZ.=49·0° i.e. True bearing S. 49° W.  

or 229°  

1·14 1·16  

 C Lat.  Azimuth  

40° 48·9° 48,4° 41° 49·3° 48,8°  

Notes  

1. Had the L.H.A. been greater than 90°, then A would have been named the same as the 

latitude. The B factor is always named the same as the declination.  

2.With practice the interpolation can be done mentally.  

3. When using Burton's Tables the method is exactly the same except that (a) + and - signs 

are used instead ofN. and S., (b) the factors A and B are given to 3 decimal places, (c) the 

azimuth is given for every full degree. This may make interpolation a little more awkward, 

but this can be overcome by using the interpolation table at the end of the ABC tables, and by 

following the concise instructions given there.  

Example  

30th September, 1980, in D.R. position lat. 45°22' N., long. 125° 10' E., where the variation 

was 24°E., the sun bore 229°C. at 07h 51m 06s G.M.T. Find the sun's true azimuth, and 

thence the deviation of the compass.  

G.M.T. 30th 07h 51m 06s From N.A.  

G.H.A. 287°30·5' Incr. 12° 46·5'  

G.H.A. 300°17·0' Long. E. 125°10·0'  

L.H.A. 425° 27·0'  

360°  

L.H.A.  65°27·0'  



 

 

Dec.   2° 53·1' S.  

d. corr.  +  0·9'  

Dec.   2° 54·0' S.  

 A 0-464 S.  True bearing 250·0°  

 B 0·054 S.  Compo bearing 229'0°  

 ---   ---  

 C 0·518 S.  Compo error  21.0° E.  

 --  Var.  24·0° E.  

 T. Az. S. 70,0° W.   --  

  Dev.  3·0° W.  

=----  

EXERCISE 8A SUN AZIMUTHS  

1. 19th September, 1980, in D.R. position lat. 42° 50'N., long. 46°10' W. atllh40m19sG.M.T., 

the sun bore 149° C. Find the true azimuth and the deviation, the variation being 24·5°W.  

2. 6th January, 1980, in E.P. 48°20' S., 96°30'W., at20h40m30s G .M. T., the sun bore 286° 

C. Find the deviation, the variation being 23°E.  



3. 19th December, 1980, in D.R. position 46°15' N.,168°35' W., the observed azimuth ofthe 

sun was 122°C. at20h31ml0s G.M.T. Find the sun's true azimuth and the deviation, the 

variation being 12°E.  

4. 27th June, 1980, in D.R. position, lat. 38° 10' S., long. 124° 10' E., a.m. at ship, when the 

chronometer showedllh 58mlOs, the observed azimuth of the sun was 057°C. Find the 

deviation, the variation being 2° W.  

5. 19th September, 1980, at 15h 20m OOs L.M.T., the sun bore 262·5° to an observer in D.R. 

position lat. 19° 20'N., long. 14go 50' E., where the variation was1 °E. Find the deviation.  



 

STAR AZIMUTHS Example  

18th September, 1980, at 06h 14m O9s, G.M.T. in D.R. position 37° 36'N., 47° 50'W., the 

observed bearing of Alpheratz 1 was 289·5°C. Find the true azimuth and the deviation, the 

variation being 22·5°W.  

G.M.T. 18th 06h 14m 09s From N .A.  

 G.H.A. 'Y'  87°18·6'  

 Incr.  3° 32·8'  

 G.H.A. 'Y'  90° 51·4'  

 *S.H.A.  358° 09·0'  

449° 00·4' 360°  

 *G.H.A.  89°00·4'  

 Long. W.  47° 50·0'  

 L.H.A.  41 °10·4'  

 

 



 A 0·88S.  True bearing 267.1°  

 B O·84N.  Compo bearing 289·5°  

 C O·04S.  Compo error  22·4°W.  

  Var.  22·5°W.  

True Az. S. 87·1°W.  

 Dev.  O·l°E.  

EXERCISE 8B STAR AZIMUTHS  

1. On 19th December, 1980, in position lat. 46°40' N., long. 168° 20'W. the observed bearing 

of the star Gienah 29 was 134°C.at 15h 15m 27s G.M.T. If the magnetic variation in the 

locality wasI3°E., find the deviation for the ship's head.  

2. On 26th June, 1980, at 02h 11m 43s G.M.T. the star Rasalhague 46 bore 247° C. to an 

observer in lat. 38° 20' N., long. 5° 40' E. If the variation was 6·5°E., find the deviation for the 

ship's head.  

3. On1st October, 1980, a.m., at ship in lat. 41 °15' N., long. 145° 26'E., when the 

chronometer, which was correct on G.M.T., showed 5h 48m 19s, the star Procyon 20 was 

observed bearing 125°C. If the variation was 7°W., find the deviation for the ship's head.  

4. On 6th January, 1980, at ship in lat. 46° 20'N., long. 47° 52' W., the star Schedar3 bore 

336° C. when the chronometer which was correct on G.M.T. indicated Olh 41m 28s. If the 

variation was 27°W., find the deviation for the ship's head.  

5. On 19th Seftember, 1980, at about 03.30 at ship in lat. 32° 24' S., long. 80° 5' E. the star 

Peacock 52 was observed bearing 250°C. when the chronometer, which was correct on 

G.M.T., showed 10h 14m 20s. If the variation was 33°W., find the deviation for the ship's 

head.  

THE AMPLITUDE PROBLEM Definition  

The amplitude of a body is the angle between the direction of the body when rising or setting, 

and the direction of east or west respectively.  

Thus the amplitude is merely another way of expressing the bearing of a body at the moment 

it rises or sets.  

By observing the bearing of a body by compass (magnetic or gyro) when the centre is on the 

rational horizon and comparing  



 

this with the calculated true bearing, the compass error, and if a magnetic compass, the 

deviation for the ship's head, are very simply found.  

A body is on the rational horizon at theoretical rising or setting, and the true altitude at 

this instant is ()()O ()()'. Because ofrefraction and dip, etc., the visible rising or setting will 

occur earlier and later respectively. As a general rule of thumb, theoretical sunrise or 

sunset can be taken to occur when the sun's lower limb is about one semidiameter above 

the visible horizon. In lower and medium latitudes the bearing will be changing slowly at 

this time and any small error in time will not make any difference to the bearing 

calculated. In very high latitudes, however, when the bearing is changing quickly at 

sunrise and sunset more care must be taken.  

The true amplitude can be calculated from the formula:  

Sine amplitude = sine declination x secant latitude.  

This is given in tabulated form in Norie's, Burton's and other nautical tables.  

The amplitude is named east when rising, west. when setting and either north or south 

according to the name of the declination, e.g. a body with a declination of 20° N. will rise 

to an observer in latitude 30° N. with an amplitude of E. 23° 16' N. This can then be 

converted to the usual three figure notation of 066° 44'.  

If the declination had been 20° S. then, in the same latitude, the amplitude would have 

been E. 23° 16' S. and this would have given a true bearing of 113° 16'.  

Note  

This problem usually involves the use of the sun. Sometimes the moon may be used, but 

stars and planets are rarely visible at their rising or setting due to horizon haze. If the 

moon is used care must be taken to obtain an accurate G.M.T. when taking out the 

declination, as this may be changing rapidly.  

Procedure  

1. Obtain the L.M.T. and hence the G.M.T. ofrising(orsetting)  

from the almanac as explained in Chapter 7.  

2.From the Nautical Almanac find the declination.  

3.Obtain the true amplitude either by calculation or from tables. 4. Convert the true 

amplitude into a true bearing in thrl"l" figure  

notation.  

5. Compare the true bearing and the compass bearing and obtain the compass error.  

6. If the variation is known, find the deviation for the ship's head.  

Example  



1st October, 1980, in D.R. position, lat. 36° lO'N., long. 28° 20' W., at05h57m22s 

L.M.T., the sun rose bearing 112°C. Find the true amplitude, and if the variation was 

18°W., find the deviation for the direction of the ship's head.  

L.M.T. sunrise 1st 05h55m  Decl.07h 3°16·3'S.  

Long. (W.)  Olh53m  'd'corr.  +0·8'  

G.M.T.  07h48m  Decl.  3°17·1'S.  

Sin ampl.=sin3°17·1' sec. 36°10'  

ampl.=4° 04·2'  

True amp I. E. 4° 04·2' S. True brg. 094°T. Compo brg. _11_2°C.  

Compo error 18°W.  

Variation  18°W.  

Deviation  0°  

Example  

On 8th January, 1980, at ship in lat. 30° 45' S., long. 166° 15' W., the sun set bearing 

230° by compass. If the variation for the place was 16° E., find the deviation for the 

ship's head.  

 L.M.T. sunset, lat. 30° S. 8th  19h 06m  

 Diff. 12m Table I corr.  + Olm  

L.M.T. sunset, lat. 30° 45' S. 8th 19h 07m  

 Long. W.   llh 05m  

 G.M.T.9th   06h 12m  

 Dec. 9th 06h   22° 12·8' S.  

 Corr.  -  0·1'  

 Dec.   22° 12·7' S.  



 

 Sin ampl.  = sin 22° 12· 7' sec. 30° 45'  

=26°05·7' True ampl. =W.26°S. True brg. =244°T. Compo brg. =_2_30_
o
C.  

Compo error = 14°E.  

 Variation  = 16°E.  

 Deviation  2°W.  

EXERCISE 8C  

1. 30th September, 1980, in D.R. position lat. 20° 52'N., long. 153°10' W., at06h 

03m14sL.A.T., the sun rose bearing E. 11·5°N. by compass. Find the true amplitude and the 

deviation, the variation in tne locality being 11° E.  

2. 18th September, 1980, at 05h 52m 03s L.A.T., the observed amplitude ofthe sun to an 

observer in lat. 39° 53' N., long 51° 00' E., was E. 5°N. Find the true amplitude and the 

deviation. The variation was 5°E.  

3. 27th June, 1980, at ship in D.R. positon, lat. 40° 20' S., long. 00° OP', the sun set bearing 

301·5°C. Find the sun's true amplitude and the deviation, the magnetic variation being 26°W.  

4. 18th December, 1980, at ship in D.R. position 37° 30' N., 32° 15' W. the sun ros~ bearing 

138°C. Find the true amplitude and thence the deviation, the variation being 21°W.  

5. 5th January, 1980, the sun set bearing 258° C. to an observer in E.P. lat 49° lO'S., long 98° 

45'W., where the variation was 24°E. Find the deviation for the direction of the ship's head.  

6. 26th June, 1980, the sun rose bearing 062°C. to an observer in D.R. position lat. 42° 30' N., 

long 142° 30' W .. Find the deviation of the compass, the variation in the locality being 20° E.  

Revision papers  

The following revision papers are similar in structure to the Department of Trade Class V 

(Chartwork and Practical Navigation) paper, and the Class IV (Chartwork) paper.  

The chartwork papers are set on charts of British coastal waters in the hope that they will be 

available to navigators studying at sea. Those to whom the charts are not available may wish 

to obtain them from Admiralty chart agents. The charts used are published at minimal price as 

practice charts, which are full size charts containing the same information as navigational 

charts, but are printed on strong thin paper and may not be corrected to date. They must not be 

used for navigation but are entirely adequate for practice purposes. The following charts are 

used:  

 Lands End to Falmouth  Chart No. 5051  

 Falmouth to Plymouth  Chart No. 5050  

Bristol Channel  

(Worms Head to Watchet) Chart No. 1179  



The practical navigation papers may be done with a set of nautical tables (Nories' or Burton's), 

and the extracts from the Nautical Almanac.  

CLASS V CHARTWORK AND PRACTICAL NAVIGATION  

PAPER 1 (3 hours)  

Chartwork  

Chart. Lands End to Falmouth No. 5051 Use variation 8°W. throughout.  

Use deviation card given in Chapter 2  

L At a time 5 hours after H.W. Devonport (spring tides), a vessel was in a position with 

Lizard Lt. Hse. bearing ooooT. distant 5 miles. Find the compass course to steer to pass 3 

miles to the south of Wolf Rock Lt., making allowance for any tide you may expect. Estimate 

the time of arrival off Wolf Rock. Vessel's log speed is 12 knots.  

2. From a vessel leaving Falmouth steering 212°C. at 8 knots, Black Head was observed in 

transit with Lizard Lt. Hse. bearing 232°C. After maintaining this course for 1. hour Lizard 

Lt. Hse. bore 309°C. If a current set 230
0
T. at 1.·5 knots in the interval find the position of the 

vessel at the time of the second observation.  

3. It is required to round Lizard Point maintaining a minimum distance off Men Hyr Rocks 

oft,· 5 miles. What would be the vertical danger angle to set on a sextant to observe Lizard Pt. 

Lighthouse?  

4. A vessel steering 125°C. at 10 knots observed Longships Lighthouse bearing 345°C. and 

Tater Du Lighthouse bearing 035° C. Ph hours later Lizard Pt. Lt. Hse. was bearing 065° C. 

while Mullion Island was bearing 029°C. Find the set and drift ofthe tide in the interval.  



 

Practical navigation  

1. Find by traverse table the vessel's position at the end of the  

third course.  

Initial position 49° 3D' N. 8° 00' W.  

First course 261°T. distance steamed 7.0 miles Second course 210
0
T. distance steamed 72 

miles Third course 166°T. distance steamed 65 miles  

2. Find by J?lane sailing the course and distance between the folJowing positions.  

A5.o°15'N.5°25°W. B 52°1O'N. 7°.o5'W.  

3. From the following information find the compass error and the deviation for the ship's 

head.  

Date: June 26th 198.0  D.R. position 500 3D' N. 6° 3D' W.  

Sun rose bearing .o53°C.  Variation 8°W.  

CLASS V CHARTWORK AND PRACTICAL NAVIGATION  

PAPER 2 (3 hours)  

Chartwork  

Chart. Falmouth to Plymouth No. 5.05.0.  

Use variation 8°W. throughout  

Use deviation card provided in Chapter 2  

1. From a position where Eddystone Rock Lt. bears 36.o°T. distant 3 miles find the compass 

course to steer to a position where Dodman Point bears3.o7°T. distant2·4 miles, in order to 

counteract a tidal stream estimated to set 133°T. at 2 knots, and allowing for a 1.0° leeway 

due to a SW'ly wind. Ship's speed by log 8 knots.  

2. The following compass bearings were obtained from a vessel:  

 Chapel Point  246°C.  

 Black Head  009°C.  

Gribbin Hd. daymark 064°C.  

Find the latitude and longitude of the vessel's position and the compass course to steer to 

arrive at a position where Rame Head chapel ruins is 3.0° on the port bow distant 3 miles.  

3. A vessel steering 33.o°C. has the buoy (FI.R.1.o sec.) in  

fosition 5.0°.07' N. 4° 3D' W. approximately, bearing 015°C. distant ·2 miles. After steaming 



for 4.0 minutes at 12 knots the vessel's position was fixed by three bearings:  

 Udder Rock buoy  015°C.  

 Cannis Rock buoy  326°C.  

 Yaw Rock buoy  273°C.  

Find the set and rate of the current, the course made good and the speed made good.  

4. Find the rising and dipping distance of Eddystone Light. Ht. of eye 12·5m.  

Practical navigation  

1. Find by mercator sailing the position at the end of the run.  

Initial position 55°55'N. 7°18'E.  

Course 257°C. Variation 8°W. Deviation 3°E. Distance run 12.0 miles.  

2. Find by traverse table the vessel's position at the end of the  

third course:  

Initial position 49° 3D'. N. 8° 00' W.  

 First course  265°T. distance 132 miles  

Second course 347°T. distance 97 miles Third course 18.o°T. distance 4.0 miles  

3. From the following information find the compass error and the  

deviation for the ship's head.  

Time at ship 16.08 2nd October. D.R. 43° 3.o'N. 9° 4.o'W. Bearing of sun by compass 262°. 

Chronometer .o5h .o8m 02s. Chronometer error 2m 18s slow on G. M. T . Variation 12° W.  

CLASS IV CHARTWORK PAPER 1  

Chart. Bristol Channel Chart 1179.  

Use variation 9°W. throughout  

Use specimen deviation card Chapter 2  

1. From a vessel the following simultaneous bearings were  

taken:  

 Hartland Point Lt. Hse.  204°C.  

 Lundy Is. South Lt.  287°C.  

 Bull Point Lt. Hse.  067°C.  

Find the ship's position, the compass error and the deviation for the ship's head.  



 

2. At 1135 from a vessel steaming at 12 knots, a navigator observed St. Gowan Lt. V/L in 

transit with Warren Church spire, bearing 009°C. At the same time Caldy Is. Lt. Hse. bore 

059°C. Find the latitude and longitude of this position and the course to steer by compass to a 

position with Worms Head bearing OOO°T. distant 9·9 miles in order to counteract a tide 

setting 115°T. at 3 knots, and allowing for 6° leeway due to a northerly wind. Estimate the 

distance off Helwick Lt. V/L when it is abeam and the time at this position.  

3. At 0830 from a vessel steering259°C. at12 knots Breaksea Lt.  

V/L was observed bearing 352°C. distant 1 mile. If 1 hour later Foreland Point Lt. Hse. and 

Selworthy Beacon bore 192°C. and 121°C. respectively find the set and rate of the tide. 

Assuming that the same tIdal conditions continue find also the course to steer by compass and 

the speed required to reach a position with Bull Point Lt. Hse. bearing 172°T. distant 5·4 

miles in 50 minutes.  

4. From a vessel in D.R. position 51 °20' N. 4°58'W. and steering 113°C. at 7 knots in reduced 

visibility, the relative bearing of Lundy Island radio beacon was 050°. Two hours later the 

relative bearing of Breaks~a Lt. V /L radio beacon was 357°. If during the interval the vessel 

was making 8° leeway due to a southerly wind, and the tidal stream set as indicated at 

position E. 3h before high water Swansea at Syring rate, find the latitude and longitude of the 

vessel at the time 0 the second bearing.  

5. On 25th February 1980 at 1200 G.M.T. a vessel off Watchet passed over a shoal of charted 

depth 4 metres. If the vessel's draft was 1 0·5 metres what was her clearance underkeel?  

CLASS IV CHARTWORK PAPER 2  

Chart. Lands End to Falmouth No. 5051.  

Use variation 9°W. throughout.  

Use deviation card provided in Chapter 2  

1. At 0800 hours in poor visibility, from a vessel steering 181 °G. at 5 knots, the Longships 

Lt. Hse. bore 148°G. Gyro error 1 ° High. The vessel continued on this course and at 0915 

Wolf Rock Lt. was observed to bear 238° G. If a tide set 127°T. at 2 knots throughout, find the 

vessel's position at 0915.  

2. From a position with Wolf Rock Lt. bearing 350
0
T. distant 2·4 miles, find the true course 

and distance to a position latitude 49° 46' N. longitude 5° 26·6' W. Find also the compass 

course to steer to counteract a tide setting 084°T. at 3 knots and 6° leeway due to a SW'ly 

wind, if the vessel's speed by log is 6 knots. What will be the E.T.A. at the position given?  

3. On a vessel at anchor off Falmouth the following compass  

bearings were taken;  

Hil1 (102), (50° 02' N. 5° 05' W.) 226°C. Mawnan House (Conspic) (50° 06' N. 5° 05' W.) 

280°C. St. Anthony Hd. Lt. 01 0° C.  

Find the vessel's position and the compass error.  



4. At 1000 hrs. the Runnel Stone buoy was observed in transit with Lon§:ship Lt. Hse. 

bearing318°C. At the same time Wolf Rock bore 251 C. Find the vessel's position. If course is 

now set 095° C., and 20 minutes later Tater Du Lt. bore 32ec. and St. Michael's Mount bore 

028° c., estimate the set and drift of the tide if the distance run by log in the interval was 5 

miles.  

5. Find the times and heights of high and low waters at Sharpness Dock on 14th January 

1980.  



 

SECfION 2  

The following section contains work required for Class IV Practical Navigation paper in 

addition to the work contained in Section 1.  



 

CHAPTER 9  

POSITION ORCLES AND POSITION LINES  

If a distance off a charted point of land is obtained, either by radar or by vertical sextant 

angle, then a circle can be drawn centred on the point of land and with radius the distance off, 

and this circle will represent a line, any point on which the ship might be from the observed 

information. It is in fact a position circle. The intersection of two such circles will give an 

observed position, as will the intersection of two position lines.  

We employ the same procedure when navigating with astronomical bodies. The charted point 

of land is replaced in this case with the geographical position of the heavenly body, i.e. the 

G.H.A. and the declination.  

When we observe the altitude of a body, we correct it and subtract it from 90° and obtain the 

zenith distance. Now this zenith distance is the angular distance of the observer's zenith from 

the position of the body on the celestial sphere, and as the centres of the celestial sphere and 

the earth are coincident, this will be the same as the angular distance on the earth, of the 

observer from the geographical position of the body. Furthermore, when we measure an 

angular distance on the surface of the earth and express it in minutes of arc, it becomes, by 

definition of the nautical mile, a distance measured in those units.  

Thus the zenith distance becomes the radius of our position circle which is centred on the 

geographical position of the body.  

In this manner it would be possible to navigate by plotting the geographical positions of two 

or more bodies on a chart and drawing circles of radius the bodies' zenith distances and obtain 

a fix at the intersection of the circles. However, to do this we would need a chart of a very 

large area, and because of the large radii the plot would be on a very small scale. Far too small 

for the required accuracy. Moreover the circles would not appear on the mercator chart as true 

circles and would thus be difficult to plot.  

To get around this problem we only draw that part of the position circle that passes near to the 

D.R. position, and because of the large radius of the circle such a small part of it can be taken 

as a straight line without material error. Thus our position circle now becomes a position line, 

which strictly speaking is a tangent  

to the position circle.  

The direction in which the line runs near to the D.R. position  



 

is found by calculating the true bearing of the body. The line representing this bearing will be 

a radius of the position circle and therefore the position line, being a tangent to the circle is at 

right angles to this bearing.  

 

Thus we can draw this position line on the chart without plotting the geographical position as 

long as we know some point through which to draw it. All methods of sight reduction are 

means of finding the direction of such a position line and a position through which it passes. 

The calculations involved in finding this information are dealt with in the following chapters, 

but first we will see how we obtain the fix once we have calculated the necessary position line 

information from two or more observations.  

THE MARCQ ST. HILAIRE METHOD (INTERCEPT METHOD)  

This is a universal method. Any sight can be worked this way. We assume a D.R. position and 

calculate a zenith distance using this position. The bearing is also calculated. Thus we could 

draw a position line through the D.R. position at right angles to the bearing. We could call this 

the calculated position line. We now take the observed altitude and find the TRUE zenith 

distance from it. We compare this true zenith distance with the calculated zenith distance and 

the difference between the two in minutes will be the distance in nautical miles between the 

calculated and the true position lines. This distance we call the INTERCEPT. It should be 

named 'towards' or 'away' depending upon whether the true position line is nearer the 

geographical position of the body than the D.R. position or farther away from it.  

Note  

True Z.D. less than Calc. Z.D.-towards. True Z.D. greater than Calc. Z.D.-away.  

The true position should be close enough to the D.R. position to assume that the true bearing 

is the same as that which was calculated. The calculated and the true position lines are 

therefore parallel.  

In practice we need only draw the true position line. This can be done by measuring the 

intercept from the D.R. position either towards or away from the direction of the bearing, as 

the intercept is named and drawing the position line at right angles to this direction through 

the intercept terminal point (I.T.P.). Thus the plot of one position line looks like this.  



 

If this is plotted to scale for two or more observations we can take the observed position as 

being the intersection of the position lines and can measure the d. lat. and the departure 

between the D.R. and the observed position and thus find the latitude and longitude of the 

observed position.  

To find the position by plotting the position lines from two simultaneous sights  

Procedure  

1.Plot a convenient point to represent the D.R. position.  

2. From this point draw the dirt:ctions of the intercepts either towards the direction of the 

bearing of the body, or away from it depending on how the intercept is named.  

3. Mark off to a scale of nautical miles the lengths of the intercepts from the D.R. position.  

4. Through the intercept terminal points draw the position lines at right angles to the 

intercepts. Where the two position lines cross is the observed position.  

5. Measure the d. lat. and the departure between the D.R. position and the observed position, 

and apply to the D.R. position after having converted departure into d. long.  



 

Example 1  

Using D.R. position, lat. 47° 56' N., long. 27° 50' W., simultaneous observations of two 

stars gave:  

(1) bearing 148° T., intercept 5' away. (2) bearing 065° T., intercept 4' towards.  

Find the ship's position.  

 

By measurement from A to F  Description of plot  

d.lat. = 6·7' N. dep. =  1·3' E. A-the D.R. position  

A lat. 47° 56·0' N. long. 27° 50,0' W. B-the intercept terminal  

d. lat.  6,7' N. d. long. 2,0' E. point for P.L. 058° T.  

-238° T.  

Flat. 48° 02·7' N. long. 27° 48·0' W. C-the I.T.P. for P.L.  

 ===  ==== 155° T.- 335° T.  

F-Position by observation.  

To find the position from two position lines by Marcq St. Hilaire, with a run in between them  

A running fix using celestial position lines gives an observed position at the time of the 

second sight, by crossing the second  

sight with an earlier observation, which position line is transferred up to the time of the 

second sight by applying the course and distance run.  



Procedure  

I. Take the D.R. position at the time of the first sight and apply the course and distance 

run between the sights by the traverse table. This gives a D.R. position at the time of the 

second sight, which is used to calculate the second intercept and position line, and from 

which the two intercepts are plotted.  

2. Plot the transferred position line and the second position line from this D.R. in the 

same manner as in the previous section.  

Example 2  

In D.R. position 23° 40' S. 98° 50' E. an observation of a star gave an intercept of 10' 

towards with a bearing of 117° T. The ship then ran 254° for 27 miles, when a second 

observation gave an intercept 3,8' away with a bearing of 226° T. Find the position at the 

time of the second sight.  

 D.R. at first sight  23° 40,0' S. 98° 50·0' E.  

 Run 254°, 27m.  7·4' S.  28·3' W.  

D.R. at second sight 23° 47·4' S. 98° 21,7' E.  

 

Note that any transferred position line is marked with double arrows  



 

By measurement:  

d. lat.=4·2' S. departure=9'2' E.  

D.R. at second sight 23° 47·4' S. 98° 21·7 E.  

  4·2' S.  10·1' E.  

 Observed position  23° 51·6' S. 98° 31·8' E.  

Note  

A D.R. for the second sight may be given that is different from the D.R. obtained from 

running up the first D.R. In this case each sight must be plotted from its own D.R. Thus 

the transferred position line is plotted from the first D.R. after the run is applied, and the 

second position line is plotted from the D.R. given, which will be the D.R. which has 

been used to calculate the intercept and bearing. (See example 4.)  

The longitude by chronometer method  

In this type of problem we assume only a D.R. latitude, and then calculate the longitude 

at which the position line crosses this latitude. It should be realised that if anyone 

observation is worked by two different methods of sight reduction then exactly the same 

position line should result. Only the position that we calculate, through which to draw the 

position line differs.  

In the longitude by chronometer method we calculate the true bearing of the body to give 

us the direction of the position line and then draw the line through the position given by 

the D.R. latitude and the longitude found by calculation. Thus there is no intercept 

involved.  

To find position by simultaneous position lines by longitude method  

Procedure  

1. Plot the TWO posItIons through which the posItIon lines pass. (There will be one 

position to be plotted for each observation, as, although probably the same D.R. latitude 

will have been used to work the sights, a different longitude will result from each. Note 

that the distance between the positions in an east-west direction on the plot should be the 

departure and not the d. long.)  

2. Draw each position line through its respective plotted position.  

The position where they cross is the observed position.  

3. Measure the d. lat. and the departure between the observed position and one of the 

known positions, and apply to this position after having converted departure into d. long.  

Example 3  

By using D.R. latitude 25° 20' N., simultaneous observations of two stars gave:  



(1) Longitude 36° 05' W., bearing 060° T. (2) Longitude 35° 57' W., bearing 300° T.  

Find the ship's position.  

 

By measurement from A to observed position d. lat.=6·2' S., dep.=3·6' E.  

 Pos. A lat.  25° 20·0' N.  long.  36° 05' W.  

 d.lat.  6·2' S.  d. long.  4·0' E.  

 Obs. pos. lat. 25° l3-8' N.  long.  36° 01' W.  

Example 4  

At 1100 hours ship's time an observation of the sun by longitude by chronometer, using a 

D.R. latitude of 30° 14' N. gave a longitude of 36° 18' W., with the bearing of the sun 

150° T. At 1300 hours ship's time, the sun was bearing 215° T., and a second observation 

gave a longitude of 36° 55' W.;using a D.R. latitude of 30° 00' N. If the ship's course and 

speed between the observations was 250° T., 16 knots, find the position at the time of the 

second observation.  

 D.R. at first sight  30° 14·0' N. 36° 18·0' W.  

 Run 2500, 32m.  10,9' S. 34·8' W.  

D.R. to plot transferred PL. 30° 03·1' N. 36° 52·8' W.  



 

 

By measurement  

d.lat. between observed position and DR. of second sight=  

1·1' N. departure = 1·6' W.  

D.R. second sight 30° 00,0' N. 36° 55·0' W.  

 1·I'N.  1·9'W.  

Observed position 30° 01·1' N. 36° 56·9' W.  

Note  

The east-west distance on your plot between the two D.R. positions should be the departure 

and not the d. long.  

Latitude by meridian altitude method  

The meridian altitude is the altitude when the body is on the same meridian as the observer. 

Under these circumstances the bearing of the body is either north or south, and therefore the 

position line will always run in an east-west direction. It therefore coincides with the parallel 

of latitude upon which the observer lies.  

The standard method of finding the noon position at sea is to obtain a position line during the 

forenoon and transfer it up to the time of noon. The transferred position line can then be 

crossed with the noon latitude.  

Example 5  

In D.R. position 30° 15·0' N. 26° 40·0' W., an observation of the sun gave a bearing of 110° 

T. intercept 6,5' towards. The ship then steamed 245° T. 20 miles, when the latitude by 

meridian altitude of the sun was 30° 00·0' N. Find the ship's position at noon.  

A complete picture of the problem would look as follows. In fact only the part inside the 

dotted lines need be plotted.  



 

The accuracy of the position obtained depends largely upon the length of the run up to noon. 

Hence this should be kept as short as possible consistent with a good angle of cut between the 

forenoon position line and the noon latitude.  

The course and distance should be applied to the morning D.R. by use of the traverse table to 

find the position through which to draw the transferred position line.  

Procedure  

1. Apply the course and distance to the morning D.R. to give a noon D.R.  

2. Plot this position and draw in the morning intercept and the transferred position line.  

3. Take the difference between the noon D.R. and the observed latitude and hence plot the 

observed latitude, drawing in the position line running east-west.  

4. The point where the transferred position line cuts the noon latitude is the position of the 

observer at noon.  

5. Measure the departure between the observed position and the D.R. longitude, and convert it 

to d. long.  

6. Apply this d. long. to the D.R. long. to get the observed  

longitude.  

D.R. at morning sight 30° 15,0' N. 26° 40·0' W.  

 Run 254° T. 20m.  8,5' S. 20·9' W.  

 D.R. at noon  30° 06,5' S. 27° 00·9' W.  

L  



 

 

By measurement departure between observed longitude and D.R. long.=4·S' E.  

Longitude of D.R. noon 27° ()()·9' W.  

 D. long.  5·2' E.  

 Observed longitude  26° 55,7' W.  

Observed position 30° ()()'O' N. 26° 55,7' W.  

Example 6  

An observation in D.R. latitude 42° 30' N. gave a longitude of 32° 08' W. bearing of the 

observed body 050° T. The ship then ran 075° T. for 35 miles when a meridian altitude gave a 

latitude of 42° 42' N. Find the ship's position at the time of the meridian altitude.  

 D.R. at first sight  42° 30,0' N. 32° 08·0' W.  

 Run 075° T., 35m.  9·1' N. 45·9' E.  

D.R. at time of meridian alt. 42° 39·1' N. 31° 22·1' W.  

 

By measurement departure between observed position and D.R.=2·4' W.  

 D.R.longitude  31° 22·1' W.  

 D. long.  3·3' W.  

 Observed long.  31 ° 25,4' W.  



Observed position 42° 42·0' N. 31° 25·4' W.  

Example 7  

Position line from observation of a celestial body combined with the position line from 

observation of a shore object.  

An observation of a celestial body gave bearing 220° T. and long. 115° 02' E., by using D.R. 

lat. 32° ()()' S. Later, a point of land (lat. 32° ()()' S., long. 115° 31' E.) bore 070° T. Between 

the observations the vessel steamed 145° T. for 17 nautical miles, and then 063° T. for 12 

nautical miles. Find the vessel's position.  

 

'Co. 145° dist. 17' d.lat. 13-9' S.  Dep.  9,8' E.  

Co. 063° dist. 12' 5·4' N.   10,7' E.  

 --   --  

D. lat.  8,5' S.  Dep.  20·5' E.  

 ---   ---  



 

D.R. lat.  32° 00' S.  Obs. long. 115° 02' E.  

D. lat.  8'5' S.  D. long.  24·2' E.  

Run up pos. lat. 32° 08·5' S.  Long.  115° 26·2' E.  

Point of land lat. 32° 00'0' S.  Long.  115° 31·0' E.  

D.lat.  8·5' N.  D. long.  4,8 E. Dep.  

==== 4·1'E.  

From plot D. lat. 4'8' N. Dep. 5·8' W. D. long. 6'8' W.  

Run up pos.lat.  32° 08·5' S.  Long.  115° 26·2' E.  

D.lat.  4'8' N.  D. long.  6'8' W.  

Ship's pos. lat.  32° 03'7' S.  Long.  115° 19·4' E.  

Procedure  

1. Calculate the run up position from the D.R. lat. and the obs. long.  

2. Plot the position of the point of land in relation to the run up position, converting the d. 

long. into departure, and draw in the line of bearing.  

3. Measure the d. lat. and dep. from the ship's position to the run up position, convert the dep. 

into d. long. and thence find the lat. and long. of the ship's position.  

Example 10  

On a vessel at anchor, an observation of the sun, during the afternoon, gave longitude 05° OS' 

W. by using lat. 50° 04' N. Vertical sextant angle observations taken later, put the ship 4 M. 

south and 6 M. east of this position. What was the sun's true bearing?  

Description of figure:  

A The point in lat. 50° 04' N., long. 05° OS' W.  

B The point 4' S. and 6' E.  



 

The position line must pass through position A and it must also pass through B since that was 

the ship's actual position. Therefore a line at right angles to the line joining A and B will give 

the sun's true bearing.  

Sun's bearing=214° T.  

By calculation  

From a figure similar to the plot,  

Tan LA=~=1'5  

4  

 A=56° 19'  ... direction of AB=S. 56° 19' E.  

Hence Sun's bearing=213° 41' T.  

Note  

There are two possibilities for the bearing, i.e. either N. 34° E. or S. 34° W. As the body 

observed was the sun during the afternoon, it must therefore be west of the meridian. So S. 

34° W. is the correct answer.  

Example 11  

A morning observation of the sun worked with lat. 42° 10' N. gave long. 35° 20' W. and when 

worked with lat. 42° 20' N. gave long. 35
u
 05·1' W. What was the sun's bearing?  

By plotting  

'1st obs., lat. =42° 10' N.  long. =35° 20' W.  Mean lat.42° 15'  

 2ndobs.,lat.=42°20'N.  long. =35°05·I'W.  d.long.14·9'E.  

   ---   ----  dep.=11 M.  

 d.lat.  =  10' N. d. long. = 14·9' E.  



 



 

The position line must pass through A and through B. Therefore by joining these two points, 

the position line is obtained, and the sun's bearing will be at right angles to this direction, and 

as the observation of the sun was taken during the morning then sun's bearing = 138° T.  

By calculation  

From a figure similar to the plot, and using the traverse table:  

AC (d. lat.) 10, and CB (dep.) 11, give angle equal to 47° 44' :. PL. trends 047° 44' T.-227° 

44' T., so that sun's bearing= 137° 44'  

EXERCISE 9A  

1. Given chosen position lat. 40° 20' N., long. 18° 30' W., T.ZX 38° 10·0', C.ZX 38° 20,0', 

azimuth 120° T. Plot the position line, using scale of 1 cm. to 1 nautical mile, and state the 

position of the intercept terminal. point.  

2. D.R. position lat. 20° 20' S., long. 27° 30' W., true altitude 55° 28', C.zX 34° 26', azimuth 

235° T. Plot the position line. State the position of the intercept tenninal point.  

3. In D.R. position lat. 40° ()()' N., long. 30° ()()' W., an observation of the sun gave true 

altitude 45° 02'. The calculated zenith distance was 45° 04', and the azimuth was 140° T. Plot 

the position line and state the position of the intercept tenninal point.  

4. From the following simultaneous observations, find the ship's position:  

Sun -bearing 130° T. intercept 6,0' towards Venus-bearing 210° T. intercept 8·0' away  

The selected position was lat. 50° 10' N., long. 44° 20' W.  

5. In estimated position lat. 40° 20' N., long. 34° 20' W., simultaneous observations gave:  

 Sirius -bearing 136° T. intercept 10·0' away  }Find ship's  

Venus-bearing 286° T. intercept 8,0' towards position  

6. In D.R. position lat. 48° 10' N., long. 500 14' W., simultaneous observations of two stars 

gave:  

1.longitude 50° 08' W. azimuth 070° T. 2. longitude 50° 20' W. azimuth 330° T.  

Find the ship's position.  

7. By using D.R. lat. 25° 20' N., simultaneous stellar observations gave:  

1.longitude 36° IS' W. bearing 060° T. 2. longitude 35° 50' W. bearing 3()()O T.  

Find the ship's position.  

8. From a vessel steering 035° T. a point of land bore 330° T.  

After the vessel had steamed 30 nautical miles, the point bere 250° T. Find the distance off 

the point at the second observation.  



9. In D.R. position lat. 23° 40' N., long. 52° 30' W., a stellar observation gave intercept 4' 

towards, and bearing 040° T. The vessel steamed 090° T. at 12 knots through a current setting 

000° T. at 2·5 knots. Two hours later, another observation gave the intercept 5' towards and 

bearing 120~ T. Find the ship's position at the 2nd observation.  

10. By using D.R. lat. 34° 11' N. the longitude by observation was 42° 25' W., bearing of the 

sun being 121° T., and log reading 40. The vessel steered 042° T. until noon, when the 

latitude by meridian altitude of the sun was 34° 11' N., and the log read 72. Find the position 

at noon.  

11. An observation of the sun gave longitude 36° 58' W. and bearing 130° T., by using 

D.R.lat. 29° 32' S. The ship then steamed 3()()0 T. for 27 M. in a current setting 090° T. 5 M., 

when the latitude by meridian altitude of the sun was 29° 06' S. Find the ship's position at 

noon.  

12. In D.R.lat.· 34° 20' N. an observation ofa star gave longitude 47° 58' W., and bearing of 

the star as 222° T. At the same time an observation of another star gave longitude 47° 46' W., 

and bearing 14r T. Find the ship's position.  

13. By observation in D.R. position lat. 53° 47' S., long. 178° 37' W., the bearing of the sun 

was 076° T. intercept 11' away. The ship then ran 284° T. for 47 M. through a current setting 

256° T. for 7 M., when a second observation of the sun gave bearing 284° T., intercept 5' 

towards. Find the ship's position at the second observation.  

14. By using selected position lat. 16° 41' S., long. 163° 29' E., an observation of the sun gave 

intercept 18' away, bearing 055° T. The ship then steamed 208° T. 33 M., when a second 

observation gave intercept 12' towards, bearing 332° T. Find the ship's position at each 

observation.  

15. An observation of the sun worked with lat. 42° 17' S. gave longitude 76° 43' E., bearing 

123° T. The ship then steamed 23T T. 29 M. until noon, when the latitude by meridian 

altitude of the sun was 42° 27' S. Find the ship's position at noon.  

16. In D.R. position lat. 39° 39' N., long. 130° 47' E., an observation of the sun gave intercept 

4' towards, bearing 160° T. Later, a second observation, using lat. 39° 09' N. gave longitude 

130° 47' E., bearing 200° T. Find the ship's position at the second observation, if during the 

interval the ship ran 196° T. 20 M. and 186° T. 18 M.  

17. During the forenoon, the longitude was worked out on a vessel at anchor. Fog then set in. 

Later the fog cleared, and vertical  



 

angle observations put the ship 6 M. north and 5 M. east of the observed position. What was 

the true bearing of the sun at sights?  

18. An a.m. sight of the sun when worked with lat. 51° 55' N. gave longitude 20° 04' W., and 

when worked with lat. 52° 05' N. gave longitude 19° 54,5' W. What was the true bearing of 

the sun?  

19. An observation worked with D.R. lat. 48° 20' N. gave long. 35° 17' W., and bearing 127° 

C. The vessel then steamed for 4 hours at 11 knots and a current set 090° T. at 3 knots. The 

course steered was 154° C., dev. 5° E., var. 12° W., wind N.E., and leeway 5°. A second 

observation then gave a star's bearing 252° c., intercept 10' towards. Find the ship's position.  

CHAPTER 10 CORRECTION OF ALTITUDES Definitions  

Visible Horizon  

The circle which bounds the observer's view of the earth's surface in a clear atmosphere.  

Sensible Horizon  

A plane which passes through the observer's eye and is at right angles to the vertical of the 

observer.  

Rational Horizon  

A plane which passes through the centre of the earth, and is at right angles to the observer's 

vertical. The rational horizon is therefore parallel to the sensible horizon.  

The observed altitude of a heavenly body is the angle at the observer's eye between a line 

from the observer's eye to the point on the body observed, and a line from the observer's eye 

to the visible horizon. In figure 10.1 angle L LEV.  

The altitude required for navigational computations is the true altitude. This is the angle at the 

centre of the earth between a line joining the earth's centre and the centre of the heavenly 

body, and the plane of the observer's rational horizon.  

The following corrections must be applied to the observed altitude to obtain the true altitude.  

Dip  

This is defined as the angle at the observer's eye between the plane of the sensible horizon and 

a line joining the observer's eye and the visible horizon. In figure 10.1 angle L SEV.  

The application of dip to the observed altitude corrects the altitude above the visible horizon 

to an altitude above the sensible horizon. The altitude so corrected is called the Apparent 

altitude.  

In the figure:  

LLEV =Observed altitude L LES = Apparent altitude LSEV =Dip  

Thus Apparent altitude = Observed altitude- Dip.  
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Thus dip is always negative. Values of dip are tabulated against height of eye in nautical 

tables and in the Nautical Almanac.  

Refraction  

A ray of light entering a medium of greater density than that in which it has been travelling is 

bent or refracted towards the normal. (The normal is the perpendicular to the surface of the 

interface between the two mediums at the point of entry of the ray of light.)  

 

Light entering the earth's atmosphere from space therefore is so refracted, but as there is no 

definite interface between the atmosphere and space, but a gradual increase in density of the 

air, the refraction is not sudden as in figure 10.2, but the ray is bent gradually as it approaches 

the earth's surface. The true path of a ray therefore is as shown as a solid line in figure 10.3, 

but the apparent direction of the body to an observer will be as shown as a dotted line. The 

altitude will always appear to be greater than it really is, and therefore a correction must be 

subtracted to allow for it.  

 

Refraction is greatest at low altitudes and is zero when the ray of light enters the atmosphere 

at right angles to the earth's surface, i.e. when the altitude is 90
0
• Uncertainty in the value of 

refraction at low altitudes makes it advisable to avoid taking sights of bodies near the horizon, 

if possible.  

Values of refraction for standard conditions of atmosphere are tabulated against altitude in 

nautical tables.  

Semi-diameter  



In the case of the sun and the moon, it is easier and more accurate to take the altitude of the 

upper or the lower edge or limb of the disc rather than estimate the position of the centre of 

the disc. A correction must in this case be applied to obtain the altitude of the centre of the 

body.  

The amount of the correction will be the angle subtended at the observer's eye by the radius or 

semi-diameter of the body. From figure 10.4 it will be positive to an observation of the lower 

limb, and negative to an observation of the upper limb.  

 

Semi-diameter varies with the distance of the body from the earth, and values are given in 

nautical tables. They are also given for each day in the daily pages of the almanac at the foot 

of the 'sun' and 'moon' columns.  

Parallax  

This is defined as the angle at the centre of the body, subtended by the line from the centre of 

the earth to the observer's eye. The application of this correction changes the altitude observed 

at the observer's position on the surface of the earth, to the altitude as it would be observed 

from the centre of the earth.  

In the figure LELC is the angle of parallax.  

L LES is the altitude uncorrected for parallax.  

L LCR is the altitude after correction for parallax, i.e. the true altitude.  

The external angle of a triangle is equal to the sum of the two internal and opposite angles.  



 

 

Thus from figure to.5 L LDS = L LCR= True altitude  

 and  LLDS= LELD+ LLES  

thus T. alt. = App. alt. + parallax  

Thus the parallax correction is always positive to apparent altitude to give true altitude. The 

value of parallax will vary with the altitude, and will be maximum when the body is on the 

horizon, and zero when the altitude is 90°. Values for the sun are tabulated against altitude in 

nautical tables. For parallax of the moon, see 'Correction of Moon's Altitude'. The value of 

parallax for the stars, because of the vast distances of the stars, is negligible.  

Note  

The index error of the sextant should be applied before any correction of altitude is done, 

according to the rule:  

Index error off the arc, error positive, Index error on the arc, error negative.  

Summary  

To correct an altitude of the sun we need to apply the following  

corrections.  

 Index error  - ve, or + ve  

 dip  - ve  

 refraction  - ve  

 semi-diameter  -ve (upper limb), +ve (lower limb)  

 parallax  + ve  

To correct an altitude of a star or planet, we need to apply the  

following corrections.  

 Index error  - ve, or + ve  

 dip  - ve  



 refraction  - ve  

CORRECTION OF THE SUN'S ALTITUDE Example  

The sextant altitude of the sun's lower limb was 45° 20', index  

error 1·2' on the arc; height of eye 15-4 metres; sun's semi-diameter 15,9'. Find the true 

altitude of the sun's centre.  

 Sext. alt.  45° 20,0'  

 I.E.  - 1·2'  

 Obs. alt.  45° 18,8'  

 Dip  - 6·93'  

 App. alt.  45° 11,87'  

 ref.  - 0·94'  

45° 10,93'  

 S.D.  +  15·90'  

45° 26·83'  

 par.  + 0·11 '  

 True alt.  45° 26·94'  

Notes  

1. The corrections for dip. refraction, and parallax-in-altitude are obtained from the 

appropriate tables in Norie's, Burton's, etc.  

2. The sun's semi-diameter is obtained from the daily page for the given date in the Nautical 

Almanac.  

3. The corrections should be made in the order shown.  

Example 2  

The sextant altitude of the sun's upper limb on 7th January, 1.980, at a certain instant was 53° 

14·4'; index error 104' off the are, height of eye 18 metres. Find the true altitude.  

 Sext. alt.  53° 14·4'  

 I.E.  + 1-4'  

 Observed alt.  53° 15,8'  

 dip  - 7·5'  

 Apparent alt.  53° 08·3'  



 refraction  - O' 7'  

53° 07,6'  

 S.D.  -  16·3'  

52° 51·3'  

 parallax  + 0·1 '  

 True altitude  52° 51·4'  



 

EXERCISE lOA CORRECTION OF THE SUN'S ALTITUDE  

These examples are to be worked fully (as shown), i.e. using individual corrections.  

Find the true altitude of the sun's centre, given:  

1. The sextant altitude of the sun's lower limb was 52° 31,2'; index error 2·2' on the arc; 

height of eye 8,3 metres; sun's semidiameter 16,1'.  

2. The sextant altitude of the sun's L.L. 33° 10' 50"; I.E. 1·0' off the arc; H.E. 12·0 metres; 

S.D. 15,9'.  

3. Sextant altitude U.L. 71° 53' 30"; index error l' 50" off. the arc; H.E. 11·0 metres; S.D. 

16,0'.  

4. The observed altitude of the sun's upper limb was 27° 46' 40"; height of eye 7,7 metres; 

semi-diameter 15'8'.  

5. Sextant all. L.L. 62° 34,3'; I.E. 2·2' off the arc; H.E. 9 metres; S.D. 16· I '.  

6. Sextant altitude of the sun's upper limb was 55° 55' 50", index error l' 00" on the arc; height 

of eye 7,4 metres; semidiameter 16· 3'.  

7. The sextant altitude of the sun by back angle, using the limb nearest the clear horizon, was 

110° 51,6'; index error 2·2' off the arc; H.E. 11· 5 metres ; semi-diameter 16· 2' .  

8. The sextant altitude of the sun by reverse horizon, using the limb farthest from the clear 

horizon, was 98° 24·4'; index error 1·2' off the arc; height of eye 10,5 metres; semi-diameter 

16,1'.  

CORRECTION OF THE ALTITUDE OF A STAR OR A PLANET  

Example  

Find the true altitude of the star Rigel 11 , the sextant altitude of the star being 29° 17,2', index 

error 1,8' off the are, and height of eye 14·0 metres.  

 Sext. all.  29° 17·2'  

 I.E.  + 1,8'  

 Obs. all.  29° 19·0'  

 dip  - 6,6'  

29° 12·4'  

 ref.  - 1,7'  

 True all.  29° 10-7'  

EXERCISE lOB  



FIND THE TRUE ALTITUDE OF THE FOLLOWING BODIES  

Ht. of eve  

   

.&A 

••• "J 

""J"  

 

 Sext. Alt.  Ind. Error  (metres)  Body  

1.  47° 29,6'  1,0' on the arc  11·2  Altair  

2.  32° 24,4'  0,8' on the arc  7·3  Canopus  

3.  21° 13,6'  0-4' off the arc  11·6  Arcturus  

4.  47° 15,8'  1·4' on the arc  15·3  Polaris  

5.  37° 10,4'  1,8' on the arc  8,4  Dubhe  

6.  12° 17,0'  2,0' off the arc  14·0  Sa turn  

7.  53° 20·2'  0,6' on the arc  7,7  Venus  

8.  23° 14·0'  2·2' off the arc  11·0  Jupiter  

9.  51 ° 56·0'  0-4' on the arc  17·0  Mars  

10

.  
14° 38·2'  2,8' on the arc  9,9  Venus  

Correction of the moon's altitude  

Because of the moon's proximity to the earth, the correction of its altitude presents special 

problems ..  

Horizontal parallax  

This is the angle of parallax of a body when it is on the sensible horizon, i.e. its maximum 

value of parallax (see definition of parallax). But even the value of horizontal parallax varies 

with latitude of the observer, being maximum when the observer is on the equator, and 

minimum when the observer is at the poles. The reason for this can be understood by 

considering the definition of parallax, i.e. the angle at the centre of the body subtended by a 

line from the observer's eye to the earth's centre. When the observer is" at the equator this line 

will be the equatorial radius of the earth. When the observer is at the poles it will be the polar 

radius. As the equatorial radius is greater then it will subtend a greater angle at the body's 

centre than the polar radius.  



 



 

The parallax given in the almanac against each hourly G.M.T. is the equatorial horizontal 

parallax, and it must be reduced to find the horizontal parallax for the latitude. This correction 

is given in nautical tables under the name of 'Reduction to the Moon's Horizontal Parallax for 

Latitude'.  

Once the horizontal parallax is found thus, the parallax in altitude is obtained by:  

Parallax in alt=Hor. Pax. x Cosine altitude.  

This figure is then added to the apparent altitude to obtain true altitude.  

Augmentation of the moon's semi-diameter  

Considering the distance of the moon from the earth's centre to be constant, the distance of the 

moon from an observer is greatest when the moon is on the rational hori~on, i.e. when the 

altitude is zero. It is least when the moon's altitude is 90°. The difference will be the earth's 

radius.  

 

Hence the angular semi-diameter is greatest when the altitude is 90° and least when the 

altitude is zero.  

The value given in the almanac is the least value when the altitude is zero, and must be 

increased or augmented for altitude. The value of the augmentation is given against altitude in 

nautical tables.  

Hence to correct the moon's altitude the following corrections  

must be applied.  

 Index error  -ve or +ve.  

 dip  -ve.  

 refraction  - ve.  

 semi-diameter  -ve or +ve after augmentation.  

 parallax in all.  +ve obtained by reducing the equatorial  

parallax and multiplying by cosine altitude  

CORRECTION OF THE MOON'S ALTITUDE Examp]e  



The sextant altitude of the moon's lower limb was ]6° 58,2', index error 0,8' off the arc, height 

of eye 5,4 m., semi-diameter ]5·2', horizontal parallax 55·7', and latitude ]20 50' N. Find the 

true altitude of the moon's centre.  

 Sextant altitude  ]6° 58·2'  Semi-diameter  ]5·2'  

 Index error  + 0,8'  augmentation  0·07'  

 Observed alt.  ]6° 59,0'  Augmented S.D.  ]5·27'  

 dip  - 4,]6'   ===  

  ]6° 54,84'  Hor. par.  55,7'  

 Semi-diameter  +  ]5·27'  reduction  Nil  

 Apparent all.   ]70 10,]]'  Reduced H.P.  55,7'  

 ref.  -  3,05'   ""''''''''''''''''  

 App. all.  ] 7° 07,06'  par.-in-alt.  

 par.-in-all.  +  53·23'  =H.P. x coso app. alt.  

=55,7' x cos. ]7°07,06'  

 True altitude  ]8° 00·29'  =53,23'  

Notes  

]. The corrections for augmentation of the moon's semidiameter, and the reduction for latitude 

to apply to the equatorial horizontal parallax, are taken from tables given in Burton's, Norie's, 

etc.  

2. Working to the second place of decimals is not necessaryone place is quite sufficient. It is 

here shown solely for illustration.  

EXERCISE toc CORRECTION OF THE MOON'S ALTITUDE  

From the following information, find the true altitude of the moon's centre:  



 

    Height     

 Obs.  Sext  Index Error  of  S.D.  HJ'.  Lat.  

 limh  Alt.   eye     

    
(metre

s)  
   

J.  L.L.  
63° 

12·8'  

1·6' off the 

arc  
7·3  

15,3

'  
56·0'  50° N.  

2.  L.L.  
34° 

14·8'  

2·2' on the 

arc  
13·0  

15-

1'  
55-4'  39° S.  

3.  V.L.  
58° 

16·2'  

1,0' on the 

arc  
10·4  

16·1 

'  
59·2'  44° N.  

4.  V.L.  
77° 

51·6'  

1·2' off the 

arc  
9,0  

14·8

'  
54·5'  22° N.  

5.  L.L.  
21° 

38,8'  

3·4' on the 

arc  
11·5  

15·8

'  

58·1 

'  
00  

6.  L.L.  
38° 

21,8'  

2,4' off the 

arc  
9·0  

16-

3'  
59,7'  41°IO'S.  

7.  V.L.  
51 ° 

17·0'  

1,6' on the 

arc  
16·0  

14,9

'  
54·6'  

37° 20' 

N.  

8.  L.L.  
43° 

18,4'  
Nil  13·7  

16·6

'  
61·0'  

2SO 15' 

S.  

Total correction tables  

In practice correction of altitudes is simplified by the use of total correction tables. The most 

commonly used, and described here, are the convenient correction tables included in the 

Nautical Almanac. These are in three tables, for the sun, for stars and planets, and for the 

moon respectively. Each table is compiled with the apparent altitude as the argument so that 

the dip correction must first be applied to the observed altitude. A dip table is included with 

the total correction tables.  

The dip table  

The dip is tabulated against height of eye in metres or in feet. The table is based upon the 

formula:  

 

The table is arranged as a critical entry table which means that one value of the correction is 

given for an interval of the argument, height of eye. This means that no interpolation is 



necessary, but it should be remembered that if the required height of eye corresponds to a 

tabulated value, then the upper of the two possible values of correction should be used. Thus 

the correction for a height of eye of 13·0 metres is -6·3 (see extracts of Nautical Almanac, 

correction tables).  

Sun total correction table  

The sun correction table, found on the first page of the almanac, corrects for mean refraction, 

semi-diameter and parallax. The argument is the apparent altitude, that is the observed altitude 

corrected for dip. Two separate tables are used, one for the spring and summer months from 

April to September, and one for the autumn and winter months, from October to March. This 

allows annual variations in the semi-diameter to be allowed for. Each table contains 

corrections for lower limb observations in bold type and corrections for upper limb 

observations in. feint type. The tables are arranged as critical tables which means that one 

value of the correction is given for an interval of the argument, apparent altitude. No 

interpolation is required but it should be remembered that if the required value of apparent 

altitude is a tabulated value then the correct correction is the upper of the two possible 

corrections. For example for an apparent altitude of 50° 46' in the October to March table a 

correction of + 15·4 (lower limb) should be used (see extracts from the Nautical Almanac).  

Example  

The sextant altitude of the sun's lower limb was 48° 56·3'. Index error 1·2 on the arc. Height 

of eye 7·2 metres. Date June16th. Find the true altitude.  

 Sextant altitude  48° 56·3'  

 Index error  -1·2'  

 Observed altitude 48° 55·1'  

 Dip  -4·7'  

 Apparent altitude  48° 50·4'  

 Correction  +15·1.'  

 True altitude  49° 05·5'  

Stars and planets  

The correction table for stars and planets found on the first page of the almanac, corrects for a 

mean refraction only. The corrections are tabulated against apparent altitude (observed 

altitude corrected for dip), and are arranged as critical entry tables.  

For Mars and Venus an additional correction may be applicable, depending upon the date. 

These are given down the right hand side of the refraction correction table. The additional 

correction for planets corrects for the effect of parallax and phase, but the correction for 

Venus is only applicable when the sun is below the horizon. The correction for daylight 

observations may be calculated from data given in the explanation in the back of the almanac, 

but the magnitude of the corrections is such that this is unnecessary and may be ignored.  



 

Example  

The sextant altitude of the star Procyon was 57° 18·9' Index error  

1·0' off the arc. Height of eye 6·5 metres. Find the true altitude.  

 Sextant altitude  57° 18·9'  

 Index error  + 1·0'  

 Observed altitude 57° 19·9'  

 Dip  -4·5'  

 Apparent altitude  57°15.4'  

 Correction  -0·6'  

 True altitudt:  57°14.8'  

Example  

The sextant altitude of Mars on 30th March 1980 was observed to be 38° 06·5'. Index error 

0·5' off the arc. Height of eye 5·0 metres. Find the true altitude.  

 Sextant altitude  38° 06·5'  

 Index error  +0·5'  

 Observed altitude 38° 07·0'  

 Dip  -3·9'  

 Apparent altitude 38° 03·1.'  

 Correction  -1·2'  

38° 01,·9'  

 Additional corr.  + O· 2'  

 True altitude  38° 02·1.'  

Moon  

The moon's total correction table, found on the last pages of the almanac, is in two parts. The 

main correction, in the upper part of the table corrects for refraction, semi-diameter and 

parallax, using mean values. It is tabulated against apparent altitude, and some interpolation is 

necessary to obtain the accuracy to within one decimal place.  

The second correction allows for variations in the semi-diameter and parallax, both of which 

depend upon the horizontal parallax. The arguments are therefore, apparent altitude and 

horizontal parallax. Two values are given one for lower limb, and one for upper limb 



observations. These are arranged in columns, the correction being taken from the same 

column as that from which the main correction was extracted, and against H.P.  

All corrections for the moon are additive to the apparent altitude, but those for upper limb 

observations have 30' added to maintain them positive. This 30' must therefore be subtracted 

from the final altitude.  

Example  

The sextant altitude of the moon's lower limb was 16° 58·2'. Index error 0·8' off the arc. 

Height of eye 5·4 metres. The G.M.T. was 1400 on 27th June 1980. Find the true altitude.  

From almanac H.P. =56·9  

 Sextant altitude  16° 58·2'  

 Index error  +0·8'  

 Observed altitude 16° 59·0'  

 Dip  -4·1'  

 Apparent altitude  16° 54·9'  

 Main correction  +62·7'  

 Second corr.  +4·0'  

 True altitude  18° 01·6'  



 

CHAPTER 11  

LATITUDE BY MERIDIAN ALTITUDE  

An observation of any body whilst on the meridian of the observer is of particular value to the 

navigator as it provides a quick and easy method of finding a position line which will be 

coincident with the observer's parallel of latitude. The latitude obtained from the sight is 

therefore the observer's latitude.  

Let the following diagram represent the earth and the celestial sphere on the plane of the 

observer's meridian.  

 

o is the position of the observer in northerly latitude.  

 Z  is the observer's zenith on the celestial sphere.  

NS is the plane of the rational horizon.  

If EQ represents the plane of the equinoctial then P will be the north celestial pole and arc ZQ 

will be the latitude of the observer.  

Consider a body Xl of declination same name as the latitude and less than the latitude, while 

on the observer's meridian. Then ZX1 is the angular distance of the body from the zenith, i.e. 

the zemth distance, and Xl Q is the angular distance of the body from the equinoctial, i.e. the 

declination.  

170  

From the diagram:  

ZQ = ZXI +XIQ  

Latitude = zenith distance + declination  

Consider a body X2 of declination opposite name to latitude. Then similarly:  

ZQ =ZX2-QX2  



Latitude = zenith distance - declination'  

Consider a body of X3 of declination the same name as latitude and greater than latitude.  

Then similarly:  

ZQ = QX3 -ZX.}  

Latitude = declina tion - zemth distance  

These results can be memorised but preferably the appropriate one can be simply derived in 

each problem as is shown in the first example to follow.  

Latitude by meridian altitude of a star Procedure  

I. Extract the declination of the star from the daily pages of the Nautical Almanac at the 

appropriate date. One value is given for each three day page in the list of stars. (If the star is 

not listed in the daily pages refer to the complete list of selected stars at the end of the 

almanac.)  

2. Correct the sextant altitude for (i) Index error,  

(ii) Dip,  

(iii) Refraction (main correction from, the table on the inside cover of almanac).  

3. Subtract the true altitude from 90° to obtain the zenith distance.  

4. Draw a rough sketch on the plane of the rational horizon to  

determine the appropriate rule, thus:  

Insert the position of Z (the central point of the diagram). Mark on X the body, either to the 

north or to the south of Z according to the bearing of the body at meridian passage, and at a 

distance from Z to represent the zenith distance. Mark on Q, the point where the equinoctial 

cuts the observer's meridian, either to the north or to the south of X according to the name of 

the declination, and at a distance from X to represent the declination.  

The relationship between ZX and QX should now be evident in order to find Z Q.  

(See figure in example I for illustration.)  

5. Apply the declination to the zenith distance accordillg to the rule derived, to give latitude.  



 

 

- -- - -~""  

Notes  

The bearing of the body must either be 000° or 180°. The position line must therefore run 

along a parallel of latitude upon which the observer must lie.  

If the bearing of the body is not given in the question it can be inferred by inspection of the 

latitude of the D.R. and the declination. If declination is greater north than a northerly latitude 

then the body must pass to the north of the observer at meridian passage. If they are of 

opposite names then the bearing must be the same as the name of the declination.  

Note that the time of meridian passage is not required for the calculation. This is because the 

declination of a star is constant over relatively large periods of time, and the G.M.T. is not 

required therefore for extracting it. In practice the time will be required, however, in order to 

know when to take the sight.  

Example 1  

18th December, 1980, the sextant altitude of the star Diphda4 on the meridian, bearing 

180
0
T., was 46° 15'4', index error 1·4' on the arc, height of eye 12 metres, D.R. position lat. 

25° 33' N., long. 330 52' W. Find the latitude and P.L.  

 Sext. alto  46° 15,4' S.  Dec. 18°05·7S.  

indo err. - 1'4'  

Obs. alto  46° 14'0'  

dip  - 6· I '  

46° 07,9'  

Main corr. -  0·9 '  

True alt.  46° 07,0' S.  

90°  



zen. dist.  43° 53,0' N.  

dee.  18°05.7'S.  

lat.  25° 47·3' N.  

-  

NESW Represents the plane of the observer's rational  

horizon.  

Z  The observer's zenith.  dd The parallel of declination.  

P  The elevated pole.  X The body on the observer's  

PZS The observer's m(Oridian.  meridian.  

WQE The equinoctial.  ZX The true zenith distance.  

WZE The prime vertical.  QZ The observer's latitude.  

P.L. trends 090° T.-270° T. through lat. 25° 47·3'N., long. 33° 52' W.  

Example 2  

On 5th January, 1980, the sextant altitude of the star Fomalhaut when on the meridian south 

of the observer was 77° 52·4'. I.n
dex

 error 3·0' off t~e a~c. Height of eye 11.0 metres. Find the 

latitude and state the dIrection of the position line.  

 Sext. alt.  77° 52-4'  Declination 29° 43.9' S.  

indo err. + 3,0'  

 Obs. alto  77° 55-4'  

 dip  - 5,8'  

77° 49'6' Main Corr.- 0.2'  

 True alt.  77° 49,4'  

 Zen. dist.  12° 10'6'  

 Decl.  29° 43·9' S.  

Latitude  17° 33·3' S.  

EXERCISE llA  

1. 19th September, 1980, to an observer in long. ,42° 10' W., the sextant altitude of Aldebaran 

10 on the meridian, was 71° 22,8', inde~ erro
r
o 1-4' ~ff the arc, height of eye 14·5 metres, the 

star beanng 180 T. Find the latitude and P.L.  

2. 19th December, 1980, the sextant altitude of Dubhe 27 on the meridian, and bearing 000° 

T. to an observer in long. 18° 30' W., w~s 28° 06,2', index error 1·2' off the arc, height of ~ye 



~0·.5 metres. Fmd the P.L. and latitude of the point through whIch It IS drawn.  

3. 5th January, 1980, in D.R. yosition, lat. 49° 50' S., long. 42° 10' W. the sextant altitude of 

the star Regulus 26, on the meridian, was 28° 14'4', index error 0'6' on the arc, height of eye 

15·3 metres. Find the latitude and the P.L.  

4. 18th September, 1980, Rigel 11 was observed on the meridian bearing 000° (T.), sextant 

altitude 68° 10.9' index error 0·4' on the arc, height of eye 14'5 metres. Find the latitude and 

P.L.  

5. 27th June, 1980. Find the latitude of an observer, given: sextant altitude of Alioth 32 on the 

meridian, was 34° 03'5', bearing 000° T., index error i '8' off the arc, height of eye 12.0 

metres.  

 



 

Latitude by meridian altitude of the sun  

The true or apparent sun is on the observer's meridian at apparent noon or 1200 Local 

Apparent Time each day. However, we require the mean time when this occurs, in order to 

extract the declination.  

The L.M.T. of apparent noon may be earlier or later than 1200 hours by the value of the 

equation of time, and is given for each day at the foot of each right hand daily page in the 

Nautical Almanac, in the box labelled SUN under the heading 'mer. pass'. The longitude in 

time can then be applied to this figure to obtain the G. M. T. (See chapter 7 on finding times 

of meridian passages. ) It is sufficient in this case to obtain the G.M.T. to the nearest minute.  

Procedure  

1.Take out the L.M.T. of meridian passage from the almanac. 2. Apply the longitude in time 

to obtain G.M.T. (longitude WEST, Greenwich BEST, longitude EAST, Greenwich LEAST).  

2.Extract the declination for this G.M.T.  

4. Correct the altitude and subtract from 90° to obtain zenith distance.  

5. Apply the declination to the zenith distance as explained for the problem with a star.  

6. State the direction of the position line, which will always be east/west.  

Note  

If it is preferred to remember rules of thumb to obtain the latitude, given the zenith distance 

and the declination, then the following may be helpful.  

Put the bearin~ of the sun, i.e. N. or S., after the sextant altitude and the true altItude and 

apply the reverse name to the zenith distance.  

Then:  

la t. = zen. dist. + decl. (if the names are the same).  

lat. = zen. dist. "" decl. (if the names are different, and name the lat. the same name as the 

greater).  

Example  

18th December, 1980, in D.R. position 22° OS' N., 154° 20' W., the sextant altitude of the 

sun's L.L. on the meridian was 44° 20,8', index error 0,4' off the are, height of eye 15·3 

metres. Find the latitude and P.L.  

L.M.T. mer. pass. 18th Ilh 57m  

  Long. W.  lOh 17m  

  G.M.T. 18th  22h 14m  

 Sext. alt.  44° 20·8' S.  Dec. 23° 24·6' S.  



 I.E.  + 0,4'  

 obs. alt.  44° 21·2'  

 dip  - 6·9'  

 App. alt.  44° 14·3'  

main corr. + 15,3'  

 True alt.  44° 29·6' S,  

90°  

zen. dist.  45° 30,4' N  

dec.  23° 24·6' S.  

latitude  22° 05·8' N.  

P.L. trends 090
o
T.-2700T. through lat. 22° 05·8' N., long. 154° 20'W.  

EXERCISE 11B  

1. 18th December, 1980, in D.R. position lat. 00° 20'N., long. 162° 20' W., the sextant altitude 

of the sun's lower limb on the meridian was 66° 10,4' bearing south, index error 1·2' on the 

are, height of eye 13·2 metres. Find the latitude and P.L.  

2. 26th June, 1980, the sextant altitude of the sun's lower limb when on the meridian was 41 ° 

26'4', index error 2,4' off the are, height of eye 7·3 metres. The D.R. position of the observer 

was lat. 25° 10' S., long. 40° 20' W. Find the latitude and P.L.  

3. 6th January, 1980, an observation of the sun on the meridian by an observer 10 E.P. 51 ° 

30' S., 96° 35' W., gave the sextant altitude of the sun's upper limb 61 ° 25', index error was 

1,4' on the are, height of eye 11·5 metres. Find the latitude and P.L.  

4.From the following data, find the latitude and P.L.  

Date at ship, 30th September, 1980.  

Observer's E.P. lat. 36° 55' N., long. 165° 30' E.  

Body observed: the sun on the meridian, bearing 180° T., sextant altitude of the lower limb 

50° 11,8', index error 1,6' off the are, height of eye 14·0 metres.  



 



 

5. 19th September, 1980, an observation of the sun on the meridian bearing 000° T. gave the 

sext. alto of the sun's lower limb as 37° 37·6', index error 1·6' off the arc, height of eye 13,0 

metres. The D.R. long. was 141 ° 10·S' E.  

Find the latitude and position line.  

Latitude by meridian altitude of the moon  

It is particularly important in the case of the moon to obtain an accurate G .M. T. for the time 

of meridian passage as the declination is usually changing rapidly. (See chapter 7 on finding 

time of meridian passage ofthe moon.)  

Procedure  

1. Extract the L.M.T: of meridian passage for the da;r' in question. These are given for each 

day at the foot of the right hand of each daily page in a box labelled MOON under the heading 

of 'Mer. Pass. Upper'.  

2. Extract the time for the following day if in westerly longitude or the preceding day if in 

easterly longitude, and ~ke the difference between the two. Entering table II with this 

difference and the longitude, extract the correction for longitude ..  

3. Apply this correctiOJ;i for longitude to the time of meridian passage for the required day, 

adding if in west longitude, or subtracting if in east longitude.  

4. Apply the longitude in time to obtain the G.M.T. of meridian passage, and extract the 

declination from the almanac.  

5. Correct the sextant altitude to true altitude and subtract from 90° to obtain the zenith 

distance.  

6. Apply the declination to obtain latitude and state the direction of the position line.  

Note  

Particular care should be taken over the correction of the moon's altitude. Study chapter 1.0 

on correction of altitudes.  

Example  

On 27th June in longitude 58° 45' W. the sextant meridian altitude of the moon's lower limb 

was 67° 4S·6' south of the observer. Index error 2·0' off the arc. Height of eye 9·5 metres.  

L.M.T. mer. pass. 27th, long. 0° 23h42m L.M.T. mer. pass. 28th, long. 0° _24_h_3_7m  

difference 55m  

correction for longitude=9 ill (from Table II)  

 L.M.T. mer. pass. 27th, long. 0°  23h42m  

 long. corr.  __ 9m  



 L.M.T. mer. pass. long. 58°45'W.  23h51m  

 longitude in tIme  _3_h_5_5m  

 G.M.T. mer. pass. long. 58° 45' W.  03h 46m 28th  

 declination 19° 36·1' S.  H.P.57·2  

 'd' corr.  +0·9'  

declination 19° 37·0' S.  

sextant alto 67° 48·6'  

index error  +2·0'  

obs. alt.  67° 50·6'  

dip.  -5·4'  

app. alto  67° 45·2'  

main corr.  +32·1'  

2nd corr.  4·6'  

true alt.  68° 21·9'  

Z.X.  21° 38·l'N  

declination 19° 37·0' S.  

latitude 2° 01·1' N  

 

P/L runs 090°/270° through 2° 01·1' N. 58° 45' W.  

EXERCISE HC  

1. On 5th January, 1980, in longitude 45° 20' E. the observed altitude of the moon's lower 

limb when on the meridian north of the observer was 40° IS·5'. Index error nil. Height of eye 

5,5 metres. Find the latitude.  

2. On 19th September, 1980, in longitude 16r 1S'W., the sextant meridian altitude of the 



moon's upper limb was 30° 30'5' south of the observer. Index error 1,5' on the arc. Height of 

eye 10 metres. Find the latitude.  

3. On 19th December, 1980, in longitude 130
0
E. the observed altitude of the moon's upper 

limb when bearing south was 70° 30'0'. Height of eye 9·0 metres. Find the latitude.  

4. On 30th September, 1980, in longitude 0° the observed altitude of the moon's lower limb 

when bearing 000° T. was 88° 18'6'. Height of eye 8·6 metres. Find the latitude.  



 

To compute the altitude of a star on the meridian and find the time of the star's meridian 

passage  

A practical problem arises when selecting suitable stars to observe in order to obtain a 

position. It is advantageous if a star can be found at its meridian passage at a time suitable for 

observation. The altitude can be computed, and this angle clamped on the sextant and the star 

found in the sextant telescope, and the accurate meridian altitude observed.  

To enable this to be done we must first find the time when the star will be on our meridian, 

and this time must be at a time which is suitable for the observation of stars. In other words it 

must be during twilight.  

In practice any stars which have their meridian passages during twilight can be found by 

extracting the time of nautical twilight from the almanac, and converting it to G.M.T. The 

S.H.A. of an imaginary star which has a G.H.A. equal to the longitude at this time can be 

computed, and the list of stars inspected to find stars which have S.H.A.s similar to this one.  

Once a star is selected its exact time of meridian passage can be computed and this will give 

the navigator the time to observe. The D.R. latitude can then be used with the declination to 

find the zenith distance, from which the true altitude and hence the sextant altitude can be 

worked. The meridian altitude problem is worked in reverse to do this, all corrections being 

applied with the opposite sign to that in the normal way.  

Example  

19th September, 1980, compute the sextant altitude and find the L.M.T. when the star 

Aldebaran 10 is on the meridian to an observer in D.R. position lat. 55° 18' N., long. 142° 10' 

W. Height of eye 13,3 metres, index error 0·6' off the arc.  

When a body is on the observer's meridian,  

G.H.A. body=W.long. of observer.  

Thus:  

G.H.A. Aldebaran 142°10'  

S.H.A. Aldebaran  291°17·9'  

G.H.A. Aries  210° 52·1'  (G.H.A.+3600-S.H.A.)  

G.H.A.14hI9th  208°37.5'  

increment  2°14.6'  =8m 57s  

G.M.T.mer. pass Aldebaran 19th 14h 8m57s 19th  

longitude  9h 28m 40s  

L.M.T.  04h 40m 17s 19th  

(see chapter 7 for full explanation of this method).  



 

It will be noted that this time occurs during a.m. twilight for the  

observer's latitude, see Nautical Almanac.  

 latitude  55° 18·0' N.  

 declination  16° 28· 2' N.  

 Z.X.  38° 49·8'  

 True alt.  51°10.2'  

 correction  +0·8'  

 apparent alt.  51° 11·0'  

 dip.  +6·4'  

 obs. alt.  51~17·4'  

 index error  -0·6'  

 sextant alt.  51° 16·8'  

Computed altitude 51° 16·8' T.  

EXERCISE liD  

1. Compute the sextant altitude and find the L.M.T. of the star Vega 49 on the meridian to an 

observer in E.P. lat. 5° 50' N., long. 22° 30' W., index error 0,4' off the arc, height of eye 8·4 

metres. Date at ship 19th September, 1980.  



 

2. 6th January, 1980. Compute the altitude to set on a sextant and find the L.M. T. for 

observation of Menkar 8 on the meridian to an observer in lat. 35° 10' S., long. 32° 10' E., 

index error 1·2' off the are, height of eye 12·0 metres.  

3. Compute the altitude of Gienah 29 for setting on the sextant and find the L.M.T. for 

observation when on the meridian, observer's D.R. position 39° 20'N., 35° 30'W., height of 

eye 13·2 metres, index error 0·6' off the are, qate at ship 19th December, 1980.  

4. 27th June, 1980. Find the L.M.T. of meridian passage and compute the altitude of Spica 33 

for seting on the sextant, index error 1·8 on the are, height of eye 16·2 metres, D.R. lat. 12°18' 

N., long. 60° 35' E.  

5. 20th September, 1980, E.P. lat. 36°15'N., long. 142°04'W., compute the sextant altitude of 

Betelgeuse 16 and find the L.M.T. when on the meridian, index error 2·2' off-the are, height 

of eye 17·0 metres.  

Lower meridian passage  

The daily apparent motion of all heavenly bodies is to describe a circle around the pole, .once 

in a sidereal day. Thus during this period as well as crossing the observer's meridian it must 

also cross the observer's antimeridian, i.e. the meridian 180° removed from the observer's 

meridian. Under certain circumstances the body will remain visible to an observer during the 

whole period, and will never set below the horizon. Such a body is called a circumpolar body. 

The conditions for circumpolarity are:  

Latitude greater than polar distance or lat. > (90° - declination)  

A circumpolar body will, of course, be visible at the time when it crosses the observer's 

antimeridian. This occurrence is called the "'Lower Meridian Passage', 'Lower Meridian 

Transit', or 'on the meridian below the pole'.  

The latitude can just as easily be found from an observation at lower meridian passage as at 

upper meridian passage.  

At lower meridian passage, always:  

Latitude = True altitude + (90° - declination) or lat. =T.A. + polar distance  

Latitude by a star on the meridian below the pole Procedure  

I. Take out the star's declination from the Nautical Almanac.  

2.Subtract the declination from 90° to obtain the polar distance.  

3.Correct the altitude of the star.  

4. Add the polar distance to the true altitude to obtain the latitude.  

5. Name the latitude the same as the declination.  

Example  



18th September, 1980, the sextant altitude of Atria 43 on the meridian below the pole, was 

19° 41,8', index error 0·8' on the are, height of eye 9,7 metres. Find the latitude.  

Sext. a]t. 19° 4] ·8'  Dec.  68° 59·8' S.  

I.E.  0·8'   90°  

Obs. alt. 19° 41·0'  Polar dist. 2e 00·2'  

dip  -  5'5'  

App. a]t. 19° 35·S'  

Corr.  - 2,7'  

T. alt.  19° 32·8'  

Polar dist. 21° 00·2'  

Latitude 40° 33·0' S. True bearing 180° Position line 090° - 270°  

 

EXERCISE 11£  

1. The sextant altitude of Dubhe 27 on the meridian below the pole on 18th December, 1980, 

was 22° 19·5' , index error 2·2' on the are, height of eye 12·8 metres. Find the latitude.  

2. 19th December, 1.980, find the latitude by Alkaid 34, on the meridian below the pole, 

sextant altitude 12° 27·9', index error 2-4' on the are, height of eye 12·8 metres.  

3. 7th January, 1980, the sextant altitude of Schedar 3 on the meridian below the pole was 21 

° 48·0', index error 0'8' off the are, height of eye 13·2 metres. Find the latitude.  

4. 20th September, 1980, the star Avior 22 was observed at its lower transit, sextant altitude 

19° 32-4', index error 1·2' off the are, height of eye 14 metres. Find the latitude.  

5. 26th June, 1980, the sextant altitude of Achernar 5, on the meridian below the pole, was 

13° 00·4', index error 1·4' on the are, height of eye 12·5 metres. Find the latitude.  



 

CHAPTER 12  

THE CALCULATION OF A POSITION LINE BY OBSERVATION OF A BODY OUT  

OF THE MERIDIAN  

A knowledge of the use of the spherical haversine formula is assumed. If necessary a text on 

spherical trigonometry should be consulted for its derivation and its use.  

The solution of any navigational problem is basically the solution of a spherical triangle on 

the celestial sphere, the three points of which are: the elevated pole (P), the position of the 

body (X), and the position of the zenith (Z).  

The three sides of the triangle will therefore be:  

PX the angular distance of the body from the pole, i.e. the polar distance, i.e. 90°-declination.  

 PZ  the angular distance of the observer from the pole, i.e. the  

co-lat., i.e. 90° -latitude.  

ZX the angular distance of the observer's zenith from the body, i.e. the zenith distance, i.e. 

90°-altitude.  

The angles of the triangle are:  

L P the angle between the observer's meridian and the meridian of the body (see definition of 

L.H.A.). Angle P is equal to the L.H.A. when the body is setting, and is equal to 360
0
-L.H.A. 

when the body is rising.  

L Z the angle between the direction of the meridian and tha t of the body, i.e. the azimuth.  

LX the parallactic angle. Is not used in the normal reduction of sights.  

The triangle is usually represented by a figure on the plane of the rational horizon, i.e. looking 

down from above the observer's zenith.  

182  

 



To solve the triangle we need to know three of its elements.  

The Marcq St. Hilaire (Intercept) Method  

This is a popular method as any sight may be reduced by its use. The three elements used are:  

1.An assumed latitude (D.R. lat.) to give a value for PZ.  

2.Polar distance (PX) (90° - declination).  

3.An assumed longitude (D.R. long.), which is combined with the G.H.A. to give the L.H.A. 

and thus angle P.  

With these arguments we solve the triangle for the side ZX, the zenith distance, by use of the 

haversine formula, thus:  

Hav ZX=(Hav P. sin PZ. sin PX)+Hav(PZ",PX)  

and as PZ=complement of latitude and PX=complement of declination  

Hav ZX=(Hav P. cos lat. cos dec.)+Hav (lat.",dec.)  

Having found this calculated zenith distance it can be compared with the true zenith distance, 

which is found by correcting the sextant altitude to a true altitude and subtracting it from 90°. 

The difference is the intercept (see chapter 9).  

The true bearing can be calculated by the use of the ABC tables as described in chapter 8, and 

we are then in a position to plot a position line as described in chapter 9.  

Procedure  

1. From the chronometer reading, deduce the G.M.T. This is done by taking the approximate 

L.M.T. (ship's time indicated by clock is quite accurate enough), and applying the longitude in 

time to obtain the approximate G.M.T. From this can be decided:  



 

(a) Whether to add 12 hours to the chronometer time or not, i.e. 02h indicated on the 

chronometer may either be 02h or 14h.  

(b) The correct date at Greenwich. (Date given in the problem is the date at the ship. The 

date at Greenwich may be the day before or the day after, depending on the longitude.)  

2. With the G.M.T. extract the G.H.A. and the declination of the body.  

3. Apply the longitude to the G.H.A. and obtain the L.H.A. and thus deduce the angle P. 

(body setting L P= L.H.A., body rising L P = 360° - L.H.A.).  

4. Combine the latitude and the declination to obtain (PZ", PX).  

If lat. and dec. are of the same name take (L",D). If of opposite name take (L+ D).  

5.Use the haversine formula to calculate the zenith distance.  

6. Correct the altitude and subtract from 90° to obtain the  

zenith distance.  

7.Apply the C.Z.x. to the T.Z.x. and obtain the intercept. 8. Using ABC tables find the 

true bearing.  

We now have information enough to plot a position line as explained in chapter 9.  

Example 1. By an observation of the sun  

On 30th September, 1.980, at about 0900 at ship in D.R. position, latitude 41° 15' N., 

longitude 175° 30' W., when the chronometer, which was correct on G.M.T., showed 8h 

30m 15s, the sextant altitude of the sun's lower limb was 29° 24,6', index error 0,4' off 

the arc, height of eye 15·8 metres. Required the position line and a point through which 

it passes.  

Approx. L.M.T. 30th 09h 00m Long. W. Ilh 42m  

 Approx. G.M.T. 30th 20h 42m  G.M.T. 30th 20h 30m 15s  

From N.A. G.H.A. 20h 122°33·1'  declo 3°05·7'S.  

 Increment  7° 33·8'  'd'  0·5'  

 G.H.A.  1300 06·9'  decl. 3° 06·2' S.  

  360"  lat.  4e 15·0' N.  

  490° 06·9'  L i" D 44° 21· 2'  

Longitude 175° 30·0' W.  

 L.H.A.  314° 36·9'  

 Lp  45°23·1'  



Hav. ZX=Hav. P. cos lat. cos dec.+ hav(lat. ;t.dec.).  

P.=45°23·1'  loghav. 1·17269  Sext. alt. 29°24·6'  

lat. =41°15'  log. coso 1·87613  I.E. +0·4'  

dec.= 3°06·2' logcos f·99936  Obs. alt. 29°25·0'  

 1·04818  dip. -7·0'  

 0·11173  App. alt. 2~ 18·0'  

lat;t.dec.  nat. hay. 0·14248  Corr. +14·3'  

CZX=160° 33·3'  0·25421  True alt. 29° 32·3'  

T.Z.X. 60" 27·7' C.Z.X. 60° 33·3'  

5·6' Towards  

A.0·865 S.  

B.0·076 S.  

C. 0·941 S.  

Az. S. 54·7 E. orI25·3°  

 



 

 

To calculate the position of the I.T.P.  

D.R.lat.  41
0
15·0N. Long. 175°30·Q'W.  

Co. 125·3° dist. 5·6' __ 3_'_2'8.   6·0' E.  (dep.=4·5')  

I.T.P.  4Pll·8'N.   175°24·0'W.  

Answer: Position line runs 035·3°/215·3° through position 41° 1l·8'N.175°24·0'W.  

EXERCISE 12A  

BY OBSERVATION OF THE SUN  

1. On 26th June, 1980, at about 0930, at ship in D.R. position, latitude 29° 30' S., longitude 

12e 20' W., when the chronometer which was correct on G.M.T. showed 5h 45m 20s, the 

sextant altitude of sun's L.L. was 26° 52'2', index error 1·6' on the are, height of eye 12·0 

metres. Find the direction of the position line and the positionof a point through which it 

passes.  

2. On 8th January, 1980, 1530 at ship in D.R. position, latitude 32° 15' S., longitude 48° 16' 

W., when the chronometer which was correct on G.M.T. indicated 18h 31m 24s, the sextant 

altitude of the sun's V.L. was 46° 58,0', index error 0-4' on the are, height of eye 11·0 m. Find 

the P.L. and the position of a point through which it passes.  

3. On 19th September, 1980, at about 4 p.m., at ship in a estimated position, latitude 0°00.0', 

longitude 160° 55' W., whe the chronometer which was correct on G.M.T. showed2h 30m 15: 

the sextant altitude of the sun's V.L. was 32°12'9', index error 0·' off the are, height of eye 

12·5 m. Find the position line and th position of a point through which it passes.  

4. On 18th December, 1980, at about 0900, at ship in D.F position, latitude 43° 12'N., 

longitude 38° 25'W., when th chronometer which was 2m 21s fast on G.M.T. showed 11h 51] 

52s, the sextant altitude of the sun's L.L. was 13° 33·3', index err< 1·6' off the are, height of 

eye 11·5 m. Find the position line and t11 position of a point through which it passes.  

5. On 30th September, 1980, at ship in D.R. position, latituc 44° 05'N., longitude 27°41 'W. at 

09h41m 02s G.M.T., the sextal altitude of the sun's L.L. was 18° 57·5 , index error 1·4' on the 



ar, height of eye 9·0 m. Find the direction of the position line and tt posItion of a point 

through which it passes.  

Example 2. By an observation of a star  

On 9th January 1980 at approximately 1900 at ship in OJ position 35° 10' S. 127° 50 E., the 

sextant altitude of the star Siri, was observed to be 36° 58·1'. Index error 0·4' on the arc. 

Height eye 15 metres. A chronometer which was correct on G.M: showed 11 h 15m 10s. Find 

the direction of the position line and t] I.T.P.  

 Approx. L.M.T. 1900  Chron. 11hl5mlOs  

 long. E.  0831  G.M.T.11hI5ml0s9thJan.  

Approx. G.M.T. 1029 9th  

 FromN.A. G.H.A.'Y'l1h 273°08·9'  Dec.  16°41·5'  

 incr.  3° 48·1'  Lat.  35° 10·0'  

 G.H.A.'Y'  276°57·0'  Lat.-Dec. 18°28·5'  

 S.H.A.·  258° 55·8'  

 G.H.A.·  535° 52·8'  

360°  

 G .H.A.·  175° 52·8'  

 Long. E.  127° 50·0'  

 L.H.A.·  303° 42·8'  

 L P.  56°17·2'  



 

Hav. ZX=Hav. P. coslat. cosdec.+hav(lat.-dec.)  

P. 56°17.2' loghav. 1·34729 Sext. alt.  36°58.1'  

Lat. 35°10.0' logcos  1·91248 I.E.  -0·4'  

Dec. 16° 41·5' log cos  1·98130  

 --- Obs. alt.  36° 57·7'  

 1·24107 Dip.  -6·8'  

 0·17421 App. alt. 36° 50·9'  

Lat.-Dec. nat.hav. 0-02577 corr.  -1·3'  

C.Z.X.=53°07·6'  0·19998 T. alt.  36°49.6'  

A.·470N.  T.Z.x.  53°10.4'  

B.·360N.  C.Z.x.  53°07.6'  

 C. ·ltoN.  Intercept  2·8' Away  

Az. N. 84·9'E.  

 

To calculate the position of I.T.P.  

D.R. lat.  35°1O·0'S.  

Co. 84·9° dist. 2·8' d. lat.  0·3' S.  

I.T.P.  35°10.3' S.  

Long.  127° 50·0' E.  

d. long.  3·4 W.(dep. 2·8')  

127° 46·6' E.  



 

Answer  

P.L. trends 354'9T-174'9T through position latitude 35° 10·3'S.,longitudeI2'?°46·6'E.  

EXERCISE 12B  

BY OBSERVATION OF A STAR  

1. On 18th September, 1980, at ship in D.R. position, latitude 24° 50' N., longitude 145° 10' 

E., at 08h 59m 50s G.M.T. the sextant altitude of the star Arcturus 37 was 31° 30·5', index 

error 0·8' on the are, height of eye 12 m. Find the direction of the position line and the· 

position of a point through which it passes.  

2. On 30th September, 1980, at ship in D.R. position, latitude 43°05'N., longitudel77°16'W., 

atI7hOlm44sG.M.T. the sextant altitude of the star Schedar 3 was 41
0
 04,2', index error 0·2' 

off the are, height of eye 13-2 m. Find the direction of the position line and the position of a 

point through which it passes.  

3. On 19th September, 1980, at ship in estimated position, latitude 17° 53·6' N., longitude 4r 

30' W., the sextant altitude of the star Alphard 25 during morning twilight was 18° 59·2', 

index error 0·5' on the are, height of eye 18·6 m. The chronometer, which was 04m 53s slow 

on G.M.T., showed 8h 10m 23s. Find the direction of the position line and the position of a 

point through which it passes.  

4. On 18th December, 1980, in estimated position latitude 42° 40' N., longitude 172° 10' W., 

at 17h 59m 30s G.M.T. the sextant altitude of the star Alphecca 41 was 48° 05·9', index error 

1·3' on the are, height of eye 17·5 m. Find the direction of the P.L. and the position of a point 

through which it passes.  



 

5. On 26th June, 1980, at ship in D.R. position latitude 40° 59·5'S., longitude 56° 57'W., 

at 21h 26m OOs G.M.T. the sextant altitude of the star Procyon 20 was 15° 23,5', index 

error 0·6' off the are, height of eye 9·0 m. Find the direction of the P.L. and the position 

of a point through which it passes.  

Example 3. By observation of the moon  

An observer in D.R. position 14° 38' S. 154° 14' W. observes the altitude of the moon's 

lower limb to be 52° 07·5'. Index error nil, height of eye 12·0 metres. The chronometer 

showed 04h 45m 14s at the time and was correct on G.M.T. The approximate ship's time 

was 0639 on 30th September, 1980.  

Find the direction of the position line and a position through which to draw it.  

App. L.M.T. 063930th  

Long. W.  1017  Chron. 04h 45m 14s  

 -  G.M.T. 16h45m14s30th  

App. G.M.T.165630th  Dec. 19° 38·7'N.  

G.H.A.16h 157037.7'  'd'  +1·1'  

!n,cr.  10° 47 ·6:  Decl. 19° 39·8' N.  

 v (7·8)  5·9  Lat. 14° 38·0' S.  

G.H.A.  168°31.2'  L ~ 0 34°17.8'  

Long.  154°14·0'W.  ",  

L.H.A.  14°17.2'= LP.  

L P. 14°17·2' log hav. 2·18931  Sext. alt 52° 07·5'  

Lat. 14° 38'  log cos 1-98568  I.E.  -  

Dec. 19° 39·8' log cos 1·97391  Obs. alt. 52° 07.5'  

 _  Dip.  -6·1'  

2·14890  

App. alt. 52° 01·4'  

 0·01409  M. corr.  45·4'  

L. - D.  nat. hav. 0·08693  2nd corr.  5.1'  

CZX=37° 03·9'  0·10102  T. alt.  52° 51·9'  

 A 1·025+   T.Z.X.  37°08.1'  



 B 1·448+   C. z.x. 37° 03·9'  

 C 2·473+   Intercept  4·2' away  

Az. N. 22·7°W.  

 

 D.R. pos.lat.  14°38·0'S.  

 Course 22· 7° dist. 4·2' d. lat.  3·9' S  

 I.T.P.  14°41·9'S.  

 Long.  154°14·0'W.  

 D. long.  1·7' E. (dep.l·6')  

154° 12·3' W.  

Answer  

Position line runs 067·3°/247·3° through 14° 41·9' S.154°12·3'W.  

EXERCISE 12C  

1. At approximately 1815 on 26th June at ship, in D.R. position 42° 50' S. 41 ° 30'W., the 

sextant altitude of the moon's lower limb was 29° 10·8' Index error 2·0' off the arc. 

Height of eye 1 0 metres. A chronometer which was correct on G.M.T. showed 09h 10m 

O2s at the time. Find the direction of the position line and a position through which it 

passes.  



 

2. On 9th January 1980 at approximate L.M. T. 0900, in D.R. position 25° 30'N. 175° 

OO'E., the sextant altitude of the moon's upper limb was 27° 21·5'. Index error 2·0' on the 

arc. Height of eye 12·0 metres. A chronometer which was slow on G.M.T. by 1m 24s 

showed 09h 14m 21s at the time. Find the direction of the position line and the I.T.P.  

The longitude by chronometer method  

In this method only a D.R. latitude is assumed. This gives the side PZ in the triangle, and 

this is used with the polar distance and the observed zenith distance (ZX), in the 

haversine formula to calculate the angle P. From this the L.H.A. is deduced, and the 

G.H.A. applied to it to obtain the longitude.  

Note that this longitude will only be the correct longitude, if the assumed latitude is 

correct. Thus the D.R. latitude and the longitude by calculation give a position through 

which to draw the position line. The true bearing must also be calculated as in other 

methods to find the direction of the position line.  

Note  

For one particular observation there can only be one position line. Whether the 

observation is worked by Marcq St. Hilaire or by longitude by chronometer, the same 

position line will result. The positions calculated through which to draw the position line 

will, however, differ.  

Figure 12.7 shows one position line, and the information obtamed from each method.  

 

Thus the arguments used to solve the triangle are:  

I. PZ, obtained from the D.R. latitude.  

2.PX, obtained from the declination.  

3. ZX, the true zenith distance obtained from the sextant altitude.  

and by haversine formula:  

Hav. P =(hav. ZX-hav. (PZ-PX» cosec PZ cosec PX =(hav. ZX-hav. (lat.-dec.» sec lat. 

sec dec.  

Procedure  

1. From the chronometer time deduce the G.M.T. as in the intercept method.  



2. Using the G.M.T. extract the G.H.A. and the declination from the almanac.  

3.Correct the sextant altitude and find the zenith distance.  

4. By haversine formula, using lat. dec. and ZX find the angle P  

and hence L.H.A.  

5.Apply L.H.A. to G.H.A. to obtain the longitude. 6. Calculate the true bearing.  

We now have information for plotting a position line.  

Note  

This method of determining a position through which the position line passes is suitable 

provided the body is not too close to the observer's meridian. In this case there is a 

considerable change in longitude for a small change in azimuth, and in general it may be 

said that the longitude method can be used if the observed body is more than 2 hours 

from meridian passage. It should be noted that there is no such limitation for the Marcq 

St. Hilaire method.  

Example 4. By an observation of the sun  

(Using Example I worked by the longitude method).  

On 30th September, 1980, at about 0900, at ship in D.R.latitude 41° 15'N., when the 

G.M.T. was 20h 30m 15s, the sextant altitude of the sun's L.L. was 29° 24,6', index error 

0-4' off the arc, height of eye 15·8 m. Required the P.L. and the longitude in the D.R. 

latitude through which it passes.  

G.M.T. 30th 20h 30m 15s  

 G.H.A.20h 122° 33·1'  Dec.   3° 05·7'  

 incr.  7° 33·8'  corr.  +  O' 5'  

 G.H.A.  130°06·9'  Dec.   3°06·2'S.  

--  

 Sextant alt. 29° 24·6:  Lat.  41° 15' N.  

 I.E.  +  0,4  Dec.  3° 06.2' S.  

 Obs. alt.   29° 25·0'  

 Dip  -  7,0'  (Lat.+dec.) ~~_  

 App. alt.   29° 18·0'  

 Tot. corr. +  14·3'  

 T. alt.  29° 32·3'  

90°  



 nx  60° 27,7'  



 

Hav. P.={(hav. ZX- hay. (lat. -dec.)}seclat. sec dec.  

ZX60027·7' nat. hay. 0·25350  

l-d44°21·2'  nat. hay. 0·14248  

0·11102  

1·04540 A ·870S.  

lat. 41 ° 15'  log sec  0·12388 B ·076 S.  

dec. 3° 06· 2'  log sec  0·00064  

C ·946S.  

L P=45°13·9'  1·16992 Az. S. 54·6°E.  

L.H.A.=314° 46·1'  

G.H.A.=130° 06·9' (Long.=G.H.A.+360- L.H.A.)  

Long. 175° 20·8' (see figure 12.2 (b»  

Answer  

Position line runs 035·4°/215·4° through position 41 ° 15' N. 175° 20·8'W.  

Note  

The position line is the same as that calculated in Example I and the only difference is in the 

position given through which it passes. Using the intercept and azimuth it is possible to find 

the longitude in the O.R. latitude through which the P.L. can be drawn.  

 

In figure 12.8:  

Intercept=5·6'T. Az.=S54·7E. (from example 1).  



Longitude calculated by long. by Chron. is that shown by a dashed line. Thus by measurement 

departure=6·9.  

D.long.=9·2'E. O.R.long 175°30·0'W.  

  O. long.  9·2' E.  

 Long. by chron.   175°20·8'W.  

This was the longitude calculated in example 4 which shows that the same position line is 

obtained, whatever method of reduction is used.  

EXERCISE 120  

BY OBSERVATION OF THE SUN  

1. On 26th June, 1980, at about 1600, at ship in O. R. latitude 100 25' N., when the 

chronometer, which was 4m 27s fast on G.M.T., indicated 11h 59m 53s, the sextant altitude 

of the sun's lower limb was 31° 33·3', index error1·2' on the are, height of eye17·0 m. Find 

the direction of the position line and the longitude in the O.R. latitude through which it 

passes.  

2. On 19th September, 1980, at ship in O.R. position, latitude 18° 44' N., longitude 117° 12' 

W., the sextant altitude of the sun's upper limb was 24° 34·5', index error 0·6' off the arc, 

height of eye 18·0 m., at OOh Olm 42s G.M.T. Find the direction of the position line and the 

longitude in the O.R. latitude through which it passes.  

3. On 20th December, 1980, a.m., at ship in O.R. position latitude 35° 24' S., longitude 171 ° 

15' E., the sextant altitude of the sun's lower limb was 43° 09·7', index error 0·4' on the are, 

height of eye 14·5 m., when the chronometer, which was Olm 17s slow on G.M.T., showed 

9h OOm 35s. Find the direction of the position line and the longitude in which it cuts the O.R. 

latitude.  

4. On 5th January, 1980, a.m., at ship in O.R. latitude 0° 30' S., the sextant altitude of the 

sun's upper limb was 30° 27,1', index error 1,4' on the are, height of eye 19'5 m., at 08h 15m 

35s G.M.T. Find the direction of the position line and the longitude in which it cuts the O.R. 

latitude.  

5. On 30th September, 1980, at ship in O.R. position, latitude 44° 05' N., longitude 27° 41' 

W., at 09h 41m 02s G.MT., the sextant altitude of the sun's lower limb was 18° 57·5', index 

error 1,4' on the are, height of eye 9,0 m. Find the direction of the position line and the 

longitude in which it cuts the O.R. latitude.  

(The answer to this problem may be verified from Exercise 12A, No.5.)  



 

Example 5. By an observation of a star  

(Using example 2 worked by the longitude method.)  

On 9th January, 1980, p.m., at ship in D.R. position latitude 35° 10'S., longitude 127° 50' E., 

at llh 15m 10s G.M.T., the sextant altitude of the star Sirius to the east of the meridian was 

36° 58·1', index error 0·4' on the are, height of eye 15·0 m. Find the direction of the position 

line and the longitude in which it cuts the D.R. latitude.  

G.M.T.9thllh15m10s  

FromN.A.G.H.A.'Y'llh  273°08·9' Dec. 16°41·5'S.  

 incr.  3° 48·1'  

G .H.A. 'Y' 276° 57·0' S.H.A.· 258° 55·8'  

G.H.A.· 535° 52·8'  

360  

G.H.A.· 175° 52·8'  

Sextant alt. 36° 58·1'  Lat.  35° to·O' S.  

I.E.  -0·4'  Dec.  16°41·5'S  

Obs. alt.  36° 57·7'  (Lat. - Dec.) 18°28·5'  

Dip.  -6·8'  

App. alt.  36° 50·9'  

Corr.  -1·3'  

T. alt.  36° 49·6'  

T.Z.X.  53°to·4'  

Hav. P={hav. ZX-hav. (lat. -dec.~sec lat. secdec.  

ZX 53"10·4' nat. hay. 0·20030  

 (Iat.  . dec.) 18° 28·5' nat. hay. 0·02577  

0·17453 1·24187  

 lat. 35°10'  log see  0·08752  

 dec.16° 41·5'  log see  0·01870  

 L P=56° 20·6'   1·34809  



 L.H.A. = 303° 39·4'  A ·469+  

 G.H.A.= 175° 52·8'  B ·360-  

 Long. = 127° 46·6' E.  C ·109+  

Az. N. 84·9°E. (longitude=L.H.A.-G.H.A. See figure 12.4 (a».  

Answer  

Position line runs 354·9°/174·9° through position 35° 1O·0'S 127° 46·6'E.  

From Example 2  

Using intercept 2·8'away. Az. N. 84·9°E. to verify the above answer.  

 

From figure dep.=2·8'  

 D.R. lat. 35° 10' S. long.  127
0
 50' E.  

 d. long.  3-4' W.  

 D.R. lat. 35
0
 10' S. long.  127

0
 46,6' E.  

EXERCISE 12E  

BY OBSERVATION OF A STAR  

1. On 5th January, 1980, at ship in D.R. position, latitude 30~0'N., longitude 44° 40'W. at 09h 

15m 07s G.M.T. the sextant altitude of the star Rasa/hague 46 east of the meridian was 27
0
 

56,5', index error 1·3' off the are, height of eye 16·8 m. Find the direction of the position line 

and the longitude in which it cuts the D.R. latitude.  



 

2. On 27th June, 1980, at ship in D.R. latitude 29° 40' S., the observed altitude of the star 

Procyon 20 at p.m. twilight was 14° 49·8', height of eye 13·2 m., west of the meridIan, when 

the chronometer, which was 3m 47s slow on G.M.T., indicated 02h 47m 24s. Find the 

direction of the position line and the longitude in which it cuts the D.R. latitude. D.R. long. 

134° 55'W.  

3. On 19th September, 1980, p.m., at ship in D.R. position, latitude 27°30' N., 

longitude178°10' E., at06h40m12sG.M.T. the sextant altitude of the star Arcturus 37 was 32° 

21'4', index error 2-4' off the are, height of eye 15·8 m. Find the direction of the position line 

and the longitude in which it cuts the D.R. latitude.  

4. On 1st October, 1980, at ship during morning twilight in D.R. position, latitude 32° 15' S., 

longitude 78° 33' E.; the sextant altitude of the star Regulus 26 was 13° 24,6', index error 0,8' 

on the are, height of eye II·5 m. The chronometer, which was 2m 16s fast on G.M.T., showed 

llh 53m 04s. Find the direction of the position line and the longitude in which it cuts the D.R. 

latitude.  

5. On 26th June, 1980, at ship in D.R. position, latitude 40° 59·5' S., longitude 56° 57' W., at 

21h 23m 42s G.M.T., the sextant altitude of the star Procyon 20 was 15° 23,5', index error 

0,6' off the are, height of eye 9,0 m. Find the direction of the position line and the longitude in 

which it cuts the D.R. latitude.  

Noon position by longitude by chronometer and meridian altitude  

The most popular method of obtaining a noon position at sea is to transfer a position line 

obtained in the forenoon by observation of the sun, up to the time of noon, i.e. the time of 

meridian passage of the sun. It can then be crossed with a position line obtained from the 

meridian altitude which will run east-west (see chapter 9 for transferred position lines).  

This problem can, however, be solved without resort to any plotting.  

Let the figure represent a position line obtained by observation  

 

of the sun and worked by longitude by chronometer, during the forenoon. This position line is 

then transferred to the time of noon by application of the course and distance steamed. The 

transferred position line is marked with double arrows.  

We can say that at noon, if our D.R.latitude used in the forenoon sight was correct then our 

noon longitude is our D.R. longitude. However, the latitude obtained at noon will probably 

indicate that our true latitude is to the north or the south of our D.R. latitude, and therefore our 

longitude will be in error. The amount of the error in longitude can be found by taking the 



difference in minutes of d. lat. between the D.R. latitude and the observed latitude, and 

multiplying this by the value of 'c' from the ABC table calculation when finding the azimuth 

for the forenoon sight.  

The value of 'C' in this respect can be taken as the error in longitude caused by an error of I 

minute in the latitude when working the sight.  

The direction of the longitude error must be found by inspection of the direction of the 

position line and the direction of the error in latitude. Thus in the figure 12·10, where the 

position line runs SWINE if the observed latitude is south of the D.R. latitude the true 

longitude must be to the west of the D.R. longitude. If the observed latitude is to the north, the 

observed longitude must be to the east.  

If the position line runs NW jSE then the opposite will apply.  

The appropriate case must be found from a rough sketch of the position line and the observed 

latitude.  

Example  

On 19th December, 1980, at 081.0 ship's time in D.R. position 25° 5.0' N. 57° 37' W. an 

observation of the sun's lower limb gave a sextant altitude of 15° 47,5'. Index error was 3,0' 

on the arc. Height of eye 13,6 metres. The chronometer showed Ilh 58m .o4s and was 1m 03s 

slow on G.M.T. The ship then steamed 210° T. for 55 miles, when the meridian altitude of the 

sun's lower limb was 41° 19,8' south of the observer. Find the ship's position at the time of the 

meridian altitude.  

Approx. ship's time .0810  Chronometer lIh 58m 04s  

Longitude  .0349  Error  1m 03s  

Approx. G.M.T.  1159  G.M.T.  Ilh 59m .o7s  



 

G.H.A.llh 345°41·2'  Dec.  23°25:3'S.  

iner.  14° 46·8'  Lat.  25° 50·0' N.  

G.H.A.  360°28·0'  Lat. ~Dee. 49°15·3'  

= 0° 28·0'  

Sext. alt  15°47·5'  ZX74°09·1' nat. hav.0·36345  

I.E.  -3·0'  Lat. Dec. nat. hav. 0·17365  

Obs. alt. 15° 44·5'  0·18980  

Dip.  -6·5'  _---  

1·27830  

App. alt. 15° 38·0'  Lat. 25° 50·0' log see 0·04573  

Corr.  + 12·9'  Dec. 23° 25·3'log see 0·03734  

True alt. 15° 50·9'  L P=57°17·4' 1·36137  

T.Z.X.  74°09·1'  L.H.A.=302°42·6' (Iong.=G.H.A.-  

G.H.A.=36O° 28·0' L.H.A.)  

 A ·311+  ---  

 B ·515+  Long. =57° 45·4' W.  

C ·826+ Az. S. 53·4°E.  

D.R po~. ats,ights.  25° 50·0; N. 57°45.4;W. ~~~~~ude  

Run 210 T. dlst. 55 mIles  47·6 S.  30·5 W.  I I t d)  

 ______  eacuae  

D.R at noon  25° 02·4' N. 58°15·9'W.  

Meridian alt.  

Sext. alt. 41 ° 19·8'  Mer. pass.  1157  

I.E.  -3·0'  Long.  0353  

Obs. alt.  41°16.8'  G.M.T.  1550  

Dip.  -6·5'  Decl.  23025.4'S.  

App.alt. 41°10.3;  D.Rlat.  25°02.4'N.  



Corr.  +15·2  Obs.lat.  25009.1'N.  

True alt.  41°25.5'  D'ff  6 7'N  

 ___  I erenee  ..  

T. Z.x.  48° 34.5'  'c'  x ·826  

Decl.  23° 25·4' S.  D I  5.5' E  

 ___  . ong ..  

Lat.  25°09·l'N  

Noon D.R. long. 58°15·9'W.  

 D. long.  5·5' E.  

 Noon longitude  58°10·4' W.  

Noon position 25° 09·1' N. 58° 10·4' W.  

EXERCISE 12F  

1. On 30th Sertember 1980, in D.R. latitude 46° 17' S., the sextant altitude 0 the sun1s 

lower limb was observed to be 32° 15', during the forenoon when the G.M.T. was19h 

34m 51son the 30th. The index error was 3·0' off the arc and height of eye 11·0 m.  

The ship then steamed 300° T. for 45 miles when the sextant meridian altitude of the 

sun's lower limb was 46° 47 ·9' north of the observer. Find the ship's position at the time 

of the meridian altitude.  

2. On 27th June, 1980, in D.R. position 38° 15' S. 169° 15' E.,  

at approximate ship's time 0919 hrs., the sextant altitude of the sun's lower limb was )70 

18'2'. Index error was 1'0' on the arc. Height of eye 8.0 m. The chronometer showed lOh 

05m 17s at the time. The ship then steamed 045° T. for 40 miles until noon when the 

sextant meridian altitude of the sun's lower limb was 28° 39'4'. Find the ship's position at 

the time of the meridian altitude.  



 

CHAPTER 13  

LA TlTUDE BY EX-MERIDIAN PROBLEM  

This is another method of finding a point-through which to draw the position line.  

In this case if the longitude is assumed, the latitude in that longitude through which the 

position line passes can be calculated.  

 

This method is limited to cases where the body observed is near the meridian, i.e., where the 

hour angle is small. The actual limits of hour angle before or after meridian passage will 

depend upon the rate of change of altitude.  

If the declination of the body and the observer's latitude are the same name, the rate of change 

of altitude will be greater if the latitude and declination are of opposite names. This means 

that the limits of hour angle within which this method can be used will be less when the 

latitude and declination are the same name.  

 

Description of figure:  



NESW represents the plane of the observer's rational horizon.  

NZS  the observer's meridian.  

P  the elevated celestial pole.  

Z  the observer's zenith.  

X  the body.  

WZE the prime vertical. WQE the equinoctial.  

M  the position of the body when on the observer's meridian.  

dM X d the parallel of declina tion of the body.  

From the figure QZ=ZM-QM:  

i.e. Latitude = meridional zenith distance- declination.  

and ZM=PZ~PM  

and assuming that the declination remains constant between the time of sight and the time 

when the body is on the observer's meridian:  

PM =P X =90
0
 ±declination Then ZM=PZ~PX  

Thus meridional zenith distance = (PZ ~ P X) From the haversine formula:  

Ha P havZX-hav(PZ~PX)  

 v.  Sin PZ Sin PX  

:.Hav. P sin PZ sin PX=hav. ZX -hay. (PZ ~PX) :.Hav. (PZ~PX)=hav. ZX-hav. P sin PZ sin 

PX i.e. Hav. MZD=hav. ZX-hav. P sin PZ in PX This can be further simplified, so tha t:  

Hav. MZD=hav. ZX - hay. P cos lat. cos dec.  



 

The procedure is as follows:  

1. Using the G.M.T., find the G.H.A. of the body observed from the Nautical Almanac, and 

thence the L.HA.  

2. Correct the sextant altitude to obtain the true altitude and thence the zenith distance.  

3.From the formula find the MZD.  

4. Apply the declination to the MZD to obtain the latitude of the point in the D.R. longitude 

through which the position line passes.  

5. Find the azimuth of the body by any convenient method, and thence the position line.  

6. Draw the position line on the chart, or state the position.  

Note  

Before deciding on the method to use, if the hour angle is small, it is advisable to verify that 

the ex-meridian method is appropriate. This can be found from a table in Norie's or Burton's, 

which gives the limits of time before and after meridian passage.  

Example 1. By an observation of the sun  

On 19th September, 1980, in D.R. position 45° 40' S. 52° 35' W., the sextant altitude of the 

sun's lower limb near the meridian was observed to be 41 ° 57·6'. Index error 2·2' off the arc. 

Height of eye 12·0 metres. A chronometer showed 04h 01 m 20s at the time. Find the 

direction of the position line and a position through which it passes.  

 

Note  

The fact that the sun is near the meridian means that the approximate local time can be taken 

as 1200.  

Approx. L.M.T.19th 1200  Chron.  04h01m20s  

Long. W.  0330  



Approx. G.M.T.19th1530  G.M.T.19th 16h01m20s  

G.H.A.16h 61°35·6'  Dec.  1°15·0'N.  

Increment  0° 20·0'  'd'  0·0'  

G.H.A.  61° 55·6'  Dec.  1°15·0'N.  

Long. W.  52° 35·0'  

L.H.A.  9° 20·6'  

Sext. alt.  41° 57·6'  0'-  

I.E.  +2.2'  L.H.A.9 20·6 log hav. J·82174  

  Lat. 45° 4O'log cos  1·84437  

Obs. alt.  41 ° 59.8'  Dec. e 15·0' log cos  1·99990  

Dip.  -6·1'   3.66601  

App. alt.  41° 53· 7'   0·00463  

Corr.  +14·9'  T.Z.X. 47° 51·4 nat. hav. 0·16451  

True alt.  4ZO 08·6'  M. Z.x. 47° 08·0' 0·15988  

T.Z.X.  47° 51·4'  

  Mer. zen. dist. 47° 08·3'  A 6'22+  

  Dec.  e15·0'N.  B  ·13+  

  Lat.  45° 53·3' S.  C  6·35+  

Az. N.12·7°W.  

Answer  

Position line runs 257·3%77·3° through position 45° 53·3' S. 52° 35'W.  

Ex-meridian tables  

There are certain approximations inherent in the ex-meridian method which may be avoided if 

the sight were worked by the Marcq St. Hilaire method. The ex-meridian method by haversine 

formula is therefore rarely used in practice, but may be encountered in Department of Trade 

examinations. The ex-meridian method however is still of practical importance as it may be 

used to reduce a sight much more rapidly than by Marcq St. Hilaire if ex-meridian  



 

tables are used. Examples of these may be found in nautical tables such as Nories' or Burton's.  

In both these commonly used tables the tabulation is in two parts, Table I and Table II. Table 

I gives a factor ( called A in Nories' and F in Burton's), which depends upon the latitude and 

the declination. The factor is extracted from Table I and used as an argument in Table II with 

the hour angle at the time of sight, to extract the 'reduction'. This is the amount by which the 

zenith distance at the time of the sight should be reduced to obtain the zenith distance at the 

time of meridian passage, assuming a stationary observer and a constant declination. The 

latitude is then found by the usual meridian observation formulae.  

Procedure  

1. Extract the G.H.A. from the almanac, apply longitude and hence find the L.H.A.  

2. Correct the sextant altitude and obtain the observed zenith distance.  

3. Enter Table I of the ex-meridian tables with D.R. latitude and declination and extract the 

factor (A or F). Take care to note whether latitude and declination are same name or opposite 

name and use the appropriate table.  

4. With the factor and the hour angle (L.H.A.), enter Table II and extract the reduction.  

5. Enter Table III of the ex-meridian tables with the reduction and the altitude and extract a 

second correction, which is a small correction to be subtracted from the reduction. In most 

cases this second correction is negligible.  

6. Subtract the reduction (with second correction applied if necessary), from the zenith 

distance at the time of observation to obtain the meridional zenith distance (M.Z.X.).  

7. Apply declination to the MZX to obtain latitude as for a meridian observation.  

Example (using Example 1 as worked by haversine method)  

From Example 1 L.H.A.=9° 20·6'. Deciination=P 15.0'N.  

D.R. Lat.=45° 40' S. Zenith distance=47° 51·4.  

From Table I (lat. and dec. contrary names)  

Factor=I·88 (interpolating to second decimal place).  

From Table II for hour angle 9° 20·6'  

 For factor ofl·O reduction  =23·2  

 For factor of 0·8 reduction  =18·6  

For factor of 0·08 reduction = 1·9  

reduction= 43·7  

From Table III second correction  = ·2  



reduction 43·5  

Zenith distance 47° 51·4'  

 Reduction  43·5'  

 M.Z.X.  47°07.9'  

 Declination  1 ° 15·0' N  

 Latitude  45° 52·9' S.  

Note  

The azimuth must be calculated as in the haversine method.  

Ex-meridian tables do not give the latitude, but only the latitude in which the position line 

cuts the D.R. longitude. The answer is therefore:  

position line runs 257·3%77·3° through 45° 52·9' S. 52° 35'W.  

EXERCISE 13A  

1. On 18th September, 1980, in D.R. position 49° OO'N. 35° 20' W., the sextant altitude of the 

sun's lower limb near the meridian was42°19·5'. Index errorl·2' off the arc. Height of eyelO·O 

metres. A chronometer showed 02h 40m 56s at the time and was correct on G.M.T. Find the 

direction of the position line and the latitude in which it cuts the D.R. longitude.  

2. On 19th September, 1980, in D.R. position 4P 28'N. 28° 40'W., the sextant altitude of the 

sun's upper limb was observed to be 49° 28' when near the meridian. Inoex error 0·6' off the 

arc. Height of eye 12·6 metres. A chronometer showed Olh 15m 59s and was correct on 

G.M.T. Find the direction of the position line and the latitude in which it cuts the D.R. 

longitude.  

3. On 19th December, 1980, in D.R. position 41° 04'N. 179° 30' E'1 the sextant altitude of the 

sun's lower limb when near the meridIan was 24° 39·0'. Index error 1·2' on the arc. Height of 

eye 11·0 metres. A chronometer which was 3m 20s slow on G.M.T. showed 11h 10m 41s at 

the time. Find the direction of the position line and the latitude in which it cuts the D.R. 

longitude.  

Example 2. By an observation of a star  

On 26th June, 1980, at ship, in D.R. position, latitude 34°40' N., longitude 40° 20' W., the 

sextant altitude of the star Arcturus 37 near the meridian during evening twilight was 74° 14· 

I', index error 0·8' off the .arc, height of eye 12·0 m. The chronometer, which was 1m 20s fast 

on G.M.T., showed IOh 55m 39s. Find the direction of the positIon line and the latitude in 

which it cuts the D.R. longitude.  



 

Approx. L.M.T. 26th 20m OOs  Chron.  22h ·55m 39.  

Long. W. 02m 41s  Error  - 1m 20.  

Approx. G.M.T. 26th 22m 41s  G.M.T. 26th 22h 54m 19.  

From N.A. 26th 22h G.H.A. 'Y' 245° 10·4' Arcturus  

 Incr.  13°37.0' S.H.A.* 146°18.5'  

  Dec.  19°17·3'N.  

G.H.A. 'Y' 258° 47·4' S.H.A.* 146°18.5'  

G.H.A.* 405°05·9'  

360  

G.H.A.* 45° 05·9' Long. W. 40°20·0'  

 L.H.A.  4° 45·9'  

Sext. alt.  74° 14·1'  P 4° 45·9' log hav.  3·23754  

I.E.  +0·8'  Lat. 34° 40·0' log cos 1.91512  

Obs. alt.  74°14.9'  Dec. 19°17·3' log cos 1·97491  

Dip.  -6·1'   3.12757  

App. alt.  74° 08·8'   0 00134  

Corr.  -0·3'  T.Z.X.15° 51·5' nat. 0:01,903  

True alt.  74°08·5'  M.Z.X.15°17.2'  0.01769  

T.Z.X.  15° 51·5'  

 M.Z.X.15°17·2'  A 8·30S.  

 Dec. 19°17.3'  B 4·21N.  

 Lat.  34° 34·5'N.  C 4·09S. Az. S.16·6°W.  

Answer  

Position line runs 286.6°/106.6° through 34° 34·5' N. 4QD 20' W.  

By ex-meridian tables.  

As above L.H.A.=4° 45·9', dec.=19° 17·3'N. D.R. lat.=34° 40' N. ZX=15° 51·5'.  

From Table I (lat. and dec. same names) Factor=5·75  



From Table II for hour angle 4° 45·9'  

 For factor of 5·0 reduction  =30·3  

 Forfactor of 0·7 reduction  = 4·2  

Forfactor of 0·05 reduction = 0·3  

 reduction  =34·8  

From Table III second correction  =-0·6  

 reduction  =34·2  

Zenith distance 15° 51·5'  

 Reduction  34·2'  

 M.Z.X.  15°17.3'  

 Declination  19°17·3'  

 Latitude  34° 34·6'  

Answer  

Position line runs 286·6°/1,06·6° through 34° 34·6' N. 40° 20' W.  

 

EXERCISE 13B By an observation of a star  

1. On 18th December, 1980, at ship, at about 0625 in D.R. position, latitude 45° 10'N., 

longitude 136° 02'W., the sextant altitude of the star Denebola 28 was 59° 02·5' , index 

error 0·8' on the are, height of eye 11·0 m., when the chronometer, which was correct 

on G.M.T., showed 3h 31m 16s. Find the direction of the position line and the latitude 

in which it cuts the D.R. longitude.  



 

2. In D.R. position, latitude 36°1O'N., longitude 40
0
15'W., on 26th June, 1980, an observation 

of the star Fomalhaut 56 near the meridian gave a sextant altitude of 23° 26·4', index error 

0·4' off the are, height of eye 12·0 m. G.M. T. 06h 41m 03s. Find the direction of the posItion 

line and the latitude in which it cuts the D.R. longitude.  

3. On 19th September, 1980, at ship, in D.R. latitude 25° 44' N., longitude 144°25' E., the 

observed altitude of the star Rigel 11 near the meridian was 55° 28·3', height of eye 10·5 m., 

at 19h 26m 02s G.M.T. Find the direction of the position line and the latitude in which it cuts 

the D.R. longitude.  

4. At ship, on 18th December, 1980, in D.R. position, latitude 30° 10'S., longitude 137° 

50'W., the sextant altitude of the star Alphard 25 near the meridian was 67° 49'1', index error 

0·8' on the are, height of eye 15·4 m. when the chronometer, which was 1m lOs fast on 

G.M.T:, indicated 13h 12m 45s. Find the direction of the position line and the latitude in 

which it cuts the D.R. longitude.  

5. On 18th September, 1980, at ship, in estimated position, latitude 18° 40' S., longitude 120° 

25' W., at 13h 15m 28s G.M.T., the sextant altitude of the star Capella 12 near the meridian 

was 25° 29·1', index error 1·4' on the are, height of eye 17·7 m. Find the direction of the 

position line and the latitude in which it cuts the D.R. longitude.  

CHAPTER 14  

LATITUDE BY THE POLE STAR  

Reference has already been made to the fact that the altitude of the Celestial Pole is equal to 

the latitude of the observer. If the Celestial Pole could be marked in some way, the latitude of 

an observer could be obtained at any time simply by finding the altitude.  

The star Polaris has a declination in excess of 89° N., so that it moves around the Celestial 

Pole, describing a small circle with an angular radius of less than 1°. As it is so near, it is 

called the Pole Star, and the altitude can be adjusted by small corrections so that the latitude 

of the observer can be derived from it.  

 



It is apparent from figure 14.1, which represents the daily path of the star about the Celestial 

Pole, that if the star is at position  



 

x , the angular distance P Xl must be subtracted from the altitude !lxl to obtain the latitude. 

Similarly if the star is at position X2' then the polar distance must be added to the altitude. 

There will be two instants during the star's daily motion around the pole when the altitude of 

the pole star will be the same as that of the pole. At all other times the correction to apply will 

be the arc P Y, in figure 14.l(b), and this may be additive as shown, or negative. The solution 

to the triangle XP Y for .p Y is tabulated in the 'Pole Star Tables' in the Nautical Almanac.  

The solution is arranged in three separate quantities, rP, aI, and a
2
• To each is added a 

constant. The sum of the three constants is I degree. This is done to ensure that all values of 

the three quantities are positive. The I degree is subtracted from the final result.  

Because the correction depends upon the L.H.A., and because the S.H.A. can be considered 

constant, the separate corrections are tabulated in the Nautical Almanac for values of L.H.A. 

'Y'.  

i.e.: L.H.A. * = L.H.A. 'Y' + a constant.  

The procedure is as follows:  

I. Obtain the G.M.T. and then find the L.H.A. 'Y' for the time of observation.  

i.e. L:H.A. 'Y' = G.H.A. 'Y' + E. Long. - W. Long.  

2. Correct the sextant altitude for index error, dip and star's total correction, to obtain the true 

altitude.  

3. Using the L.H.A. 'Y', from the Pole Star Tables, find the column appropriate to its value. 

The three corrections and the azimuth will be found in the same column reading in sections 

down the page.  

4. Find the corrections ~, ~ and ~ and add these to the true altitude and subtract I v from the 

total to obtain the observer's latitude.  

5. From the tabulated azimuths find the bearing of the star. The position line will then lie at 

right angles to the bearing, passing through a position in the observed latitude and the D.R. 

longitude.  

Note  

It will be necessary to interpolate for correction cP, but unnecessary for corrections d and ci.  

Example  

18th September, 1980,in D.R. position 37° 58' N., 52° 30' E., at Olh 30m 24s G.M.T., an 

observation of Polaris gave sextant altitude 38° 40·4', i.e. 2·2' off the are, height of eye 11·7 

m. Find the latitude and the direction of the position line.  

G.M.T. 18th Olh 30m 24s  

G.H.A. 'Y' 12° 06·3'  

Incr.  7° 37·2'  



G.H.A.'Y'  19°43·5'  

Long. E.  52° 30,0'  

L.H.A.'Y'  72°13·5'  

Sext. alt.  38° 40,4'  

I.E.  + 2·2'  

Obs. alt.  38° 42·6'  

Dip  - 6·0'  

App. alt.  38° 36,6'  

Tot. corr. - 1·2'  

 T. alt.  38° 35,4'  

 ~  0° 20·5'  

 Q}  0·5'  

 ~  0·3'  

 Total  38° 56·7'  

_ 1°  

Latitude  37° 56·7'N.  

 



T. Az. 359·3  

P.L. 269·3-089·3  

P.L. trends 269·3T.-089·3° T. through latitude 37° 56·7'N., long. 52° 30' E.  

EXERCISE 14A  

L 8th January, 1980, at 1.9h 45m 22s G.M.T. in D.R. position 49° 10' N., 36° 20,4' W., the 

sextant altitude of Polaris was 50° 09-4', index error 1·6' off the are, height of eye 12·8 m. 

Find the latitude and the direction of the position line.  

2. 20th September, 1980, in D.R. lat. 35° 25'N., long. 36° 25' W., at 21h 15m 40s G.M.T., the 

sextant altitude of Polaris was 35
c
 15·8', index error 0·8' on the are, height of eye 11·5 m. 

Find the latitude and position line.  



 

3. 26th June, 1.980, at ship in D.R. lat. 47°15'N., long. 158° 40' W., the sextant altitude of 

Polaris was 47° 42', index error 1.·4' off the are, height of eye 6·0 m., at 13h 26m 44s G.M.T. 

Find the latitude and position line.  

4. 4th January, 1.980, p.m., at ship in D.R. position, lat. 22° 40' N., long. 163°20'W. 

at04h58m20sG.M.T., the sextant altitude of Polaris was 23° 40·4', index error 0·8' on the are, 

height of eye 13·2 m. Find the latitude and position line.  

5. On 30th September, 1.980, at about 0520, at ship in D.R. lat. 50° 40' N., long. 162° 10·8' E. 

when the chronometer, which was 2m 08s slow on G.M.T., showed 6h 13m 17s, the sextant 

altitude of Polaris was 5r 10·8', index error 1.·2' off the are, height of eye 14·0m. Find the 

latitude and position line.  

6. 19th September, 1980, in D.R. position, lat. 32° 05'N., long. 31° 20' E., at 03h 00m 21s 

G.M.T., the sextant altitude of Polaris was 32° 44,2', index error 1,6' off the arc, height of eye 

13-2 m. Find the latitude and position line.  

7. 26th June, 1.980, in long. 57° 02'W. at 23h 51m 14s G.M.T., the sextant altitude 0 the star 

Polaris was 40° 35·4' index error 0·6' ~n the are, height of eye 10·5 m. Find the latitude and 

the position hne.  

CHAPTER 15  

GREAT CIRCLE SAILING  

This method of sailing between two positions on the earth's surface is used over long ocean 

passages. Its use involves a knowledge of spherical trigonOIpetry, and this knowledge is 

assumed. If necessary a text on this subject should be consulted, for the use of the spherical 

haversine formula, and Napier's rules for the solution of right-angled and quadrantal spherical 

triangles.  

Between any two positions on the surface of a sphere, unless the two positions are at opposite 

ends of a diameter, there is one only great circle that can be drawn through the two positions. 

The track along the shorter arc of this great circle is the shortest distance along the surface of 

the sphere between those two pasitions.  

The main disadvantage in steaming such a track along the surface of the earth is that the 

course is constantly changing, and to attempt to make good a great circle a ship must steer a 

series of short mercator courses which correspond approximately to the curve of the great 

circle. The course must be altered at frequent intervals. The problem becomes initially to find 

the distance over a great circle track and then to find the course at the departur~ point, and the 

course at a series of positions along the track. These positions become the alter course 

positions.  

To solve this problem a spherical triangle is formed by the  

intersection of the three great circles: (i) The great circle track,  

(ii) The meridian through the departure point, (iii) The meridian through the arrival point.  

Thus the three points of the triangle are the two positions sailed between and one of the poles 

of the earth, usually the nearest pole.  



 



 

In the figure P A = Colat. of A = 90° -lat. A PB = Colat. of B = 90°-lat. B  

L P = D. long. between the two positions WE = Equator  

Thus using the haversine formula:  

Hav. p=(hav. P. sin. PA. sin. PB)+hav. (PA-PB) Thus hav. dist. =(hav. d. long. coso lat. A. 

coso lat. B)+  

hav. d. la The initial course is then found from angle A :  

Hav. A = {hav. PB-hav. (AB-PA)} x cosec. ABcosec AP The final.course may be found by 

calculating angle B.  

The vertex of a great circle  

This is the point on the great circle which is closest to the poll Thus every great circle will 

have a northerly vertex and a souther] vertex.  

To find the position of the vertex  

 

In figure 15.2 let V be the vertex of the great circle through A and B. At the vertex the great 

circle runs in a direction 090° {270° . Thus it cuts the meridian through the vertex at right 

angles.  

Thus LPVA=LPVB=90°.  

Solving the right-angled triangle by Napier's rules for PV and LP will give the latitude of the 

vertex and the d. long. between the vertex and position A respectively.  

 Given LA  =initial course  

 PA  =colat. of A  

Sin. PV =sin. PA. sin. LA  

and  Cot. LP =cos. PA. tan. LA  

Having found the position of the vertex, a series of positions along the track can be found and 

the course of the great circle at each of these positions calculated, thus:  

Assume longitudes at regular intervals of d. long. and solve a triangle P V X in figure 15.3.  



 

Where X is the position where the meridian of the assumed longitude cuts the great circle 

track.  

Thus given angle LP =d. long. between assumed longitude and the vertex  

 PV  =colat. of the vertex  

Cot. PX =cos. <Po cot. PV and COSo LX =coS. PV. sin. LP  

Solving for PX and LX will give the latitude corresponding to the assumed longitude, and the 

great circle course at that point respectively.  

This can be done for a number of assumed longitudes as required, the working being tabulated 

as in the following example.  

Note  

The vertex of the great circle need not be between the two given positions. If it is not, then 

either the angle at A or that at B will be greater than 90°, and the course will lie in the same 

quadrant between the two positions. If the vertex lies between the two positions then the 

course will change quadrants at the vertex. After solving the angles at the positions then the 

course must be found by inspecting the triangle.  

 



 

J£xample  

Find the total distance, the initial course, of the great circle track between:  

 A 41° 00' S.  175° 00' E.  

 B 33° 00' S.  71 ° 30' w.  

Find also the latitudes at which the meridians of 90° W., 110° W., 130° W., 150° W., and 

170° W. cut the great circle track, and the course at these points.  

 

 A  41 ° 00' S. 175° 00' E.  

 B  33° 00' S.  71° 30' W.  

 d.lat.  8° 00'  113° 30'  =d.long.= LP  

Hav. dist.=(hav. d. long. coso lat. A. coso lat. B)+hav. d. lat. Hav. dist.=(hav. 113° 30'. coso 

41°. coso 33°)+hav. 8°  

 Number  Log  

 hay. d. long.  1·84471  

 coso 33°  1 ·92359  

 cos.41°  1·87778  

Dist.=83° 58·6'  

 = 5038·6 miles  1 ·64608  

0·44267  

 nat. hay. 8°  0·00487  

0·44754  

To find initial course  

Hav. A={hav. PB-hav. (AB-PA)} cosec. AB cosec. PA Hav. A = (hav. 57°-hav. 34° 58·6') 

cosec. 83° 58·6'. cosec. 49°  



 Number   0  

 nat. hay. 57°  0·22768  

34
0
 58·6' 0·09031  

 A=50° 39·5'  0·13737  

Course=S. 50·5° E.  

1·13790  

 cosec. 49°  0·12222  

 cosec. 83° 58·6'  0·00240  

1·26252  

To find the position of the vertex  

In triangle APV  

Sin. PV=sin. LA. sin. PA  

 =sin. 50° 39·5'. sin. 49°  Number  Log  

PV  = 35° 42·6'  

Lat. of vertex = 54° 17·4' S.  Sin. 50° 39·5' 1·88839  

 Sin. 49°  f.87778  

1·76617  

And cot. LP=cos. AP. Tan LA  

  =cos. 49°. tan. 50° 36·5'  Number  Log  

 P  =51° 22·7'  

 Long. of vertex = 133° 37·3' W.  Cos.49°  1·81694  

Tan. 50° 36·5' 0·08557  

1·90251  

To find the latitude where the track cuts the given longitudes and the course at those points  

In VPX Cot. PX=cos. LP cot. PV  



 

 

Answer  

Position on g.c.  Course  

48° 14'5' S.  
170° 

W.  
S. 61.25° E.  

53° 09·5' S.  
150° 

W.  
S. 76,75° E.  

54° 14·2' S.  
130° 

W.  
N. 87° E.  

51° 53·0' S.  
110° 

W.  
N. 71° E.  

45° 12·0' S.  90° W.  N. 56° E.  

Example 2  

Find the distance, and the initial course and the position of the  

vertex between the following positions.  

 A  48° 30·0' N.  5° 10'0' W.  

 B  22° 00·0' S.  40° 40'0' W.  

 d.lat. 70° 30·0' S.  35° 30' W. =d. long.  

Hav. dist.={hav. 35° 30'. coso 48° 30'. coso 22°)+hav. 70° 30' Dist. =77° 18·8' Number Log 

=4638·8'  

 =4638·8 miles  hay. 35° 30'  2·96821  

  coso 48° 30'  1·82126  

  cos.22°  1·96717  

2·75664  



Figure will be  0,05710  

 similar to fig. 15.4  0,33310  

O' 39020  

Hav. LA = {hay. PB-hav. (AB-AP)}. cosec. AB. cosec. AP = (hav. 1I2°-hav. 35° 48'8') cosec. 

77° 18·8'  

cosec 41 ° 30'  

LA = 146° 31'  Number  Log  

Course=S. 33° 29' W.  

 hay. 112°  0·68730  

 hay. 35° 48·8'  0,09453  

0·59277 1·77289  

 cosec. 77° 18·8'  0,01074  

 cosec. 41 ° 30'  0·17874  

1·96237  

To find the position of the vertex  

In triangle PVA  

 LA  =33° 29'  

PA  =41° 30'  

and by Napier's rules  

Sin. PV =sin. LA. sin. PA  

 =sin. 33° 29'. sin. 41 ° 30'  Number  Log  

PV  =21° 26·6'=co-lat. of vertex ----------  

 Latitude=68° 33·4' N.  Sin. 33° 29'  1·74170  

  Sin. 41 ° 30'  r·82126  

1·56296  

and Coso PA=cot. LP. cot. LA  

 Cot. LP=cos. PA. tan. LA  Number  Log  

=cos. 41° 30'. tan. 33° 29'  

 L P  = 63° 38·7'  Coso 41 ° 30'  1·87446  



   Tan. 33° 29'  1·82051  

1·69497 Longitude of vertex = 5° 10·0' W.  

63° 38·7' E.  

58° 28'7' E.  

Position of vertex 68° 33'4' N. 58° 28-7' E.  



 

EXERCISE 15A  

1. Find the initial course, the final course and the distance by great circle sailing from:  

 A 55° 25' N.  7° 12' W.  

to B 51° 12' N. 56° 10' W.  

2. Find the great circle distance and the initial course, and the position of the vertex of the 

great circle from:  

A 34° 55' S. 56° 10' W. to B 33° 55' S. 18° 25' E.  

3. Find the saving in distance by steaming a great circle track as opposed to a mercator track 

from:  

A 43° 36' S. 146° 02' E. to B 26° 12' S. 34° ()()' E.  

4. Find the distance, the initial course, and the positions where the meridians of 140° W., 160° 

W., 180°, 160° E. cut the track, and the courses at these positions, on a great circle from:  

A 48° 24' N. 124° 44' W. to B 34° 50' N. 139° 50' E.  

Composite great circle sailing  

If the vertex of a great circle lies between the two positions involved, then the great circle 

track will take the vessel into a higher latitude than either of the two positions. In some 

circumstances this may not be desirable. Due regard must be had to the weather conditions 

likely to be encountered.  

In a composite great circle sailing a limit is put on the latitude to which a vessel goes, the 

limit being decided by the navigator. An example of the circumstances in which such a track 

might be employed is the voyage between Cape of Good Hope and Australia, in which case 

the great circle would reach very high southerly la ti tudes.  

The track now becomes a great circle track from the departure position to the parallel of the 

limiting latitude, a parallel sailing along this parallel, and then another great circle track from 

the limiting latitude to the destination position.  

The great circle to be taken from the departure position is that great circle which has its vertex 

in the limiting latitude. It will therefore form a right angle with the meridian through the 

vertex, and all triangles can be solved with Napier's rules. The same applies to the track from 

the limiting latitude to the arrival position.  

Figure 15.6 represents such a track.  



 

Description of figure:  

 A  = Departure position  

 B  = Arrival position  

AP = Co-lat. of A BP = Co-lat. of B  

!') = Vertex of great circle A!J.  

 v~  = Vertex of great circle BV2  

~ V2 = Parallel of the. limiting latitude  

VI P = V2 P = Co-lat. of limiting latitude  

To find total· distance and initial course  

The right-angled triangle A VI P can be solved using AP and VI P, to find A VI :  

Coso AVI = coso AP. sec. VIP to find LA:  

Sin. LA = sin. VI P. cosec. AP to find LP:  

Coso LP = tan. VIP. cot. AP  

The right-angled triangle BV1..P can be solved using V2P, and BP, with the same formulae, to 

nnd v: B, and LP.  

VI V2 can then be found by the para1lel sailing formula; dep. (dist.) = d. long. x coso latitude  

The d. long. being that between VI and V2 which is found by d. long. between A and B- LAP 

VI- LBPV2  

The problem of finding a series of positions along the two great circles A VI and V2B, and the 

course of those positions is solved in the same way as in the normal great circle sailing 

problem.  



 

Example  

Find the initial course and the total distance along a composite great circle track from:  

 A 35° 00' S.  20° 00' E.  

to B 43° 40' S. 146° 50' E.  

It is required not to go south of latitude 48°. Give also the longitude of each vertex.  

A 35° 00·0' S. 20° 00·0' E. B 43° 40·0' S. 146° 50·0' E.  

126° 50·0' =d. long.  

 

In triangle AP J( By Napier's rules  

 Coso A J( = coso AP. sec. !(P  Number  Log  

  = coso 55° sec. 42  ---------  

 A J(  = 39° 29'  Coso 55°  1·75859  

  = 2369'  Sec. 42°  0·12893  

1·88752  

Sin. LA = sin. ViP cosec. AP  Sin. 42°  1·82551  

 = sin. 4r cosec. 55°  Cosec. 55°  0,08664  

LA  = 54° 46,3'  

1·91215  

 Coso P = cot. AP tan. T{P  Cot. 55°  1·84523  

 = cot. 55° tan. 42°  Tan. 42°  1·95444  

L P  = 50° 54,9'  

1·79967  



In triangle BPV2  

Coso BV2 = coso 46° 20' sec. 42°  

 BV2  = 21° 42'  Number  Log  

  = 1302'  --------  

Coso 46° 20' 1·83914 Sec. 42° 0·12893  

1-96807  

 Coso LP = cot. 46° 20' tan. 42°  Cot. 46° 20' 1·97978  

 LP = 30° 44·8'  Tan. 42° 1·95444  

1·93422 Thus in triangle T{V2 P  

 P  = 126° 50' - 50° 54·9'- 30° 44,8'  

= 45° 10,3' = 2710,3'  

 and J(V2 = d. long. x coso lat.  Number  Log  

= 2710·3 x coso 48°  

 = 1813·5  2710·3  3·43302  

  Coso 48°  1·82551  

3·25853 Total distance =A VI + VI V2+ V2B  

=2369+ 1813-5+ 1302  

= 5484· 5 miles  

Initial course = L VIAP=S. 54° 46·3' E.  

 Long. of VI  =20° 00' E.+ LAPVI  

=70° 54·9' E.  

 Long. of V2  = 146° 50' E.- L V2PB  

= 116° 05·2' E.  

EXERCISE 15B  

1. A composite great circle track from Montevideo (34° 55' S. 56° 10' W.) to Cape Town (33° 

55' S. 18° 25' E.) is required with a limiting latitude of 38° S. Find the total distance to steam 

and the initial course.  

2. Find the total distance, the initial course, and the longitudes where the track reaches and 

leaves the limiting latitude, on the composite great circle from:  

 A A 26° 12' S.  34° 00' E.  



to B 43° 36' S. 146° 02' E. Limiting latitude 45° S.  



 

3. Find the total distance, and initial course on the composite great circle, with limiting 

latitude 49° S., from:  

 A 45° 30' S.  71° 37' W.  

to B 46° 40' S. 168° 20' E.  

SPECIMEN PAPERS  

The following papers are typical of the practical navigation papers set for Department of 

Trade Class IV certificates. The time allowed is 2 hours and all questions must be attempted.  

PAPER 1  

1. From the following information find the direction of the position line and a position 

through which the position line passes.  

Time at ship 0805 on 20th  D.R. 5° 58'S. 126°03'E.  

September 1980 Sextant altitude of Saturn 40° 49·5'  

Index error 1·5' off the arc  Height of eye 14·5 metres  

Chronometer showed Oh 27m 38s.  

Chron. error nil.  

2. Find the G.M.T. and L.M.T. of meridian passage of the star Vega, and the setting to put on 

a sextant to observe this passage.  

Date at ship 19th September  D.R.13° 00' S.138° 55' E.  

1980  

Index errort·8' off the arc  Height of eye 17·0 metres  

3. Find by mercator sailing the true course and distance from 48° 11' S.169° 50' E. to 23° 36' 

S.16e 42' W.  

4. From the following information find the compass error and the deviation for the ship's 

head.  

Time at ship 1004 on 18th  D.R. 55° 08'N. 5°13' E.  

December 1980  

Sun bore 162° by compass Chronometer showed IOh 2m 17s error 1m 40s fast on G.M.T.  

Variation 7°W.  



 

PAPER 2  

1. From the folIowing information find the direction of the position line and a position 

through which it passes:  

Time at ship 1930 on 26th June 1980 D.R.33°05'N.131°18'W. Sextant altitude of Regulus  

35° 54·4'  

Index error1·0' on the arc  Height ofeye16·7 metres  

Chronometer showed 4h 12m 13s and was fast on G.M.T. by1m 3s  

2. From the folIowing information find the direction of the position line and the latitude in 

which it cuts the D.R. longitude.  

Time at ship 1210 on 7th January D.R. 26°17'N. 48°U'W. 1980  

Sextant altitude of sun's lower limb near the meridian 41° 16·9'  

Index error 2·0' on the arc  Height of eye 13 metres  

Chronometer showed 3h 18m 06s error 7m 14s fast on G.M.T.  

3. From the folIowing observation of Polaris during evening twilight find the latitude:  

Date at ship 27th June 1980  D.R. 21° 03' N.153°16' W.  

Sextant altitude 20° 15'  

Index error 2·0' on the arc  Height of eye 11·0 metres  

Chronometer showed 5h 27m 42s.  

Error 3m 29s slow on G.M.T.  

4. From the following sights find the position of the ship at the time of the second 

observation:  

E.P. 40° 12'S. 94° 30' E. Observed longitude 94° 33'E. Az. 079°T. Run 3·5 hours at 16 knots. 

Course 352°T. Current 260
o
T. at2 knots throughout. Using E.P. run up intercept 3·0' towards 

Az. 012°T.  

PAPER 3  

1. From the folIowing information find the direction of the position line and a position 

through which it passes:  

 Time at ship 1429 on 2nd October  D.R. 47°30'N. 45°20'W.  

1980  

Sextant altitude of sun's lower limb 27° 41·3'  



 Index error 2 ·0' on the arc  Height of eye 6·0 metres  

Chronometer showed 5h 31m 13s.  

Error 1m 03s fast on G.M.T.  

2. From the folIowing meridian observation find the latitude and state the direction of the 

position line:  

Date at ship 9th January 1980  D.R. 46°28' S.136°30'E.  

Sextant altitude moon's lower limb  

 40°15.7'  Height of eye 16·5 metres  

Index error nil  

3. Find by traverse table the vessel's position at the end of the  

fourth course.  

 Initial position 46°45' N  45° 00' W.  

First course 202°T. distance 85 miles Second course 272° T distance 63 miles Third course 

337°T. distance 40 miles Fourth course 05OOT. distance 36 miles  

4. From the following information find the error of the compass and the deviation for the 

ship's head:  

Date at ship1.st October 1.980  D.R.1oo 50'N.  

Sun bore 273° by compass at setting  157° 17' W.  

Variation 4°E.  

PAPER 4  

1.. From the following information find the direction of the position line and a position 

through which it passes:  

 Time at ship 0850 on 9th January 1.980 D.R. 42°lO'N.  

 Sextant altitude moon's upper 11mb  500 05' W.  

28°09·6'  

 Index error 1.·0' on the arc  Height of eye 8·2 metres  

Chronometer showed 11h 59m 015.  

Error Om 48s slow on G.M.T.  

2. From the following observation find the direction of the position line and the latitude in 

which it cuts the D.R. longitude:  

 Time at ship 0508 on 19th September D.R. 38° 40'S.  



 1.980  138° 46'E.  

Sextant altitude of Bellatrix near the meridian 44° 50'  

 Index error 3·0' off the arc  Height of eye 10 metres  

Chronometer showed 8h 12m 1.9s.  

Error 2m 18s fast on G.M.T.  

3. From the following observation find the latitude and state the direction ofthe position line:  

 Date at ship 20th September 1.980  D.R. 26° OO'N. 116°  

 Sextant altitude ofthe sun's lower limb  37' W.  

64°45'  

 Index error1.·5'on the arc  Ht. of eye17·9 metres  



 

4. From the following sights find the position of the ship at the time of the second 

observation:  

Time 1300; E.P. 23° 57'N. 92°07'W.; Intercept 3·0' Towards, Az. 287°T.; Run 95 miles; 

Course 147°T.  

Time 1830; Using E.P. run up, intercept 5·0' Away, Az. 030
0
T.  

PAPER 5  

L On 18th December, 1980, in D.R. position 29° 15' S. 134° 18' E. at approximatelyl950 

L.M.T., the sextant altitude of the star Aldebaran was observed to be 28° 4l·0' . Index error 

l·O' on the arc. Height of eye 13·8 metres. A chronometer which was 1m O9s slow on G.M.T. 

showed lOh 57m 40s at the time. Find the direction of the position line and a position through 

which it passes.  

2. On 8th January, 1980, in D.R. position 30° 58' S.15lo 46'W., an observation of the moon's 

lower limb when on the meridian gave sextant altitude 55° 04·4'. Index error 0·9' off the arc. 

Height of eye 15·0 metres. Find the latitude and state the direction ofthe position line.  

3. A vessel steams at 15·5 knots for 24 hours on a course of 064~T. Ifth~ departure position 

is 20° 18·4' S, 175° 50·0'W., find the position arrIved at.  

4. An observation in D.R. position 32° 30'N. 32°15' W. gave a longitude of 32° 08' W. when 

worked by longitude by chronometer. Bearing of body' observed was 0600T. The vessel then 

steamed 070
0
T. for 40 mdes when a meridian observation gave a latitude of 32° 46·0' N. Find 

the vessel's position at the time of the meridian observation.  

PAPER 6  

1. From the following observation find the direction of the position line and the longitude in 

which it cuts the D.R. latitude:  

Approximate time at ship 0840 on 28th September, 198O. D.R. posltton30 40 N.1.75 18 E.  

Sextant altitude sun's lower limb, 33° 35·0.  

Index error l·0' off the arc. Height of eye 10·3 metres.  

Chronometer 08h 50m 05s, correct on G.M.T.  

2. From the following meridian observation find the latitude and state the direction of the 

position line.  

 Date at ship 6th January, 1980.  D.R. long. 96° 35' W.  

Sextant altitude sun's upper limb bearing north, 6l 25·0'.  

 Index error 104' on the arc  Height of eye 11·5 m  

 



3. From the following observation of Polaris find the latitude and the direction of the position 

line:  

Date at ship 27th June, 1980  Approx. L.M. T. 0500  

D.R. positton47°15'N125°40'W.  

Sextant altitude 47° 52'  I. E.l·4' off the arc  

Height of eye 6·l metres Chronometer O1h 20m 44s  

error nil  

4. From the following data find the position of the ship at the time of the third observation;  

Course 07J.OT., speed 20 knots. D.R. 42°11.' S.16el7'E.  

Time 1.73l, star A using D.R. given, intercept 5·8' Towards Az. 026° T.  

Time l737, star Busing D.R. given, intercept 2·9' Away, Az.  

272°T.  

Time l746, star C using D.R. given, intercept l·7' Towards, Az.  

3l9°T.  



 

ANSWERS 
Exercise lA  

 I. 425' N. 709' W.  2. 910' N. 635' E.  3. 930' S. 741' W.  

 4. 2026' N. 522' E.  5. 741' N. 1278' W.  6. 1005' S. 300' E.  

 7. 995' N. 3712' W.  8. 2910' N. 4425' E.  9. 1508' N. 8226' W.  

10. 2983' N. 3516' E.  

Exercise 1B  

 I. 2° 46' W.  2. 12° 24' N. 165° 34' W.  

 3. 43° 37' N. 17° 46' E.  4. 42° 08·2' N. 34° 14,4' W.  

5. 17° 45·1' S. 170° 59'5' E.  

Exercise 2A  

 I. 15° E.  2. 19° E.  3. 33° W.  4. 30° W.  5. 14° 

E.  

 6. 15° W.  7. 17" W.  8. Nil.  9. 55° W.  10. 

38° E.  

Exercise 2B  

 I. 207"  2. 351°  3. 345°  4. 283°  5. 022°  

 6. 318°  7. 106°  8. 204°  9. 096°  10. 195°  

Exercise 2C  

 I. 203°  2.021°  3. 187° 4. 199°  5. 359°  

6. 087°  7. 118°  8. 178° 9. 319°  10. 198°  

Exercise 2D 
 I. 24° E.  2. 9° E.  3. 3° E.  4. 4° W.  5. 2° 

W.  

 6.5° E.  7. 10° E.  8. 16° E.  9. 6° E.  10. 5° W.  

Exercise 2E  

 I. 2° W.  2. 6° E.  3. 4° E.  4. 1° W.  5. 7° 

W.  

6. 8° W.  7. 5° E.  8. 3° W.  9. 2° E.  10. 12° W.  

II. 15° W.  12. 7° E.  13.25° W.  14.4° W.  15. 5° W.  

Exercise 2F  

 I. 6° E., 20° W.  2. 217°, 5° E.  3. 284°,262°  4. 5° 

W., 15° E.  

5. 245°,230°  6. 172°, 12° E.  7. 346°,348°  8. 

280°,275°  

9. 3° E., 25° W.  10. 201°,175°  11. Nil., 42° E.  12. 2° 

W., Nil.  

Exercise 2G  

1. 1181f2°C.  2. O41.1f.oC.  3. 35OOC.  4. 2431f4"C.  

5. 163
3
/.

0
C.  

Exercise H  
1. 049"  2. 121 °  3. 259"  4. 322°  5. 1050  

6. 107"  7. 013°  8. 178°  9. 2400  10. 2500  
 

 

 

 

ANSWERS 

Exercise 21 

1. 152°19·6 knots   2. 295112°13·36 knots  3. 291"2·1. knots  

4. 343°T.   5. 177"14·2 knots  

Exercise 4A 

 I. Lat.41°24·6'N.orS.   2. Lat.70031·9'N.orS.  

3. D. long. 9° 22' E. or W.   4. Dist. 348-5'  

5. Lat. 56° 26·75' N.   6. Lat. 31° 42' N., long. 23° 07·8' W.  

7. Lat. 50
U
 20·1' N. or S.   8. Angle at pole 6° 15·1'  

9. Lat. 48° 1l'3' N.  10. Lat. 39° 00' N., long. 50° 19-4' W.  

Exercise 4B 

 I. Angle at pole II ° 08,9'   2. Dist. 44,06'  

3. Lat. A 51° 19·1' N.   4. Rate 574,5 knots  



Lat. B 28° 57,3' N.  

5. D. long. 6° 02·2'   6. Dist. 594·9'  

7. Clocks advanced 20m 23s   8. Lats. 53° 07,8' N., 25° 50,5' S.,  

d. lat. 78° 58· 3'   

9. Lat. 44° 25' N. or S.   10. Speed 9,77 knots  

II. D. lat. 29° 49· 3', dist. 1789,3'  12. Set 090° T., drift 32· 3'  

Exercise 4C 

1. CourseN. 63° 53'W. Distante259miles    2. 39°31·S'NI66°11·3'W.  

3. Course S. 59° 46·S'E. Distance 2620·2 miles   4. 35°04·7S' S.176°04·S' W  

5. Course S. 63°19·3' W. Distance 6514·6 miles  

Exercise 4D 

1. (a) 848,9, (b) 1862,0, (c) 2244,1, (d) 3962·8  

2. D. lat. 1909' S., D.M.P. 1927'1, d. long. 1l28' W., course S. 30° 20,6' W., dist. 2212'  

3. D. lat. 1795' S" D.M.P. 2006,5, d. long. 506' W., course S. 14° 09·2' W., dist. 1851·2'  

4. D. lat. 2943' S., D.M.P. 3171,7, d. long. 5635' E., course S. 60° 37,6' E., dist. 6000'  

5. D. lat. 649,5' S., D.M.P. 708,9', d. long. 409,3' W., lat. 18° 40-5' N., long. 155° 30,7' E.  

6. D. lat. 1296·3' N., D.M.P. 1295·2', d. long. 396' E., lat. Ilo 24·2' N., dist. 1355-3'  

7. (I) D. lat. 565·7' S., D.M.P. 581,89, d.long. 581·89' W. (2) D. lat. 565,7' S., D.M.P. 617,42, d. long. 

617-42' E.  

Lat. 28° 51·4' S., long. 0° 35·5' E.  

8. D. lat. 781·8' N., D.M.P. 873·3, d. long. 1872-9 E., lat. 33° l3-8' N., long. 150° 07·1' W.  

9. D. lat. 1780' S., D.M.P. 1814,6, d. long. 1978' E., course S. 47° 28' E., dist. 2633'  

10. D. lat. 343' S., D.M.P. 413,1, d. long. 995' E., course S. 67° 27·1' E., dist. 894·5'  

Exercise 4E 

1. 41° 24·0'N. 27°41·5'W.  2. N.42°S0·3'E.(043°),2011·5miles  

3. S. 21°03·6'E. (159"), 37S·1 miles  4. N. 29"16·2 W. 3303/.0), 233·8 miles  

 5. 54° 52·4'N. 5°15·7' E.  6. 4So 56·8' N. 9" SO·S' W.  

 7. N. 8° 54·6' E. (009°), 404·9 miles  8. SOOO3-1' N.14°40·9' W.  

 9.58°19·0'N.l°11·0'E.  10. S7"50·0'N.1"02·4'E.  

Exercise 5A 

     1. 215-7' 100·6'  2. 327·9' 57,8'  3. 386·9' 324·6'  

 4. 73·2' 201-1'  5. 103,5' 142-4'  6. 80,8' 191·2'  

 7. 241·6' 456·0'  8. 37" 348·2'  9; N. 24° E. 490·0'  

 10. S. 33° W. 421·0'  II. N. 18° E. 46,9'  12. S. 36,5° W. 388-5'  

 13. N. 50° W. 480·0'  14. S. 24° E. 936,0  15. 1230' 995·1'  

Exercise 5B 

  I. 552'  2. 319·6' 3. 333-7'  4. 250,7'  5. 391·0'  

  6. 1395·0'  7. 478-5' 8. 406-7'  9. 470-7'  10. 408·9'  

Exercise 5C 

 I. 199-5'  2. 234·0'  3. 32·49'  4. 34·08'  5. 450,6'  

 6. 36·26'  7. 416·8'  8. 59·98'  9. 204·6'  10. 314·2'  

Exercise 5D 

 D. lat.  D. long.  M. lat.  Dep.  Course  Dist.  

  1. 590·0' S.  590·0' W.  45·75° N.  411·7  S. 34·9°W.  719-4'  

2.160,0' N.  230,0' W.  36·5° N.  184·9  N. 49'1°W.  244·5'  

3.148,0' N.  189'0' E.  24° S.  172·7  N. 4H' E.  227-4'  

4.17·0' N.  260·0' W.  38° N.  204·9  N. 85·3° W.  205·6'  

5.70,0' S.  330·0' E.  9'5° N.  325·4  S. 77-8° E.  332·9'  

  6. 15,0' N.  31·0' E.  50·33° N.  19'79  Set N.  52·8° E.,  

Drift 24·8'  

 7. 82·9' S.  73-0' W.  40° N.  55·9  Lat. 39° IH' N.,  

 Long. 5° 17·0' W.  

8.107,5' N. 726,0' E.  48° N.  485·8   N. 77-5° E. 497-6'  

9.170·0' S.  242·0' W.  21.1° S.  225·7   S. 53° W.  282·6'  

 10. 249'8' N.  157·5' W.  20·7" N.  147·3   N. 30·5° W.  290·0'  

Exercise 5E 

 L 46°36·9'N.4T'34·6'W.  2.6O"29·7'N.17°1J.2'W.  

 3. 36°13·5'N. 6°22·0'W.  4. 13°38·4'S.48°15·0'E.  

5.Course N. 83·3'K,.distance 162·8 miles. E.T.A. 0410 following day. 

6. 6. S. 63°12·4'W. (243°), 157·5 miles  

 7.S. 5e 32·8' W. (23V12°), 21H miles  

 8.33°50·3'S.172°56·5'E.  



Exercise 5F 

 L 9·6 miles  2. 7·0 miles  

 3. 052°T., distant 6·8 miles  4. 49° 54·1' N. 5° 46·8' W.  

 5. 49°57·0'N. 5°45·3'W.  6. 49°50·6'N. 5°44·1'W.  

7. 49°58·5'N. 7°35·7'W.  

Exercise 6A  

1. H. W. 0449,10·9 metres L. W.I119, 2·3 metres.  

H.W.1725, 11·3 metres. L.W. 2355,1·9 metres.  

 2. 11·2 metres  3. Ht. above C.D. 7·2 metres. Clearance 3·4 metres  

4. 9·1 metres. Will not dry.  

5. Ht. above C.D. 6·0m. Interval from H.W. -3hI6m. 0827 B.S.T.  

6. Factor ·82, Interval from H.W. -lh43m, 2138 G.M.T.  

7. Factor ·24, Ht. above C.D. 5·1, Ht. of light 56·1 metres.  

Exercise 6B 
1. L.W. 0202, 0·4 metresH.W. 0553, 7·3 metres. 

L.W.I443, 0·4 metres. H.W.1831, 7·8 metres.  

2. 8·4 metres, 1532 G.M.T.  

3. Factor ·39, ht. above C.D. 4·9 metres, clearance 2·6 metres.  

4. Factor ·19, correction to soundings (ht. above C.D.), +3·0 metres.  

5. Ht. above L.W. 7·6, factor '62, intervalfrom H.W. -2h2Om. 0858B.S.T.  

6.Ht. aboveL.W. 4·3, factor '44, interval fromH.W.(Sp.) +3h3Om,2128G.M.T. 7. Factor ·66, Ht. above C.D. 7·2 

metres, sounding dries 7·2 metres.  

Exercise 8A 

1. A:z.. S. 6O·8°E., compass error 29·8°W., deviation 5·3°E.  

2. Az. N. 56·2°W., compass error 17·8° E., deviation 5·2°W.  

3. Az. S. 37·1° E., compass error 20·9" E., deviation 8·9"E.  

4.Az. N. 51·2°E., compass error 5·8°W., deviation3·8°W. 5. A:z.. S. 76·9"W., compass error 5·6°W., deviation 

6·6°W.  

Exercise 8B 

1. A:z.. S. 35·1°E., compass error 10·9"E., deviation 2·l"W.  

2. A:z.. S. 73;3°W., compass error 6·3°E., deviationO·2°W.  

3. Az. S. 67·ZOE., compass errorI2·2°W., deviation 5·2°W.  

4.Az. N. 49·0
0
W., compass error45·00W., deviation 18·00W. 5. Az. S. 33·8°W., compass error 36·2°W., 

deviation 3·ZOW.  

Exercise 8C 

1. Ampl. E. 3·2°S., compass error 14·T' E., deviation 3·7° E.  

2. Ampl. E. 2·4°N., compass error 2·6° E., deviationZ·4°W.  

3. Ampl. W. 31·ZON., compasserrorO·3°W.,deviation25·T'E.  

4. Ampl. E. 30·0
0
S., compass errorI8·OOW., deviation3·00E.  

5.Ampl. W. 36·00S., compass error 24·00 W., deviation4S·00W. 6. Amp!. E. 32·5°N., compasserror4·5°W., 

deviationZ4·5°W.  

CLASS V 

Revision Paper l-Chartwork and Practical Navigation 

1. Tide 247°T., 2·3 knots, compass course 266°C., E.T.A.lh 40m after departure.  

2. Compass error 4° E., True course 216°, position 49" 55·9' N. 5°08.1' W.  

3. Height of light 7Om. Required distance off light 2·0 miles, vertical sextant angle 1°05'.  

4. Compass error 19°W., tide JOOOT., drift 2·1 miles.  

Practical navigation 

1. Total d. lat. 136·4' s., total dep. 89·4' W., final position 47°13·6' N.l0014·6' W.  

2. Course N. 28° 34·8' W. (331%°), distance 131·0 miles.  

3. Amplitude E. 38·6°N., compasserrorl·6°W., deviation6·2°E.  

Revision Paper 2--Chartwork and Practical Navigation 

1.  Compass course 2673
/4°. 

2. Position 50016·2' N. 4° 44·7' W., compass course 110".  

3. Compass error 3° W., set and rate of current 033° T. at 3· 3 knots, course and speed made good 3400 13·8 

knots.  

4. 20·7 miles.  

 

 

 

 

 

 



Practical Navigation 

1. 55°1.7·9' N. 3° 56·1' E.  

2.Total d. lat. 43·0'N., total dep.153·3'W., position s0013·0' N.llo 57·8'W. 3. L.H.A. 700 37-1.', Az. S. 

73·6°W., error 8·4°W., deviation 3·6' E.  

 

 

CLASS IV 

Revision Paper l-Chartwork 

1.. Position 51,007·7'N. 4°27·3'W., compasserror2°W., deviation ~E.  

2. Position 51,° 28·4' N. 4° 59·6' W., course 113°C., distance off Helwick abeam 5·8 miles, time 1302.  

3. Tide 285°T. 4·1. knots, compass course 2521/2°, speed required 18 knots.  

4. Brg. of Lundy 140" T., brg. of Breaksea 0871/2 ° T., course made'good 082° T., tide 075°T. 3·4 knots, 

position 51,°18·0' N. 4°1.9.6' W.  

5. Predicted range 5·1 m., interval from H.W. -0213, factor 0·72 (using neap curve), height aboveC.D. 7·1 

m., clearance 0·6m.  

Revision Paper 2---Chartwork 

1.. 49"58·5'N.5°44·1'W.  

2. Course 121°T., 16·2 miles, compass course 1581/4°, E.T.A. 2 hours after  

departure.  

3. 5OO06·3'N 5°00·9'W., compass error 11 ow.  

4. Position 49" $·6' N. 5° 37·8' W., setand drift091,1/2°T.1.·1 miles.  

5. L.W. 0009, (1·2 metres, H.W. 0422, 6·1. metres, L.W. 1252, 0·2 metres, H.W. 1652,6·7 metres.  

Exercile 9A 

1. I.T.P. lat. 40° 15' N., long. 18° 18·6' W.  

2. I.T.P. lat. 20° 16·6' S., long. 27° 24·8' W. 3, I.T,P, lat. 39° 55-4' N., long. 29° 55' W.  

4. Pos. lat. 50° 13·3' N., long. 44° 03·7' W.  

5. POS. lat. 40° 28·1' N., long. 34° 27·9' W.  

6. Pos.lat. 48° 13,8' N., long. 50° 10·1' W.  

7. Pos. lat. 25° 00'4' N., long. 36° 02,5' W.  

8. Dist.off 27·6 miles  

9. Pos. lat. 23° 44·4' N., long. 51° 56·7' W.  

10. Noon 1>0s. lat. 34° II' N., long. 42° 16· 3' W. II. Noon pos.lat. 29° 06' S., long. 37° 07·1' W.  

12. Pos. lat. 34° 15·9' N., long. 47° 52·4' W.  

13. Pos. lat. 53° 29·8' S., long. 179° 32·1' E.  

14. (0) Pos. lat. 16° 41·4' S., long. 163° 07' E.  

(b) Pos. lat. 17° 10,5' S., long. 162" 50·2' E.  

15. Noon pos. lat. 42° 27' S., long. 76° 15,2' E.  

16. Pos. lat. 39° 04·7' N., long. 131° 02·3' E.  

17. True bearing 129° 48'  

18. True bearing 120° 20'  

19. Pos. lat. 47" 30·6' N., long. 34° 37·2' W.  

 

 



Exercise l0A 

 Dip.  R.ef.  S.D.  Par.  True Alt.  

I.  -5·2
J
  -0·7'  +16'1'  +0'1'  52° 39· 3'  

2.  -6'2'  -1-4'  +15·9'  +0'1'  33° 20·2'  

3.  -5·9'  -0·3'  -16·0'  Nil  71 ° 33·2'  

4.  -4·9'  -1'8'  -15'8'  +0'1'  27° 24·3'  

5.  -5·6'  -0,5'  +16'1'  +0'1'  62° 46'8'  

6.  -4·8'  -0·6'  -16'3'  +0'1'  55° 33·2'  

7.  -6·0'  -0'4'  -16'2'  +0'1'  68° 55·7'  

8.  -5'7'  -0'1'  +16'1'  Nil  81° 56·1'  

9.  Nil  -0·8'  +16·0'  +0'1'  48° 33·2'  

10.  Nil  -0·7'  -15·8'  +0'1'  51° 40·6'  

Exercise l0B 

I.  -5·96'  -0·87'  47° 21'77'  

2.  -4,80'  -1-5'  32° 17,3'  

3.  -6'04'  -2'44'  21° 05·52'  

4.  -6·93'  -0·88'  47° 06·59'  

5.  -5·19'  -1'27'  37° OH4'  

6.  -6·65'  -4'32'  12" 08·03'  

7.  -4·9'  -0·7'  53° 14·0'  

8.  -5·88'  -2·22'  23° 08·1'  

9.  -7·33'  -0·74'  51° 47·53'  

10.  -5·54'  -3·63'  W 26·23'  

Exercise10C 

 Dip.  R.ef.  S.D.  Par.  True Alt.  

I.  --4'8'  -0·48'  +15·53'  + 25·02'  63° 49·67'  

2.  -6·35'  -1'38'  +15,23'  +45'70'  35° 05·80'  

3.  --5·71'  -0·58'  -16·33'  + 31·43'  58° 24·01'  

4.  -5'37'  -0·21'  -15·03'  + 11·76'  77° 43·95'  

5.  -6·04'  -2'36'  +15·90'  + 53·98'  22° 36·88'  

6.  -5·37'  -1'18'  +16'48'  +46'61'  39° 20· 74'  

7.  -7·08'  -0·77'  -15'09'  +34·41'  W 26'87'  
8.  -6·57'  -1·01'  +16·80'  +44'26'  44° 11·88'  

Exercise 11A 

1.. Lat. 35°ll·0'N.,P/L0900/2700.  2. Lat.0009·1'S.,P/L09OO/2700.  

3. Lat. 49" 51,·3' S., P/L09OO/27oo.  4. Lat. JOO09·9' S., P/L09OO/27oo.  

5. Lat.0002·1'N.,P/L09OO/27OO.  

Exercise 11B 

1.. G.M.T. 224618th, lat. 0016·8'N. 2. G.M.T. lA4426th, lat. 25°00·7' S.  

3. G.M.T. 18326th, lat. 51,°30·6' S. 4. G.M.T. OO483Oth,lat. 36° 51·0' N.  

5. G.M.T. 02291.9th, lat. 50044·2' S.  

Exercise 11C 

1.. G.M.T. 23064th,lat. 33°28.5' S. 2. G.M.T. 07212Oth,lat. 4O"41.·2'N.  

3. G.M.T.13141.9th, lat. 34° 24·7' N. 4. G.M.T. 0505 30th, lat.l~45·2'N.  



Exercise 11D 

1. Sextant altitude 57" 09·0', G.M. T. 20h 10m 46s 19th, L.M.T.18h 40m 46s 19th.  

2. Sextant altitude 50055,1', G.M.T.17h 50m 41s6th, L.M.T.19h 59m21s 6th.  

3. Sextant altitude 33°21.3', G.M.T. OSh44m24s19th, L.M.T. 06h 22m 24s 19th.  

4.Sextant altitude 66°47·8', G.M.T.14h58m20s27th, L.M.T.19h00m40s27th. 5. Sextant altitude 61 °14'9', 

G.M.T.15h23m42s2Oth, L.M.T. 05h 55m 26s 20th.  

Exercise 11E 

1. Lat. 50017·6' N.  2. Lat. 52° 50·5' N.  3. Lat. 55°14'1' N.  

4. Lat. 49"57·7 S.  5. Lat. 45°28·6'S.  

Exercise 12A 

1. L.H.A. 324°17·3', C.Z.X. 63° 00·7', TZX 63° 01·4', Int. 0·7 A,Az. N. 37·0E., P/L 127·001317·00 through I.T.P. 29° 

30·5' S. 121° 20·4' W.  

2. L.H.A. 47" 56·7', C.Z.X. 43°24·4', TZX43°25·2', Int. 0·8' A., Az. N. 89'2°W., P/LOOO·8°/180·8" through I.T.P. 

32"15·0' S. 48°15.1' W.  

3. L.H.A. 58" 16,6', C.Z.X. 58° 17·0', T.Z.X. 58° 10·0', Int. 7·0'T., Az. N. 88·7"W., P/LOOl·3°/181·3° through I.T.P. 

00 00·2'N. 161"02·0'W.  

4. L.H.A. 319° 46·4', C.Z.X. 76° 10,6'. T.Z.X. 76° 18'8', Int. 8·2' A., Az. S. 37·6°E., P/L232·4°/052·4°through I.T.P. 

43°18·5' N. 38°31·9'W.  

5. L.H.A. 3000 05·4', C.Z.X. 71° 05·2', T.Z.X. 700 56·0', Int. 9·2'T., Az. S. 66·00 E., P/L204·OO/024·OO through 

I.T.P. 44°01·3' N. 27"29·3' W.  

Exercise 12B 

1. L.H.A. 63° 52·4', C.Z.X. 58° 56·4', T.Z.X. 58° 38·0', Int. 18·4' T., Az. N. 8l·6°W., P/Ll88·4°/008·4° through I. T.P. 

24° 52·7' N.l44° 49·9' E.  

2. L.H.A. 77" 53·9' , C.Z.X. 49"10·2'T.Z.X. 49" OB' , Int. 7-1' T., Az. N. 45·6° W., P/L 224.4°/044.4° through I.T.P. 

43° 10·0' N.177"22·9' W.  

3. L.H.A. 293° 03·1', C.Z.X. 71° 10'6', T.Z.X. 71° 11·7', Int. 1-1' A., Az. S. 74·00 E., P/Ll96·OO/016·OO through 

I.T.P.17° 53·9' N. 47"31-1' W.  

4.L.H.A. 311° 44·6', C.Z.X. 42° 03·7', T.Z.X. 42°  03·7', Int. Nil., Az. S.  

8J·9"E., P/Ll86·1 °/006·1." through 42° 40·0' N.172°10·0' W.  

5. L.H.A. 65° OS·4' C.Z.X. 75° 11'2', T.Z.X. 74° 44·7', Int. 26·5'T., Az. N. 69·PW., P/L2oo·9"/020·9" through I.T.P. 

400 SO·O' S. 57"29·8' W.  

Exercise 12C 

1. L.H.A. 294° 40,9'. C.Z.X. 59" 46,2', T.Z.X. 59" 50·0', Int. 3·8' A., Az. N. 87·3°E., P/Ll77-3°/357·3° through I.T.P. 

42° 50·2' S. 41° 35·2'W.  

2. L.H.A. 60011'5', C.Z.X. 62°15,7', T.Z.X. 62°15,1', Int. 0·6'T., Az. S. 78'4°W., P/L 168.4°/348.4° through I. T.P. 25° 

29·9' N .174° 59·3' E.  

Exercise 12D  

1. G.H.A. 358" 09·5°, T.Z.X. 58" 20'8', L.H.A. 30" 18'5', longitude 61 ° 43·4' E., Az. N. 68·9"W., P/L20l-l°/021-1°.  

2. G.H.A. 182° 02·9', T.Z.X. 65° 50·3', L.H.A. 64° 48·4' longitude 117" 14·5'W., Az. S. 67·OOW., P/L157·OOI337·OO.  

3. G.H.A.l36°06·l', T.Z.X. 46°42·2', L.H.A. 307"30·9', longitude 171°24·8' E., Az. 090, P/L 0Q(f/18O".  

4. G.H.A. 302° 38·0', T.Z.X. 59" 59·8', L.H.A. 302° 34·4', longitude 00 03·6' W., Az. S. 63·9"E., P/L206·1 °/026.1 0.  

5. G.H.A. 327" 46·4', T.Z.X. 700 56·0', L.H.A. 300"19,4', longitude 27"27·0' W., Az.·S. 65·8"E., P/L204·2°/024·2°.  



 

 

 

Exercise 12E  

1. G.H.A. 339°25'2', T.Z.X. 62° 11,2', L.H.A. 295°03,1', longitude 44°22·1'W., Az. S. 88·9"E., P/L181,·l°OOl·l°.  

2. G.H.A 204° 35·6', T.Z.X. 75"20·2', L.H.A. 69" 48·5', longitude134° 47-1' W., Az. N. 75·1°W., P/Ll94·9"/014·9°.  

3. G.H.A. 244° 41·3', T.Z.X. 57° 44·7', L.H.A. 62° 55·1', longitude 178° 13·8'E., Az. N. 83·6°W., P/LOO6·4°/186·4°.  

4. G.H.A 215° 44·6', T.Z.X. 76° 46,2', L.H.A 294° 19·2', longitude 78" 33·6'E., Az. N. 66·3°E., P/L156·3°/336·3°.  

5. G.H.A.121°30·8', T.Z.X. 74°44·7',L.H.A. 64°30·7' longitude57"OO·1'W.,Az.  

N. 76·7"W., P/L193·3°/013·3°.  

Exercise 12F 

1. G.H.A.116°15·7' T.Z.X. 57" 33·3', L.H.A. 316° OS·3', longitude 160007·4' W., Az. N. 55·1°E., 'C'1·01" 

P/L14Ho/325'1°, obs.latitude46°08·0' S., D.R.long, 161 ° 03·6' W., d. long. 13·6' E., noon position 46° OS'O' S. 1600 

50·0' W.  

2. G.H.A. 1500 35·9' T.Z.X. 72° 34·9' L.H.A. 319° 01,9', longitude 168° 26·0' E., Az. N. 39·2°E., 'C'1·563, 

P/L309·2"/129·2°, obs.latitude3'f52·9'S.,D.R.long, 169"01·9' E., d.long. 9·7'E., noon position 37" 52·9'S. 169° 

11·6'E.  

Exercise 13A 

1, L.H.A. 6° 23·8' T.Z.X. 47" 30·0', M.Z.X. 47"10'9', latitude 4SO 50·5' N., Az. S. 33·OOW., P/Ll23·OO/303·OO.  

2. L.H.A. 351,° 54·7', T.Z.X. 400 54'2', M.Z.X. 4(f14·7', latitude 41 ° 32·3' N., Az.  

S. 12·4°E., P/L257·6°/077·6°.  

3. L.H.A. 34SO 45·2', T.Z.X. 65°13'8', M.Z.X. 64°23.3', latitude 400 58·7' N., Az.  

S.11·4°E., P/L258·6°/078·6°.  

Exercise 13B 

1. L.H.A. 7" 09·7', T.Z.X. 31,° 04·7', M.Z.X. 30" 29'0', latitude 45° 09· 7' N., Az. S. 13·5°W., P/Ll03·5°/283·5°.  

2. L.H.A. 350024·9' T.Z.X. 66°41.5', M.Z.X. 66°04.8', latitude36°21·4' N., Az. S. 9·1°E., P/L260·9"/080·9".  

3. L.H.A. 355°23·3', T.Z.X. 34°38.1.', M.Z.X. 34°20·7', latitude26°07·4'N., Az.  

S. 8·1°E., P/L261,·9"/08l,·9".  

4. L.H.A. 5° 41·9', T.Z.X. 22° 19·0', M.Z.X. 21,° 40·3', latitude 30"14·8' S., Az. N. 15·OOW., P/L255·OO/075·OO.  

5. L.H.A. 357" 14· 7', T.Z.X. 64° 41· 7', M.Z.X. 64° 38·8', latitude 18" 40·3' S., Az.  

N. HOE., P/L272.1."/092-1 0.  

Exercise 14A 

1. L.H.A. 'Y' 7" 31·5', T. Alt. 50" 03·9' latitude 49"19·4' N. P/L 090·6°/270·6°.  

2. L.H.A. 'Y' 282°24.5', T. Alt. 35°07.6', latitude.34°'25·7', P/L271 °/091 0.  

3. L.H.A. 'Y' 317" 50·4', T. Alt. 47"38·2', latitude 47"25·8' N., P/L271·3°/091·3°.  

4. L.H.A. 'Y' 15°12.5', T. Alt. 23°31"0', latitude 22° 44·0' N., P/L09O·3°/270·3°.  

5. L.H.A. 'Y' 85° 40·6', T. Alt. 51,°04'6', latitude 50" 34·5' N., P/L269"/089".  

6. L.H.A. 'Y' 74°35.7', T. Alt. 32°37'9', latitude 32°00·6' N., P/L269·3°/089·3°.  

7. L.H.A. 'Y' 216°01,·51, T. Alt. 40028·0', latitude41°17·8'N., P/L09OO/27OO.  



Exercise 15A 

1. Distance 1736·5 miles, initial course N. 77° 37·7' W., final course S. 62° 13·8' W.  

2. Distance 3599 miles, initial course S. 67° 30·3' E., position of vertex 40° 44·8' s. 20° 17·0' W.  

3. Great circle distance 5190·4 miles, mercator distance 5594·1, saving 403·7 miles  

4. Distance 4076·6 miles, initial course N. 61 ° 50·5' W., position of vertex 54° 10·4' N. 16()O 22·5' W.  

Positions along track  

 Lat.  52°24·4'N.  54°1O·3'N.  5T31·3'N.  46°49·9'N.  

 Long.  140° W.  160° W.  180°  160° E.  

Course N. 59° 13·2' W. N. 74° 35·2' W. S. 89° 18' W. S.73° 13' W.  

Exercise 15B 

I. Total distance 3613·4 miles (1296·6+816·8+ 1500·0), initial course S. 73° 56·6' E.  

2. Total distance 5279·6 miles (3081·8+1431·5+766·3), initial course S. 5r 00·4' E.  

3. Total distance 4803·8 miles (1144·8 +2731·0+928), initial course S. 69° 23·5'W.  

Specimen Paper 1 

1. L.H.A. 311° 21,·3'" C.Z.X. 49"13·0', T.Z.X. 49" 16·8', intercept 3·8' A., Az. N. 82·2"E., P/L 352·2"/1,72·2" 

through I.T.P. 5° 5S·5' S.125° 59·2' E.  

2. G.M.T. 09h26m52s1.9th, L.M.T.18h42m32s1.9th, ZX51~46·3', sextant alt. JSO 20·4'.  

3. Course N. 42° 51·2' E., distance 2112·0 miles.  

4. Az. S. 22·ooE, compass error4°W., deviation 3°E.  

Specimen Paper 2 

1. L.H.A. 55° 05·6', C.Z.X. 54° 20·5', T.Z.X. 54° 15·1', intercept 5·4 T., Az. S.  

SO·8"W., P/L350·8"/170·8" through I.T.P. 33°04.1' N.I31 °24·3' w.  

2. L.H.A. 358" II '0', T.Z.X. 48" 36·2' , M.Z.X. 48" 33·9', latitude 26° OS·5' N., Az.  

S. 2·4°E., P/L 267.6°/087.6°.  

3.L.H.A. 'Y' 205° 59·S' ,latitude 200 54·1.' N., Az. 359·9". 4. Obs. pas. 39" 15·0' S 94° 13·2' E.  

Specimen Paper 3 

1. L.H.A. 39" 54·6', C.Z.X. 62° 06·4', T.Z.X. 6'J.O 10·6', intercept 4·2' A., Az. S.  

46·4°W., P/LI36·4°1316·4° through I.T.P. 4T32·9' N. 45°15·6' W. 2. G.M.T.I946Sth,latitude46°25·O' S., 

P/L09OO/27OO. 3.46°28·3'N.4Too·5'W.  

4. G.M.T. 0419 2nd, amplitude W. 3·TS., compass error 6·TW., deviation to·TW.  

Specimen Paper 4 

1. L.H.A. 49" 51,·6', C.Z.X. 61° 31·6', T.Z.X. 61 ° 25·2', intercept 6·4' T., Az. S. 6O·4°W., P/LI50·4°133O·4° 

through I.T.P. 42°06·S' N 50012·6' W.  

2. L.H.A. 358"OS'5', T.Z.X. 45°13'6', M.Z.X. 45°11'7',latitudeJS051'7' S., Az.  

N. 2·6°E., P/L 272·6°/092·6° through 38" 51,·7' S.138" 46·0' E.  

3. G.M.T.I9392Oth, latitude 25°56·5'N., P/L09OO/27OO.  

4. 22°33·9'N.91°15·1'W.  



 

 

Specimen Paper 5 

1.. L.H.A. 31,T3O·3', C.Z.X. 61,°25·1.', T.Z.X. 61,°28·3', intercept 3·2' A., Az. N.  

47·5°E., P/L 137·5°131.7·5° through I.T.P. ~1.7·2' S.I34°15·3' E.  

2. G.M.T.1451,Sth,latitudeJS05S·O'S., P/L09OO/27OO.  

3.1.T35-3'SI69"58·6'W. 4. 32° 46·0'N. 31,025·0'W.  

Specimen Paper 6 

1. G.H.A. 134° O7·S', T.Z.X. 56°15'0', L.H.A. 309" 20·3' longitude 1.75° 12·5' E., Az. S. 59·1,D E., P/L 

210·9"/030·9".  

2. G .M. T. 1832 6th, latitude 51,° 30·6' s., P/L 0900/2700.  

3. G.M.T. 13h 20m 44s 27th, L.H.A. ¥ 3500 19'3', latitude 4T 11.·7'N., PIL 270'8"/090·8".  

4. 42° OJ·5' S.I61,o 25·0' E.  
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INDEX 

A  Convergency 33,34  

A.B.C. tables 112,183  Correction ofaltitudes 157  

Admiralty list of lights 45  Course 8, 10  

Almanac 105  Current 84  

Altitude, correction of 157  Correction tables 104, 166 

 Amplitude problem 112, 129  

 tables 130   D  

Angle on the bow, doubling the 82  Danger angles 47  

Aries, first point of 102   'd' correction 106  

Augmentation 163   Declination 102  

Azimuth 112   Departure 50  

 conversion to bearing 112  Deviation 9, 12  

 problem 112   Difference oflatitude 2  

 Difference of longitude 2, 50 

 Diff<;rence of meridional parts 60  

 B  Dip, formula for 166  

Bearing, 3 figure notation 8  .tabl~ 166  

 calculation of 112  Direction, abeam 24  

 compass 11  measurement of 8  

 magnetic 11  Distance, of sea horizon 45  

 position from 33  measurement of 6  

 relative 16  Doubling the angle on the bow 82  

 transit 41  Drift 21,27,70  

 Drying height 87, 97  

 C  

'C' correction 199  

Celestial equator 101  E  

 meridian 102  Earth, the shape of 6  

 poles 101,211  Ecliptic 102  

 sphere 101  obliquity of 102  

Chart datum 87 88  Equator 1  

Co-lat 182  '  celestial 101  

Compass 8   Ex-meridian problem 202  

 bearing 11   tables 205  

errors 8, 10,43  

calculation of 37, 41, 122 gyro 8  

 north 9,10  F  

Composite great circle 222  First point of Aries 102  



 

INDEX 

 G  Lights, height of 36, 98  

Geographical mile 7  range of 45  

 poles 1, 8, 9  Local hour angle 110, 182  

 position 101  Longitude 2  

 range 45  by chronometer 146, 192  

Great circle 33  correction 113  

 composite 222  difference of 2  

 sailing 215  Lower meridian passage 118, 180  

Greenwich hour angle 104  Lowest astronomical tide 88  

 rate of change of 108  Luminous range 46  

Gyro compass 8   diagram 46, 47  

 Lunar tide 84  

 H  

Height, drying 97   M  

 of tide 87  Magnetic compass 9  

Highest astronomical tide 88  meridian 9  

Horizon, distance of 45  north 9, 10  

 rational 130, 157  variation 9  

 sensible 157  Marcq St. Hilaire method 142, 18  

 visible 157  205  

Horizontal parallax 163  Mean high water neaps 87  

Horizontal sextant angle 37  Mean high water springs 87, 98  

Hour angle 110, 182  Mean latitude 59  

Hour circles 102  sailing 60  

Hyperbolic position line 33, 49  Mean low water neaps 87  

Mean low water springs 87  

Mercator sailing 60  

 I   Meridian 1  

 celestial 102  

Increment tables 104  prime 1  

Intercept 14~, 183  Meridian altitude, latitude by 148  

termmal pomt 143  Meridian passage 111  

International nautical mile 6  lower 118  

times of 111 Meridional parts 60  

 K  Middle latitude 59  

Knot 7   sailing 60  

Moon 103  

correction of altitude 163  

 L  GHA and declination of 107  

Latitude 2   rising and setting 119  

 byex-meridian 202  SHA of 103  

 by meridian altitude 148  times of meridian passage of 113  

 by pole star 211  Moonrise and moonset 119  

difference of 2 mean 55  

 middle 59   N  

 parallel of 2  Nautical almanac 104  

Leading marks 43  Nautical mile 6, 141  

Leeway 29  Neap tides 84  

 

INDEX 



Nominal range 45  Set and drift 70  

Noon position 198  Sextant angles 34,47  

Sidereal hour angle 102  

 Small circle 1,33 Solar tide 84  

Obliquity of the ecliptic 102  Speed 7  

made good 25  

 P   through the water 25  

Spring tides 84  

Parallax 15~  Standard port 89  

Parallelof.l?tltude 2  Star, correction of altitude 162  

Parallel smhng 50   GHA and declination of 108  

 formula for 51,65   meridian passage of 116  

Pelorus 16  Streams tidal 84  

Plane sailing 55,65   tidal ;tlases 84 85  

Planet, correction of altitude of 162  Sun change of declination of 102  

 GH~ .and declination of 107  change of SHA of 103  

 mendlan passage of 115   correction of altitude of 160  

Polar distan~e 182   GHA and declination of 106  

Poles, celes~lal 211   meridian passage of 112  

 geographIcal 1,8,9   Sunrise and sunset, times of 119  

Pole star problem 211  

 tables 104,212  T  

Position circle 36,37,43,80, 141  

 hyperbola 49   Three figure notation 8  

 line 33 141   Tidal calculations 89  

 measure~ent of 1   information 85  

 transferred 65,72,76,80   streams 84  

Prime meridian 1   Tide 20,84  

PZX triangle 182   counteracting the 21  

height of 87 rate of 21,27  

 R   Tide tables 85  

Radio direction finding 16,33  Time of meridian passage 113  

 Ranges of lights 45   Time zones 89  

 Rational horizon 129, 157   Total correction tables 116  

 Refraction 45,158   Transferred position line 

65,72,76,80  

 Relative bearing 16   Transit bearing 41  

 Rhumb line bearing 34   Transit, lower 118  

 Rising and dipping distance 43  Traverse table 65,80  

 Rising and setting 129   True bearing, calculation of 112  

Running fix 76, 78, 82   

 V  

  S   Variation 9,12  

 Sailings, the 50   'v' correction 105  

 great circle 215   Vertex 216,222  

 Sea horizon, distance of 45   Vertical sextant angle 34,47  

 Sea mile 6   tables 37  

 Secondary port 89,92   Visible horizon 157  

 Selected stars 104   Z  

Semi diameter 159  

 Sensible horizon 157   Zenith distance 141,182  

 


