
Electronic Chart Display and Information Systems-navigational safety in maritime transportation

Electronic Chart Display and Information Systems for navigational safety in maritime transportation

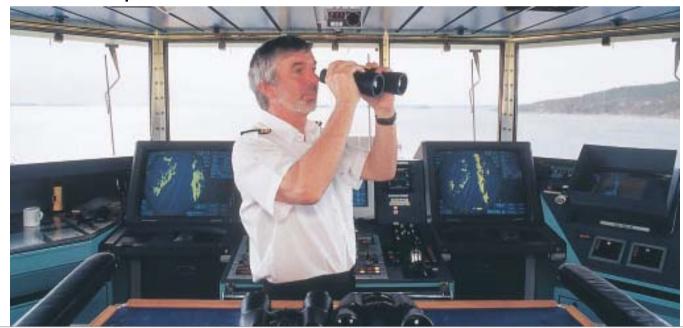
Erik Vanem, Magnus S. Eide, Rolf Skjong

Presented at the E-navigation Conference, Oslo 17 October 2007

Introduction – ENC and ECDIS

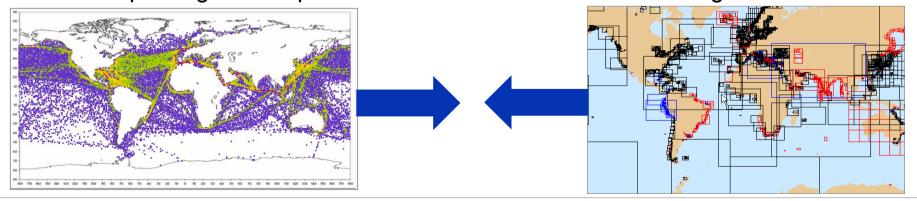
ENC – Electronic Navigational Chart

- Vector charts compiled from a database, standardized as to content, structure and format, of individual geo-referenced objects
- Contains all the chart information necessary for safe navigation
- Issued on the authority of government-authorized hydrographic offices
- Being a database, ENC content may be continuously retrieved by special operational functions in ECDIS to give warnings of impending danger related to the vessel's position and its movements.


ECDIS – Electronic Chart Display and Information System

- System that can be accepted as complying with chart requirements in SOLAS regulations
- Displaying selected information from ENC with positional information from navigation sensors and additional navigation-related information
- Assist the mariner in route planning and route monitoring

Background

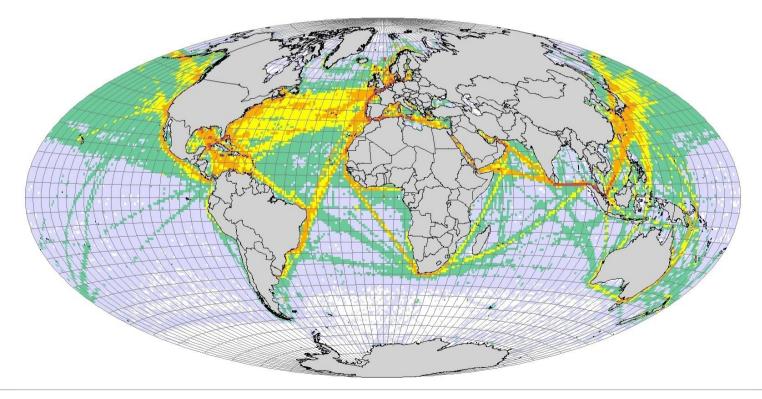

- Previous studies show that collision and grounding accidents are main risk drivers for many shiptypes
- Major risk reductions may be achieved by measures to prevent such accidents – related to safety of navigation
- The risk reducing potential of ECDIS in ship navigation has been demonstrated in previous studies

Background

- Previous studies on particular shiptypes have demonstrated that ECDIS is a cost-effective risk control option
 - About 38% risk reduction for grounding
 - Passenger ships, oil tankers, bulk carriers, product tankers, LNG carriers
- However, previous studies assumed full coverage of Electronic Navigational Charts (ENC) along coastal areas - This assumption has been particularly debated
- → A new study was initiated to investigate the effect of gaps in ENC coverage on the effect of ECDIS
 - Compares global ship traffic densities to actual ENC coverage

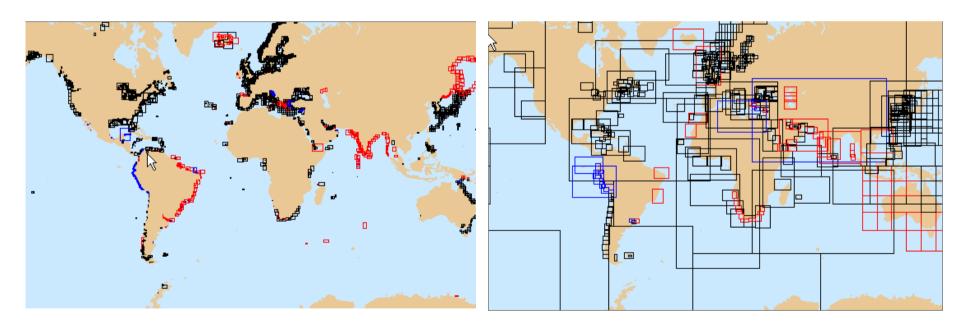
© Det Norske Veritas AS. All rights reserved 17 October 2007 Slide 4

Grounding scenarios and risk models


Slide 5

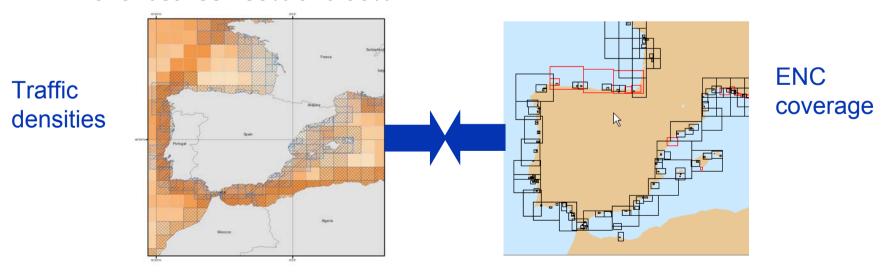
- Description of grounding scenarios adopted from previous studies. Drift groundings not prevented by ECDIS – only powered grounding are considered
- Probability models using Bayesian Networks and Excel spreadsheets previously developed in other studies were slightly modified and employed
 - Probability models influenced by ENC coverage
- Consequence models:
- A) Fatality probabilities from previous risk models (/crewmember/grounding):
 - 2 x 10⁻⁴ for oil, chemical and LNG tankers and container vessels
 - 6 x 10⁻⁴ for bulk carriers and general cargo ships
- B) Accident costs based on established cost models
 - Assuming 75% non-serious, 22.7% serious and 2.27 % total losses
- Environmental damage based on the CATS approach (Cost of Averting a Tonne of oil Spilt)
 - USD 60,000 per tonne
- ECDIS cost estimates: Initial cost (acquisition and installation), maintenance and training
 - Based on information from ECDIS suppliers

Ship traffic data sources


- Global ship traffic data
 - Joint dataset from AMVER and COADS for a complete year (2000/2001)
 - AMVER: Tracking the position of > 12,000 merchant ships
 - COADS: Ship location data based on reporting of meteorological observations from approx. 7000 vessels

ENC coverage data sources

- International Hydrographic Organization ENC catalogue
- Different detail levels: distinguish between resolutions higher and lower than "Coastal"
- Commercially available or in/planned for production


ENCs "Coastal" and better

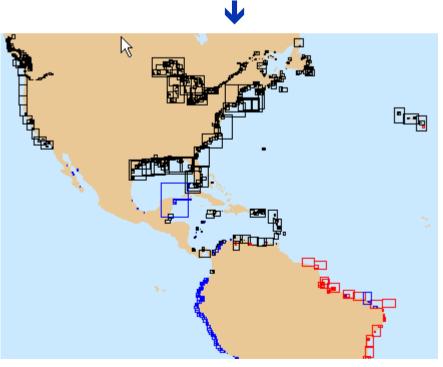
ENCs "Overview" and "General"

Worldwide ENC coverage



- "Suitable ENC coverage":
 - < 20 nautical miles from shore: ENC "Coastal" or better
 - Open waters > 20 nm from shore: ENC "General" or "Overview" sufficient
- Mapping global ENC coverage to global ship traffic distributions to estimate percentage of SOLAS ships sailing with "suitable ENC coverage":
 - 2007: between 82% and 94%
 - 2010: between 85% and 96%

Selected representative shipping routes


Example route: Vancouver - Salvador

← Voyage

ENC coverage

Route characteristics

	Total	< 20 nm	< 5 nm	< 2 nm
Distance				
(nm)	7600	3400	790	90
(%)	100	45	10	1
ENC coverag	ge			
2007		46%	49%	95%
2010		57%	70%	100%

Vancouver – Salvador: Grounding frequencies

- Route characteristics incorporated in the risk model to obtain
 - Probability of critical course
 - Annual grounding frequencies with and without ECDIS for 2007 and 2010

	Without	With ECDIS -	With ECDIS -	With ECDIS -
	ECDIS	Assume 100%	Actual coverage	Anticipated
	ECDIS	ENC coverage	2007	coverage 2010
Frequency (per shipyear)	4.3×10^{-2}	2.7×10^{-2}	3.5 x 10 ⁻²	3.2×10^{-2}
Frequency reduction (%)	-	38%	19%	26%
Groundings averted (per shipyear)	-	1.6 x 10 ⁻²	7.9×10^{-3}	1.1 x 10 ⁻²

- For this particular route: ECDIS would represent an 19% reduction in grounding risk
 - Anticipated to increase to 26% within 2010

Averting groundings on selected routes

		overage to shore)	_	frequency ction	Grounding (per sh	gs averted ipyear)
Route	2007	2010	2007	2010	2007	2010
1. Dammam – Yokohama	41%	65%	15%	25%	7.2 x 10 ⁻³	1.1 x 10 ⁻²
2. Yanbu – Galveston	57%	77%	22%	29%	1.8×10^{-3}	2.4×10^{-3}
3. Yanbu – Barcelona	94%	94%	36%	36%	2.6×10^{-2}	2.6×10^{-2}
4. Singapore – Rotterdam	63%	68%	24%	26%	1.5×10^{-2}	1.6 x 10 ⁻²
5. Hong Kong – Long Beach	100%	100%	38%	38%	3.1×10^{-3}	3.1×10^{-3}
6. Newcastle – Qinhuangdao	28%	28%	11%	11%	1.3×10^{-3}	1.3×10^{-3}
7. Vitoria – Hamburg	65%	84%	25%	32%	8.7×10^{-3}	1.1 x 10 ⁻²
8. Vancouver – Salvador	49%	70%	19%	26%	7.9×10^{-3}	1.1 x 10 ⁻²
9. Helsinki – Cadiz	100%	100%	38%	38%	1.2×10^{-2}	1.2×10^{-2}
10. Rotterdam – Savannah	100%	100%	38%	38%	8.9×10^{-3}	8.9×10^{-3}
11. Point Fortin – Everett	100%	100%	38%	38%	8.1×10^{-3}	8.1×10^{-3}

Some observations:

- 4 of 11 routes already have 100% ENC coverage in coastal areas
- 6 of 11 routes sees no anticipated change in ENC coverage from 2007 2010
- Grounding frequency reduction between 11 38%
- ENC coverage between 28 100% (Global average ≈ 84 96%)

Risk reduction on selected routes

- Assuming a representative ship for each route in order to estimate risk
 - 3 oil tankers, 2 container ships, 3 bulk carriers, 1 general cargo, 1 chemical tanker and 1 LNG carrier
 - Sizes from 2,500 80,000 GT
 - Bunker capacity from 350 8000 ton (and one boil-off gas)
 - Crew from 15 30

	Groundings	Average grounding	Risk redu	ction
Route	averted (per shipyear)	accident cost (USD million)	Accident cost (USD per shipyear)	# Fatalities (per shipyear)
1. Dammam – Yokohama	7.2 x 10 ⁻³	29	210,000	4.3 x 10 ⁻⁵
2. Yanbu – Galveston	1.8×10^{-3}	57	100,000	1.1 x 10 ⁻⁵
3. Yanbu – Barcelona	2.6×10^{-2}	15	390,000	1.5×10^{-4}
4. Singapore – Rotterdam	1.5×10^{-2}	1.8	27,000	6.0 x 10 ⁻⁵
5. Hong Kong – Long Beach	3.1×10^{-3}	5.5	17,000	1.7×10^{-5}
6. Newcastle – Qinhuangdao	1.3×10^{-3}	1.9	2,500	2.3 x 10 ⁻⁵
7. Vitoria – Hamburg	8.7×10^{-3}	1.3	11,000	1.5 x 10 ⁻⁴
8. Vancouver – Salvador	7.9×10^{-3}	0.89	7,000	1.2 x 10 ⁻⁴
9. Helsinki – Cadiz	1.2×10^{-2}	0.51	6,100	1.1 x 10 ⁻⁴
10. Rotterdam – Savannah	8.9×10^{-3}	1.2	11,000	4.1 x 10 ⁻⁵
11. Point Fortin – Everett	8.1×10^{-3}	3.2	26,000	4.2 x 10 ⁻⁵

Cost-effectiveness assessment

Indicators of Cost-effectiveness

1. GCAF

(Gross Cost of Averting a Fatality)

$$GCAF = \frac{\Delta Cost}{\Delta Risk}$$

Criteria for cost-effectiveness

1. GCAF < USD 3 million

2. NCAF

(Net Cost of Averting a Fatality)

$$NCAF = \frac{\Delta Cost - \Delta EconomicBenefit}{\Delta Risk}$$

2. NCAF < USD 3 million

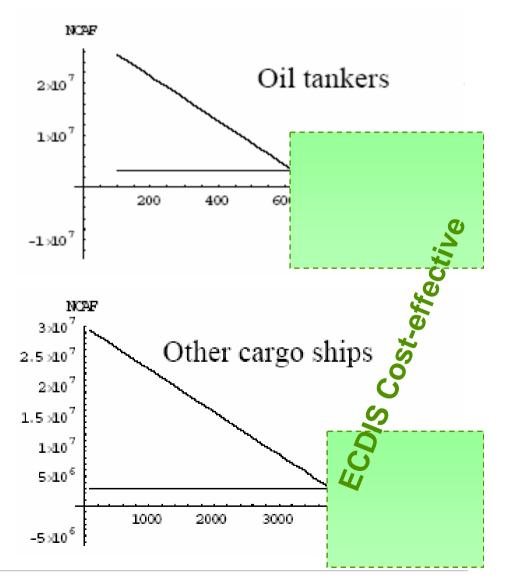
NCAF < 0 indicates that the cost is less than the economic benefit of implementing a measure

Cost effectiveness of ECDIS on selected routes

- GCAF > USD 3 million for all routes
 - Limited potential for saving lives on cargo ships due to low fatality rates
- NCAF < 0 for all routes except one
 - Indicates that ECDIS is cost effective
- For cargo ships: Most significant effect is environmental and property protection from averting groundings
- NCAF > USD 3 million for the route with poorest ENC coverage only.
 - ECDIS will only cease to be cost effective for routes with very poor ENC coverage

D 1	GCAF (10 ⁶ USD)	NCAF (10 ⁶ USD)		
Route	2007	2010	2007	2010	
1.	63	41	< 0	< 0	
2.	247	194	< 0	< 0	
3.	18	18	< 0	< 0	
4.	45	43	< 0	< 0	
5.	160	160	< 0	< 0	
6.	118	118	54	54	
7.	18	14	< 0	< 0	
8.	23	16	< 0	< 0	
9.	25	25	< 0	< 0	
10.	66	66	< 0	< 0	
11.	65	65	< 0	< 0	

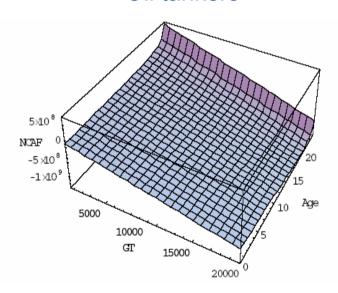
Global Cost effectiveness of ECDIS


Assumptions:

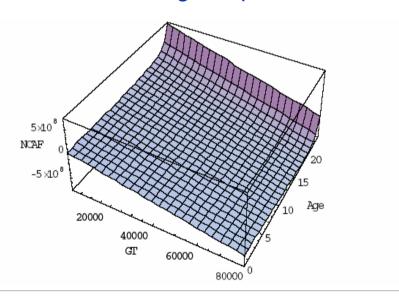
- Global grounding frequency reduction = average for the 11 routes
- Average accident costs per GT
 - Oil tankers: 720 USD/GT
 - Other cargo ships: 120 USD/GT
- Average fatality rates = 0.01 /grounding
- Average expected lifetime = 25 years
- Valid for all SOLAS ships > 500 GT
- Generic cost-effectiveness estimates for new and existing ships may be carried out

Cost effectiveness for new ships

- GCAF = USD 30M
- NCAF = Function of shiptype and size
- NCAF < USD 3M</p>
 - Oil tankers > 630 GT
 - Other cargo ships > 3,800 GT
- NCAF < 0
 - Oil tankers > 700 GT
 - Other cargo ships > 4,200 GT



Cost effectiveness for existing ships



- GCAF will never be < USD 3M</p>
- NCAF = function of ship type, size and age

NCAF as function of age and size Oil tankers

NCAF as function of age and size Other cargo ships

Cost-effectiveness for existing ships

Sizes corresponding to NCAF < USD 3M and NCAF < 0

	Ship age	Size (GT) $(NCAF < USD \ 3 \ million)$	Size (GT) $(NCAF < 0)$	
OIL TANKERS	Newbuilding	630	700	
	5 years	720	780	
	10 years	870	920	
	15 years	1,200	1,200	
	20 years	2,000	2,100	
	24 years	9,300	9,300	

	Ship age	Size (GT) $(NCAF < USD \ 3 \ million)$	Size (GT) $(NCAF < 0)$
OTHER CARGO SHIPS	Newbuilding	3,800	4,200
	5 years	4,300	4,700
	10 years	5,200	5,500
	15 years	7,000	7,300
	20 years	12,000	13,000
	24 years	56,000	56,000

Summary and recommendations

- Cost-effectiveness of ECDIS to prevent grounding has been assessed for cargo ships
 - Cost effectiveness for passenger ships has been established in previous studies
- Actual coverage of ENC has been considered
- Major differences between oil tankers and other types of cargo ships
 - Due to the potential of major oil spills in grounding accidents
- Recommendations submitted to NAV 53 by Nordic countries:
 - ECDIS should be made mandatory for all new oil tankers of 500 gross tonnage and upwards
 - ECDIS should be made mandatory for all new cargo ships, other than oil tankers, of 3,000 gross tonnage and upwards
 - ECDIS should be made mandatory for all existing oil tankers of 3,000 gross tonnage and upwards
 - ECDIS should be made mandatory for all existing cargo ships, other than oil tankers, 10,000 gross tonnage and upwards

NAV 53 discussions → NAV 54

- Main conclusions were basically supported by Japanese and Russian studies (Russian study not published)
- Division: some are positive towards adopting ECDIS as a carriage requirement – others are still somewhat sceptical.
- Main objections related to
 - Availability of ENC
 - Availability of ECDIS Training
 - ENC Pricing and distribution schemes
 - Harmonisation of Flag State requirements on back-up arrangements
 - Paper charts are not broken why fix them?

 Actions on carriage requirements of ECDIS postponed until next NAVmeeting (2008)

Rebuttal to main objections

Availability of ENC

- Our study concluded that availability of ENC is sufficient to make ECDIS cost-effective
- IHO: Availability of ENC by 2010 will be greater than assumed in the study

Availability of ECDIS Training

- A number of educational institutes provides the IMO model course on ECDIS
 - Ref: ARPA implementation

ENC Pricing and distribution schemes

- Preliminary studies indicate that ENC will not be more expensive than paper charts
- Conclusions of cost-effectiveness assessment are robust even if an additional cost is ascribed to ENCs compared to paper charts
- Distribution schemes of ENC more flexible than for paper charts
- <10% of SOLAS fleet currently use ENCs service will improve and prices will decrease when usage increases</p>

Harmonisation of Flag State requirements on back-up arrangements

- This is no argument against mandatory ECDIS national additional requirements already exist in many other areas
- No Flag States have so far required additional paper back-up as far as we know

www.dnv.com

For further information, please contact:

Erik.Vanem@dnv.com

Magnus.Strandmyr.Eide@dnv.com

Rolf.Skjong@dnv.com

DNV Research & Innovation

© Det Norske Veritas AS. All rights reserved 17 October 2007 Slide 23